1
|
Leung JN, Huynh HV. Mesoionic Janus-Type Dicarbene: Complexes, Adducts, and Catalytic Studies. Chemistry 2024; 30:e202402127. [PMID: 38953274 DOI: 10.1002/chem.202402127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
The preparations of homo- and hetero-bimetallic complexes as well as thiourea and selenourea derivatives of a mesoionic Janus-type N-heterocyclic dicarbene (diNHC) are reported. Analogues of its monocationic intermediate NHC have also been obtained for comparison. Using the main group adducts, the π-acceptor properties of both NHCs were determined using low temperature 77Se NMR spectroscopy completing their stereoelectronic profiling. Moreover, catalytic investigations reveal that the mesoionic dipalladium Janus-diNHC complex can be used in the sequential C2- and C5-arylation of 1-methylpyrrole for the preparation of non-symmetrical 2,5-diarylpyrroles.
Collapse
Affiliation(s)
- Jia Nuo Leung
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117453, Republic of Singapore
| | - Han Vinh Huynh
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117453, Republic of Singapore
| |
Collapse
|
2
|
Guan Y, Chang K, Su Y, Xu X, Xu X. Frustrated Lewis Pair-Type Reactivity of Intermolecular Rare-Earth Aryloxide and N-Heterocyclic Carbene/Olefin Combinations. Chem Asian J 2024; 19:e202400190. [PMID: 38451014 DOI: 10.1002/asia.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
This work reports the cooperative reactivity of rare-earth aryloxide complexes with N-heterocyclic carbene (NHC) or N-heterocyclic olefin (NHO), showcasing their synergistic effect on the activation of H2 and diverse organic substrates. Reactions of RE(OAr)3 (RE=La, Sm, and Y; Ar=2,6-tBu2-C6H3) with unsaturated NHC ItBu (:C[N(R)CH]2, R=tBu) isolated abnormally bound RE metal NHC complexes RE/aNHC. In contrast, no metal-NHO adducts were formed when RE(OAr)3 were treated with NHO (R2C=C[N(R)C(R)]2, R=CH3). Both RE/aNHC and RE/NHO Lewis pairs enabled cooperative H2 activation. Furthermore, RE(OAr)3 were found to catalyze the hydrogenation of the exocyclic C=C double bond of NHO under mild conditions. Moreover, treatment of the La/aNHC complex with benzaldehyde produced a La/C4 1,2-addition product. The La/NHO Lewis pair could react with (trimethylsilyl)diazomethane and α, β-conjugated imine, affording an isocyanotrimethylsilyl lanthanum amide complex and a La/C 1,4-addition product, respectively.
Collapse
Affiliation(s)
- Yiwen Guan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, P. R. China
| | - Kejian Chang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, P. R. China
| | - Yujie Su
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, P. R. China
| | - Xian Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, P. R. China
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, P. R. China
| |
Collapse
|
3
|
Ghadwal RS. 1,3-Imidazole-Based Mesoionic Carbenes and Anionic Dicarbenes: Pushing the Limit of Classical N-Heterocyclic Carbenes. Angew Chem Int Ed Engl 2023; 62:e202304665. [PMID: 37132480 DOI: 10.1002/anie.202304665] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/04/2023]
Abstract
Classical N-heterocyclic carbenes (NHCs) featuring the carbene center at the C2-position of 1,3-imidazole framework (i.e. C2-carbenes) are well acknowledged as very versatile neutral ligands in molecular as well as in materials sciences. The efficiency and success of NHCs in diverse areas is essentially attributed to their persuasive stereoelectronics, in particular the potent σ-donor property. The NHCs with the carbene center at the unusual C4 (or C5) position, the so-called abnormal NHCs (aNHCs) or mesoionic carbenes (iMICs), are however superior σ-donors than C2-carbenes. Hence, iMICs have substantial potential in sustainable synthesis and catalysis. The main obstacle in this direction is rather demanding synthetic accessibility of iMICs. The aim of this review article is to highlight recent advances, particularly by the author's research group, in accessing stable iMICs, quantifying their properties, and exploring their applications in synthesis and catalysis. In addition, the synthetic viability and use of vicinal C4,C5-anionic dicarbenes (ADCs), also based on an 1,3-imidazole framework, are presented. As will be apparent on following pages, iMICs and ADCs hold potentials in pushing the limit of classical NHCs by enabling access to conceptually new main-group heterocycles, radicals, molecular catalysts, ligands sets, and more.
Collapse
Affiliation(s)
- Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
4
|
Kundu G, Dash SR, Kumar R, Vanka K, Ghosh A, Sen SS. Enhancing Diradical Character of Chichibabin's Hydrocarbon through Fluoride Substitution. Chempluschem 2023; 88:e202300273. [PMID: 37409641 DOI: 10.1002/cplu.202300273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/07/2023]
Abstract
In this work, 5-SIDipp [SIDipp=1,3-bis(2,6-diisopropylphenyl)-imidazolin-2-ylidene] (1) derived Chichibabin's hydrocarbon with an octafluorobiphenylene spacer (3) has been reported. The addition of two equivalents of 5-SIDipp with decafluorobiphenyl in presence of BF3 gives the double C-F bond activated imidazolium salt with two tetrafluoroborate anions, 2. Further reduction of 2 gives the fluorine substituted 5-SIDipp based Chichibabin's hydrocarbon, 3. Quantum chemical calculations suggested a singlet state of 3 with a singlet-triplet energy gap (ΔES-T ) of 3.7 kcal mol-1 , which is substantially lower with respect to the hydrogen substituted NHC-based Chichibabin's hydrocarbons (10.7 kcal mol-1 , B3LYP). As a result, the diradical character (y) of 3 (y=0.62) is also noticeably higher than the hydrogen substituted CHs (y=0.41-0.43). The ▵ES-T was found to be higher in CASSCF (22.24 kcal mol-1 ) and CASPT2 (11.17 kcal mol-1 ) for 3 and the diradical character (d) is 44.6 %.
Collapse
Affiliation(s)
- Gargi Kundu
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soumya Ranjan Dash
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road