1
|
Fused Tricyclic Guanidine Alkaloids: Insights into Their Structure, Synthesis and Bioactivity. Mar Drugs 2022; 20:md20090579. [PMID: 36135769 PMCID: PMC9503768 DOI: 10.3390/md20090579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
A marine natural product possesses a diverse and unique scaffold that contributes to a vast array of bioactivities. Tricyclic guanidine alkaloids are a type of scaffold found only in marine natural products. These rare skeletons exhibit a wide range of biological applications, but their synthetic approaches are still limited. Various stereochemical assignments of the compounds remain unresolved. Batzelladine and ptilocaulins are an area of high interest in research on tricyclic guanidine alkaloids. In addition, mirabilins and netamines are among the other tricyclic guanidine alkaloids that contain the ptilocaulin skeleton. Due to the different structural configurations of batzelladine and ptilocaulin, these two main skeletons are afforded attention in many reports. These two main skeletons exhibit different kinds of compounds by varying their ester chain and sidechain. The synthetic approaches to tricyclic guanidine alkaloids, especially the batzelladine and ptilocaulin skeletons, are discussed. Moreover, this review compiles the first and latest research on the synthesis of these compounds and their bioactivities, dating from the 1980s to 2022.
Collapse
|
2
|
Abstract
This review deals with the synthesis of naturally occurring alkaloids containing partially or completely saturated pyrimidine nuclei. The interest in these compounds is associated with their structural diversity, high biological activity and toxicity. The review is divided into four parts, each of which describes a number of synthetic methodologies toward structurally different naturally occurring alkaloids containing saturated cyclic six-membered amidine, guanidine, aminal and urea (thiourea) moieties, respectively. The development of various synthetic strategies for the preparation of these compounds has remarkably increased during the past few decades. This is primarily due to the fact that some of these compounds are isolated only in limited quantities, which makes it practically impossible to study their full structural characteristics and biological activity.
Collapse
|
3
|
Rahman MM, Rahaman MS, Islam MR, Hossain ME, Mannan Mithi F, Ahmed M, Saldías M, Akkol EK, Sobarzo-Sánchez E. Multifunctional Therapeutic Potential of Phytocomplexes and Natural Extracts for Antimicrobial Properties. Antibiotics (Basel) 2021; 10:1076. [PMID: 34572660 PMCID: PMC8468069 DOI: 10.3390/antibiotics10091076] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Natural products have been known for their antimicrobial factors since time immemorial. Infectious diseases are a worldwide burden that have been deteriorating because of the improvement of species impervious to various anti-infection agents. Hence, the distinguishing proof of antimicrobial specialists with high-power dynamic against MDR microorganisms is central to conquer this issue. Successful treatment of infection involves the improvement of new drugs or some common source of novel medications. Numerous naturally occurring antimicrobial agents can be of plant origin, animal origin, microbial origin, etc. Many plant and animal products have antimicrobial activities due to various active principles, secondary metabolites, or phytochemicals like alkaloids, tannins, terpenoids, essential oils, flavonoids, lectins, phagocytic cells, and many other organic constituents. Phytocomplexes' antimicrobial movement frequently results from a few particles acting in cooperative energy, and the clinical impacts might be because of the direct effects against microorganisms. The restorative plants that may furnish novel medication lead the antimicrobial movement. The purpose of this study is to investigate the antimicrobial properties of the phytocomplexes and natural extracts of the plants that are ordinarily being utilized as conventional medications and then recommended the chance of utilizing them in drugs for the treatment of multiple drug-resistant disease.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Faria Mannan Mithi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Marianela Saldías
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
4
|
El-Demerdash A, Metwaly AM, Hassan A, Abd El-Aziz TM, Elkaeed EB, Eissa IH, Arafa RK, Stockand JD. Comprehensive Virtual Screening of the Antiviral Potentialities of Marine Polycyclic Guanidine Alkaloids against SARS-CoV-2 (COVID-19). Biomolecules 2021; 11:460. [PMID: 33808721 PMCID: PMC8003478 DOI: 10.3390/biom11030460] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
The huge global expansion of the COVID-19 pandemic caused by the novel SARS-corona virus-2 is an extraordinary public health emergency. The unavailability of specific treatment against SARS-CoV-2 infection necessitates the focus of all scientists in this direction. The reported antiviral activities of guanidine alkaloids encouraged us to run a comprehensive in silico binding affinity of fifteen guanidine alkaloids against five different proteins of SARS-CoV-2, which we investigated. The investigated proteins are COVID-19 main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and a non-structural protein (nsp10) (PDB ID: 6W4H). The binding energies for all tested compounds indicated promising binding affinities. A noticeable superiority for the pentacyclic alkaloids particularly, crambescidin 786 (5) and crambescidin 826 (13) has been observed. Compound 5 exhibited very good binding affinities against Mpro (ΔG = -8.05 kcal/mol), nucleocapsid phosphoprotein (ΔG = -6.49 kcal/mol), and nsp10 (ΔG = -9.06 kcal/mol). Compound 13 showed promising binding affinities against Mpro (ΔG = -7.99 kcal/mol), spike glycoproteins (ΔG = -6.95 kcal/mol), and nucleocapsid phosphoprotein (ΔG = -8.01 kcal/mol). Such promising activities might be attributed to the long ω-fatty acid chain, which may play a vital role in binding within the active sites. The correlation of c Log P with free binding energies has been calculated. Furthermore, the SAR of the active compounds has been clarified. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) studies were carried out in silico for the 15 compounds; most examined compounds showed optimal to good range levels of ADMET aqueous solubility, intestinal absorption and being unable to pass blood brain barrier (BBB), non-inhibitors of CYP2D6, non-hepatotoxic, and bind plasma protein with a percentage less than 90%. The toxicity of the tested compounds was screened in silico against five models (FDA rodent carcinogenicity, carcinogenic potency TD50, rat maximum tolerated dose, rat oral LD50, and rat chronic lowest observed adverse effect level (LOAEL)). All compounds showed expected low toxicity against the tested models. Molecular dynamic (MD) simulations were also carried out to confirm the stable binding interactions of the most promising compounds, 5 and 13, with their targets. In conclusion, the examined 15 alkaloids specially 5 and 13 showed promising docking, ADMET, toxicity and MD results which open the door for further investigations for them against SARS-CoV-2.
Collapse
Affiliation(s)
- Amr El-Demerdash
- Metabolic Biology & Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed M. Metwaly
- Department of Pharmacognosy & Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Afnan Hassan
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza 12578, Egypt; (A.H.); (R.K.A.)
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA;
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Riyadh, Saudi Arabia;
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Reem K. Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza 12578, Egypt; (A.H.); (R.K.A.)
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
| | - James D. Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA;
| |
Collapse
|
5
|
Crambescidin Acid from the French Polynesian Monanchora n. sp. Marine Sponge. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
El‐Demerdash A, Ermolenko L, Gros E, Retailleau P, Thanh BN, Gauvin‐Bialecki A, Al‐Mourabit A. Short‐Cut Bio‐Inspired Synthesis of Tricyclic Guanidinic Motifs of Crambescidins and Batzelladines Marine Alkaloids. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Amr El‐Demerdash
- Institut de Chimie des Substances Naturelles Université Paris‐Saclay, CNRS 91190 Gif‐Sur‐Yvette France
- Chemistry Department Faculty of Science Mansoura University 35516 Mansour Egypt
| | - Ludmila Ermolenko
- Institut de Chimie des Substances Naturelles Université Paris‐Saclay, CNRS 91190 Gif‐Sur‐Yvette France
| | - Emmanuelle Gros
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments Faculté des Sciences et Technologies Université de La Réunion 15 Avenue René Cassin, CS 92003 97744 Saint‐Denis Cedex 9 La Réunion France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles Université Paris‐Saclay, CNRS 91190 Gif‐Sur‐Yvette France
| | - Binh Nguyen Thanh
- Institut de Chimie des Substances Naturelles Université Paris‐Saclay, CNRS 91190 Gif‐Sur‐Yvette France
| | - Anne Gauvin‐Bialecki
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments Faculté des Sciences et Technologies Université de La Réunion 15 Avenue René Cassin, CS 92003 97744 Saint‐Denis Cedex 9 La Réunion France
| | - Ali Al‐Mourabit
- Institut de Chimie des Substances Naturelles Université Paris‐Saclay, CNRS 91190 Gif‐Sur‐Yvette France
| |
Collapse
|
7
|
Kurhekar JV. Antimicrobial lead compounds from marine plants. PHYTOCHEMICALS AS LEAD COMPOUNDS FOR NEW DRUG DISCOVERY 2020. [PMCID: PMC7153345 DOI: 10.1016/b978-0-12-817890-4.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Marine environment is a home to a very wide diversity of flora and fauna, which includes an array of genetically diverse coastline and under seawater plant species, animal species, microbial species, their habitats, ecosystems, and supporting ecological processes. The Earth is home to an estimated 10 million species, of which a large chunk belongs to marine environment. Marine plants are a store house of a variety of antimicrobial compounds like classes of marine flavonoids—flavones and flavonols, terpenoids, alkaloids, peptides, carbohydrates, fatty acids, polyketides, polysaccharides, phenolic compounds, and steroids. Lot of research today is directed toward marine species, which have proved to be a potent source of structurally widely diverse and yet highly bioactive secondary metabolites. Varied species of phylum Porifera, algae including diatoms, Chlorophyta, Euglenophyta, Dinoflagellata, Chrysophyta, cyanobacteria, Rhodophyta, and Phaeophyta, bacteria, fungi, and weeds have been exploited by mankind for their inherent indigenous biological antimicrobial compounds, produced under the extreme stressful underwater conditions of temperature, atmospheric pressure, light, and nutrition. The present study aims at presenting a brief review of bioactive marine compounds possessing antimicrobial potency.
Collapse
|
8
|
Herath HMPD, Preston S, Jabbar A, Garcia-Bustos J, Taki AC, Addison RS, Hayes S, Beattie KD, McGee SL, Martin SD, Ekins MG, Hooper JNA, Chang BCH, Hofmann A, Davis RA, Gasser RB. Identification of Fromiamycalin and Halaminol A from Australian Marine Sponge Extracts with Anthelmintic Activity against Haemonchus contortus. Mar Drugs 2019; 17:md17110598. [PMID: 31652835 PMCID: PMC6891614 DOI: 10.3390/md17110598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 01/29/2023] Open
Abstract
There is an urgent need to discover and develop new anthelmintics for the treatment of parasitic nematodes of veterinary importance to circumvent challenges linked to drug resistant parasites. Being one of the most diverse natural ecosystems, the marine environment represents a rich resource of novel chemical entities. This study investigated 2000 extracts from marine invertebrates, collected from Australian waters, for anthelmintic activity. Using a well-established in vitro bioassay, these extracts were screened for nematocidal activity against Haemonchus contortus — a socioeconomically important parasitic nematode of livestock animals. Extracts (designated Mu-1, Ha-1 and Ha-2) from two marine sponges (Monanchora unguiculata and Haliclona sp.) each significantly affected larvae of H. contortus. Individual extracts displayed a dose-dependent inhibition of both the motility of exsheathed third-stage larvae (xL3s) and the development of xL3s to fourth-stage larvae (L4s). Active fractions in each of the three extracts were identified using bioassay-guided fractionation. From the active fractions from Monanchora unguiculata, a known pentacyclic guanidine alkaloid, fromiamycalin (1), was purified. This alkaloid was shown to be a moderately potent inhibitor of L4 development (half-maximum inhibitory concentration (IC50) = 26.6 ± 0.74 µM) and L4 motility (IC50 = 39.4 ± 4.83 µM), although it had a relatively low potency at inhibiting of xL3 motility (IC50 ≥ 100 µM). Investigation of the active fractions from the two Haliclona collections led to identification of a mixture of amino alcohol lipids, and, subsequently, a known natural product halaminol A (5). Anthelmintic profiling showed that 5 had limited potency at inhibiting larval development and motility. These data indicate that fromiamycalin, other related pentacyclic guanidine alkaloids and/or halaminols could have potential as anthelmintics following future medicinal chemistry efforts.
Collapse
Affiliation(s)
- H M P Dilrukshi Herath
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
- Faculty of Health and Life Sciences, Federation University, Ballarat, Victoria 3350, Australia.
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Jose Garcia-Bustos
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Aya C Taki
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Russell S Addison
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Sasha Hayes
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Karren D Beattie
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Sean L McGee
- Metabolic Research Unit, Metabolic Reprogramming Laboratory, School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Sheree D Martin
- Metabolic Research Unit, Metabolic Reprogramming Laboratory, School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | | | | | - Bill C H Chang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
9
|
Babij NR, Boothe JR, McKenna GM, Fornwald RM, Wolfe JP. Stereocontrolled synthesis of bicyclic ureas and sulfamides via Pd-catalyzed alkene carboamination reactions. Tetrahedron 2019; 75:4228-4243. [PMID: 31866698 DOI: 10.1016/j.tet.2019.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The synthesis of bicyclic ureas and sulfamides via palladium-catalyzed alkene carboamination reactions between aryl/alkenyl halides/triflates and alkenes bearing pendant cyclic sulfamides and ureas is described. The substrates for these reactions are generated in 3-5 steps from commercially available materials, and products are obtained in good yield with up to >20:1 diastereoselectivity. The stereochemical outcome of the sulfamide alkene addition is consistent with a mechanism involving anti-aminopalladation of the alkene, whereas the stereochemical outcome of the urea alkene addition is consistent with a syn-aminopalladation mechanism.
Collapse
Affiliation(s)
- Nicholas R Babij
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109-1055, USA
| | - Jordan R Boothe
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109-1055, USA
| | - Grace M McKenna
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109-1055, USA
| | - Ryan M Fornwald
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109-1055, USA
| | - John P Wolfe
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109-1055, USA
| |
Collapse
|
10
|
El-Demerdash A, Petek S, Debitus C, Al-Mourabit A. Fatty Acids Pattern from the French Polynesian Monanchora n. sp. Marine Sponge. Chem Nat Compd 2018. [DOI: 10.1007/s10600-018-2575-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Sesterterpenoid and Steroid Metabolites from a Deep-Water Alaska Sponge Inhibit Wnt/β-Catenin Signaling in Colon Cancer Cells. Mar Drugs 2018; 16:md16090297. [PMID: 30150508 PMCID: PMC6164309 DOI: 10.3390/md16090297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/01/2018] [Accepted: 08/23/2018] [Indexed: 01/22/2023] Open
Abstract
The Wnt/β-catenin signaling pathway is known to play critical roles in a wide range of cellular processes: cell proliferation, differentiation, migration and embryonic development. Importantly, dysregulation of this pathway is tightly associated with pathogenesis in most human cancers. Therefore, the Wnt/β-catenin pathway has emerged as a promising target in anticancer drug screening programs. In the present study, we have isolated three previously unreported metabolites from an undescribed sponge, a species of Monanchora (Order Poecilosclerida, Family Crambidae), closely related to the northeastern Pacific species Monanchora pulchra, collected from deep waters off the Aleutian Islands of Alaska. Through an assortment of NMR, MS, ECD, computational chemical shifts calculation, and DP4, chemical structures of these metabolites have been characterized as spirocyclic ring-containing sesterterpenoid (1) and cholestane-type steroidal analogues (2 and 3). These compounds exhibited the inhibition of β-catenin response transcription (CRT) through the promotion of β-catenin degradation, which was in part implicated in the antiproliferative activity against two CRT-positive colon cancer cell lines.
Collapse
|
12
|
El-Demerdash A, Atanasov AG, Bishayee A, Abdel-Mogib M, Hooper JNA, Al-Mourabit A. Batzella, Crambe and Monanchora: Highly Prolific Marine Sponge Genera Yielding Compounds with Potential Applications for Cancer and Other Therapeutic Areas. Nutrients 2018; 10:E33. [PMID: 29301302 PMCID: PMC5793261 DOI: 10.3390/nu10010033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022] Open
Abstract
Pyrroloquinoline and guanidine-derived alkaloids present distinct groups of marine secondary metabolites with structural diversity that displayed potentialities in biological research. A considerable number of these molecular architectures had been recorded from marine sponges belonging to different marine genera, including Batzella, Crambe, Monanchora, Clathria, Ptilocaulis and New Caledonian starfishes Fromia monilis and Celerina heffernani. In this review, we aim to comprehensively cover the chemodiversity and the bioactivities landmarks centered around the chemical constituents exclusively isolated from these three marine genera including Batzella, Crambe and Monanchora over the period 1981-2017, paying a special attention to the polycyclic guanidinic compounds and their proposed biomimetic landmarks. It is concluded that these marine sponge genera represent a rich source of novel compounds with potential applications for cancer and other therapeutic areas.
Collapse
Affiliation(s)
- Amr El-Demerdash
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France.
- Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland.
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA.
| | - Mamdouh Abdel-Mogib
- Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - John N A Hooper
- Queensland Museum, P.O. Box 3300, South Brisbane, QLD BC 4101, Australia.
| | - Ali Al-Mourabit
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France.
| |
Collapse
|
13
|
Shubina LK, Makarieva TN, von Amsberg G, Denisenko VA, Popov RS, Dyshlovoy SA. Monanchoxymycalin C with anticancer properties, new analogue of crambescidin 800 from the marine sponge Monanchora pulchra. Nat Prod Res 2017; 33:1415-1422. [DOI: 10.1080/14786419.2017.1419231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Larisa Kimovna Shubina
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russian Federation
| | - Tatyana Nikolaevna Makarieva
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russian Federation
| | - Gunhild von Amsberg
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vladimir Anatolievich Denisenko
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russian Federation
| | - Roman Sergeevich Popov
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russian Federation
| | - Sergey Anatolievich Dyshlovoy
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russian Federation
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- School of Natural Sciences, Far East Federal University, Vladivostok, Russian Federation
| |
Collapse
|
14
|
El-Demerdash A, Moriou C, Martin MT, Petek S, Debitus C, Al-Mourabit A. Unguiculins A-C: cytotoxic bis-guanidine alkaloids from the French Polynesian sponge, Monanchora n. sp. Nat Prod Res 2017; 32:1512-1517. [DOI: 10.1080/14786419.2017.1385011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Amr El-Demerdash
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- Faculty of Science, Organic Chemistry Division, Chemistry Department, Mansoura University, Mansoura, Egypt
| | - Céline Moriou
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Thérèse Martin
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sylvain Petek
- EIO, IRD, IFREMER, ILM, University of Polynésie française, French Polynesia, France
- LEMAR, IRD, IFREMER, CNRS, University of Bretagne Occidentale, Plouzané, France
| | - Cécile Debitus
- EIO, IRD, IFREMER, ILM, University of Polynésie française, French Polynesia, France
- LEMAR, IRD, IFREMER, CNRS, University of Bretagne Occidentale, Plouzané, France
| | - Ali Al-Mourabit
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University of Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
15
|
Garlets ZJ, White DR, Wolfe JP. Recent Developments in Pd(0)-Catalyzed Alkene Carboheterofunctionalization Reactions. ASIAN J ORG CHEM 2017; 6:636-653. [PMID: 29130026 PMCID: PMC5675590 DOI: 10.1002/ajoc.201600577] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Indexed: 11/12/2022]
Abstract
This review summarizes recent developments in palladium-catalyzed alkene carboalkoxylation and carboamination reactions. New synthetic methods that have been reported in the past four years are described, along with mechanistic issues and the influence of mechanism on product stereochemistry. The applications of these transformations to the synthesis of natural products and other biologically relevant compounds are also discussed.
Collapse
Affiliation(s)
- Zachary J. Garlets
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109-1055, USA
| | - Derick R. White
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109-1055, USA
| | - John P. Wolfe
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI, 48109-1055, USA
| |
Collapse
|
16
|
He F, Mai LH, Gardères J, Hussain A, Erakovic Haber V, Bourguet-Kondracki ML. Major Antimicrobial Representatives from Marine Sponges and/or Their Associated Bacteria. BLUE BIOTECHNOLOGY 2017; 55:35-89. [DOI: 10.1007/978-3-319-51284-6_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
El-Demerdash A, Moriou C, Martin MT, Rodrigues-Stien ADS, Petek S, Demoy-Schneider M, Hall K, Hooper JNA, Debitus C, Al-Mourabit A. Cytotoxic Guanidine Alkaloids from a French Polynesian Monanchora n. sp. Sponge. JOURNAL OF NATURAL PRODUCTS 2016; 79:1929-1937. [PMID: 27419263 DOI: 10.1021/acs.jnatprod.6b00168] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Four bicyclic and three pentacyclic guanidine alkaloids (1-7) were isolated from a French Polynesian Monanchora n. sp. sponge, along with the known alkaloids monalidine A (8), enantiomers 9-11 of known natural product crambescins, and the known crambescidins 12-15. Structures were assigned by spectroscopic data interpretation. The relative and absolute configurations of the alkaloids were established by analysis of (1)H NMR and NOESY spectra and by circular dichroism analysis. The new norcrambescidic acid (7) corresponds to interesting biosynthetic variation within the pentacyclic core. All compounds exhibited antiproliferative and cytotoxic efficacy against KB, HCT116, HL60, MRC5, and B16F10 cancer cells, with IC50 values ranging from 4 nM to 10 μM.
Collapse
Affiliation(s)
- Amr El-Demerdash
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay , 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
- Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University , Mansoura 35516, Egypt
| | - Céline Moriou
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay , 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Marie-Thérèse Martin
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay , 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Alice de Souza Rodrigues-Stien
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay , 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Sylvain Petek
- Institut de Recherche pour le Développement (IRD) , UMR-241 EIO, BP529, 98713, Papeete, Tahiti, French Polynesia
| | - Marina Demoy-Schneider
- Université de la Polynésie Française , UMR-241 EIO, BP 6570, 98702 Faa'a Aéroport, Tahiti, French Polynesia
| | - Kathryn Hall
- Queensland Museum , PO Box 3300, South Brisbane BC, Queensland 4101, Australia
| | - John N A Hooper
- Queensland Museum , PO Box 3300, South Brisbane BC, Queensland 4101, Australia
- Eskitis Institute for Drug Discovery, Griffith University , Nathan, Queensland 4111, Australia
| | - Cécile Debitus
- Institut de Recherche pour le Développement (IRD) , UMR-241 EIO, BP529, 98713, Papeete, Tahiti, French Polynesia
| | - Ali Al-Mourabit
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay , 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
18
|
Li J, Wang H, Hou Y, Yu W, Xu S, Zhang Y. A General and Mild Copper(I)-Catalyzed Three-Component Reaction of Cyanamides, Amines, and Diaryliodonium Triflates. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Sfecci E, Lacour T, Amade P, Mehiri M. Polycyclic Guanidine Alkaloids from Poecilosclerida Marine Sponges. Mar Drugs 2016; 14:E77. [PMID: 27070629 PMCID: PMC4849081 DOI: 10.3390/md14040077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/26/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023] Open
Abstract
Sessile marine sponges provide an abundance of unique and diversified scaffolds. In particular, marine guanidine alkaloids display a very wide range of biological applications. A large number of cyclic guanidine alkaloids, including crambines, crambescins, crambescidins, batzelladines or netamins have been isolated from Poecilosclerida marine sponges. In this review, we will explore the chemodiversity of tri- and pentacyclic guanidine alkaloids. NMR and MS data tools will also be provided, and an overview of the wide range of bioactivities of crambescidins and batzelladines derivatives will be given.
Collapse
Affiliation(s)
- Estelle Sfecci
- Nice Institute of Chemistry, Marine Natural Product Team, University Nice Sophia Antipolis, Parc Valrose, 28 avenue de Valrose, 06108 Nice Cedex 02, France.
| | | | - Philippe Amade
- Nice Institute of Chemistry, Marine Natural Product Team, University Nice Sophia Antipolis, Parc Valrose, 28 avenue de Valrose, 06108 Nice Cedex 02, France.
| | - Mohamed Mehiri
- Nice Institute of Chemistry, Marine Natural Product Team, University Nice Sophia Antipolis, Parc Valrose, 28 avenue de Valrose, 06108 Nice Cedex 02, France.
| |
Collapse
|
20
|
Santos MFC, Harper PM, Williams DE, Mesquita JT, Pinto ÉG, da Costa-Silva TA, Hajdu E, Ferreira AG, Santos RA, Murphy PJ, Andersen RJ, Tempone AG, Berlinck RGS. Anti-parasitic Guanidine and Pyrimidine Alkaloids from the Marine Sponge Monanchora arbuscula. JOURNAL OF NATURAL PRODUCTS 2015; 78:1101-1112. [PMID: 25924111 DOI: 10.1021/acs.jnatprod.5b00070] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
HPLC-UV-ELSD-MS-guided fractionation of the anti-parasitic extract obtained from the marine sponge Monanchora arbuscula, collected off the southeastern coast of Brazil, led to the isolation of a series of guanidine and pyrimidine alkaloids. The pyrimidines monalidine A (1) and arbusculidine A (7), as well as the guanidine alkaloids batzellamide A (8) and hemibatzelladines 9-11, represent new minor constituents that were identified by analysis of spectroscopic data. The total synthesis of monalidine A confirmed its structure. Arbusculidine A (7), related to the ptilocaulin/mirabilin/netamine family of tricyclic guanidine alkaloids, is the first in this family to possess a benzene ring. Batzellamide A (8) and hemibatzelladines 9-11 represent new carbon skeletons that are related to the batzelladines. Evaluation of the anti-parasitic activity of the major known metabolites, batzelladines D (12), F (13), L (14), and nor-L (15), as well as of synthetic monalidine A (1), against Trypanosoma cruzi and Leishmania infantum is also reported, along with a detailed investigation of parasite cell-death pathways promoted by batzelladine L (14) and norbatzelladine L (15).
Collapse
Affiliation(s)
- Mario F C Santos
- †Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970 São Carlos, SP, Brazil
| | - Philip M Harper
- ‡School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW, U.K
| | | | - Juliana T Mesquita
- ⊥Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 8° andar, Cerqueira Cesar, CEP 01246-000 São Paulo, SP, Brazil
| | - Érika G Pinto
- ⊥Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 8° andar, Cerqueira Cesar, CEP 01246-000 São Paulo, SP, Brazil
- ∥Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, CEP 05403-000 São Paulo, SP, Brazil
| | - Thais A da Costa-Silva
- ⊥Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 8° andar, Cerqueira Cesar, CEP 01246-000 São Paulo, SP, Brazil
| | - Eduardo Hajdu
- #Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, CEP 20940-040 Rio de Janeiro, RJ, Brazil
| | - Antonio G Ferreira
- ∇Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235 - SP-310, CEP 13565-905, São Carlos, SP, Brazil
| | - Raquel A Santos
- ⊗Laboratório de Genética e Biologia Molecular, Programa de Pós-Graduação em Ciências, Universidade de Franca, Av. Dr. Armando Salles Oliveira, 201, CEP 14404 600 Franca, SP, Brazil
| | - Patrick J Murphy
- ‡School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW, U.K
| | | | - Andre G Tempone
- ⊥Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 8° andar, Cerqueira Cesar, CEP 01246-000 São Paulo, SP, Brazil
- ∥Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, CEP 05403-000 São Paulo, SP, Brazil
| | - Roberto G S Berlinck
- †Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
21
|
Tahir S, Badshah A, Hussain RA. Guanidines from ‘toxic substances’ to compounds with multiple biological applications – Detailed outlook on synthetic procedures employed for the synthesis of guanidines. Bioorg Chem 2015; 59:39-79. [DOI: 10.1016/j.bioorg.2015.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 11/25/2022]
|
22
|
Abstract
Naturally occurring guanidine derivatives frequently display medicinally useful properties. Among them, the higher order pyrrole-imidazole alkaloids, the dragmacidins, the crambescidins/batzelladines, and the saxitoxins/tetradotoxins have stimulated the development of many new synthetic methods over the past decades. We provide here an overview of the syntheses of these cyclic guanidine-containing natural products.
Collapse
Affiliation(s)
- Yuyong Ma
- Division of Chemistry, Department of Biochemistry, U T Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Saptarshi De
- Division of Chemistry, Department of Biochemistry, U T Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Chuo Chen
- Division of Chemistry, Department of Biochemistry, U T Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| |
Collapse
|
23
|
Mun B, Wang W, Kim H, Hahn D, Yang I, Won DH, Kim EH, Lee J, Han C, Kim H, Ekins M, Nam SJ, Choi H, Kang H. Cytotoxic 5α,8α-epidioxy sterols from the marine sponge Monanchora sp. Arch Pharm Res 2014; 38:18-25. [PMID: 25231340 DOI: 10.1007/s12272-014-0480-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 09/03/2014] [Indexed: 11/25/2022]
Abstract
Three new sterols, 5α,8α-epidioxy-24-norcholesta-6,9(11),22-trien-3β-ol (1), 5α,8α-epidioxy-cholesta-6,9(11),24-trien-3β-ol (2), and 5α,8α-epidioxy-cholesta-6,23-dien-3β,25-diol (3), with four known sterols (4-7) were isolated from a marine sponge Monanchora sp. Their chemical structures were elucidated by extensive spectroscopic analysis. Compounds 1 and 3-7 showed moderate cytotoxicity against several human carcinoma cell lines including renal (A-498), pancreatic (PANC-1 and MIA PaCa-2), and colorectal (HCT 116) cancer cell lines.
Collapse
Affiliation(s)
- Bora Mun
- Center for Marine Natural Products and Drug Discovery, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul, 151-747, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Babij NR, McKenna GM, Fornwald RM, Wolfe JP. Stereocontrolled synthesis of bicyclic sulfamides via Pd-catalyzed alkene carboamination reactions. Control of 1,3-asymmetric induction by manipulating mechanistic pathways. Org Lett 2014; 16:3412-5. [PMID: 24916343 PMCID: PMC4076003 DOI: 10.1021/ol5015976] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A new
annulation strategy for the synthesis of trans-bicyclic
sulfamides is described. The Pd-catalyzed alkene carboamination
reactions of 2-allyl and cis-2,5-diallyl pyrrolidinyl
sulfamides with aryl and alkenyl triflates afford the fused bicyclic
compounds in good yields and with good diastereoselectivity (up to
13:1 dr). Importantly, by employing reaction conditions that favor
an anti-aminopalladation mechanism, the relative
stereochemistry between the C3 and C4a stereocenters of the products
is reversed relative to related Pd-catalyzed carboamination reactions
that proceed via syn-aminopalladation.
Collapse
Affiliation(s)
- Nicholas R Babij
- Department of Chemistry, University of Michigan , 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | | | | | | |
Collapse
|
25
|
Abstract
This review covers the literature published in 2012 for marine natural products, with 1035 citations (673 for the period January to December 2012) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1241 for 2012), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
26
|
Tabakmakher KM, Denisenko VA, Guzii AG, Dmitrenok PS, Dyshlovoy SA, Lee HS, Makarieva TN. Monanchomycalin C, a New Pentacyclic Guanidine Alkaloid from the Far-Eastern Marine Sponge Monanchora Pulchra. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300801014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new pentacyclic guanidine alkaloid, monanchomycalin C (1), along with the earlier known ptilomycalin A (2), were isolated from the Far-Eastern marine sponge Monanchora pulchra. The structure of 1 was elucidated using 1D and 2D NMR spectroscopic and mass spectrometric data. Compounds 1 and 2 exhibited cytotoxic activities against human breast cancer MDA-MB-231 cells with IC50 values of 8.2 μM and 4.3 μM, respectively.
Collapse
Affiliation(s)
- Ksenya M. Tabakmakher
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| | - Vladimir A. Denisenko
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| | - Alla G. Guzii
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| | - Pavel S. Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| | - Sergey A. Dyshlovoy
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| | - Hyi-Seung Lee
- Korea Institute of Ocean Science & Technology, Marine Natural Products Laboratory, Ansan 426-744, Republic of Korea
| | - Tatyana N. Makarieva
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok-22, Prospect 100-let Vladivostoku 159, Russia
| |
Collapse
|
27
|
Babij NR, Wolfe JP. Desymmetrization of meso-2,5-diallylpyrrolidinyl ureas through asymmetric palladium-catalyzed carboamination: stereocontrolled synthesis of bicyclic ureas. Angew Chem Int Ed Engl 2013; 52:9247-50. [PMID: 23824590 PMCID: PMC3812936 DOI: 10.1002/anie.201302720] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Indexed: 11/06/2022]
Abstract
The stereoselective synthesis of fused bicyclic ureas 8 is accomplished via enantioselective Pd-catalyzed desymmetrizing carboamination reactions of meso -2,5-diallylpyrroldinyl urea 7c . The reactions generate a C–N bond, a C–C bond, and afford products bearing three stereocenters with good diastereoselectivity (6–12:1 dr) and enantioselectivity (up to 95:5 er). The N -(p -chlorophenyl) group can be cleaved in good yield using a two step sequence. In addition, 8c was transformed to a tricyclic guanidine product using a four-step (two pot) procedure and was converted to 9-epi -batzelladine k in seven steps.
Collapse
Affiliation(s)
- Nicholas R. Babij
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA
| | - John P. Wolfe
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA,
| |
Collapse
|
28
|
Babij NR, Wolfe JP. Desymmetrization of
meso
‐2,5‐Diallylpyrrolidinyl Ureas through Asymmetric Palladium‐Catalyzed Carboamination: Stereocontrolled Synthesis of Bicyclic Ureas. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302720] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nicholas R. Babij
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109‐1055 (USA)
| | - John P. Wolfe
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109‐1055 (USA)
| |
Collapse
|
29
|
Bennett EL, Black GP, Browne P, Hizi A, Jaffar M, Leyland JP, Martin C, Oz-Gleenberg I, Murphy PJ, Roberts TD, Thornhill AJ, Vale SA. Synthesis and biological activity of analogues of batzelladine F. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.01.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Wang W, Mun B, Lee Y, Venkat Reddy M, Park Y, Lee J, Kim H, Hahn D, Chin J, Ekins M, Nam SJ, Kang H. Bioactive sesterterpenoids from a Korean sponge Monanchora sp. JOURNAL OF NATURAL PRODUCTS 2013; 76:170-177. [PMID: 23360104 DOI: 10.1021/np300573m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Chemical investigation of a Korean marine sponge, Monanchora sp., yielded nine new sesterterpenoids (1-9) along with phorbaketals A-C (10-12). The planar structures were established on the basis of NMR and MS analysis, and the absolute configurations of 1-9 were defined using the modified Mosher's method and CD spectroscopic data analysis. Compounds 1-8, designated as phorbaketals D-K, possess a spiroketal-modified benzopyran moiety such as phorbaketal A, and their structural variations are due to oxidation and/or reduction of the tricyclic core or the side chain. Compound 9, designated as phorbin A, has a monocyclic structure and is proposed to be a possible biogenetic precursor of the phorbaketals. Compounds 1-9 were evaluated for cytotoxicity against four human cancer cell lines (A498, ACHN, MIA-paca, and PANC-1), and a few of them were found to exhibit cytotoxic activity.
Collapse
Affiliation(s)
- Weihong Wang
- Center for Marine Natural Products and Drug Discovery, School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Babij NR, Wolfe JP. Asymmetric total synthesis of (+)-merobatzelladine B. Angew Chem Int Ed Engl 2012; 51:4128-30. [PMID: 22431071 DOI: 10.1002/anie.201201001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Nicholas R Babij
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
33
|
Abstract
Covering: 2010. Previous review: Nat. Prod. Rep., 2011, 28, 196. This review covers the literature published in 2010 for marine natural products, with 895 citations (590 for the period January to December 2010) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1003 for 2010), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
34
|
Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2010; 28:196-268. [PMID: 21152619 DOI: 10.1039/c005001f] [Citation(s) in RCA: 343] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
35
|
Watts KR, Tenney K, Crews P. The structural diversity and promise of antiparasitic marine invertebrate-derived small molecules. Curr Opin Biotechnol 2010; 21:808-18. [PMID: 20956079 DOI: 10.1016/j.copbio.2010.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 09/22/2010] [Accepted: 09/22/2010] [Indexed: 02/01/2023]
Abstract
This review focuses on six important parasitic diseases that adversely affect the health and lives of over one billion people worldwide. In light of the global human impact of these neglected tropical diseases (NTDs), several initiatives and campaigns have been mounted to eradicate these infections once and for all. Currently available therapeutics summarized herein are either ineffective and/or have severe and deleterious side effects. Resistant strains continue to emerge and there is an overall unmet and urgent need for new antiparasitic drugs. Marine-derived small molecules (MDSMs) from invertebrates comprise an extremely diverse and promising source of compounds from a wide variety of structural classes. New discoveries of marine natural product privileged structures and compound classes that are being made via natural product library screening using whole cell in vitro assays are highlighted. It is striking to note that for the first time in history the entire genomes of all six parasites have been sequenced and additional transcriptome and proteomic analyses are available. Furthermore, open and shared, publicly available databases of the genome sequences, compounds, screening assays, and druggable molecular targets are being used by the worldwide research community. A combined assessment of all of the above factors, especially of current discoveries in marine natural products, implies a brighter future with more effective, affordable, and benign antiparasitic therapeutics.
Collapse
Affiliation(s)
- Katharine R Watts
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
36
|
Berlinck RGS, Burtoloso ACB, Trindade-Silva AE, Romminger S, Morais RP, Bandeira K, Mizuno CM. The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 2010; 27:1871-907. [DOI: 10.1039/c0np00016g] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|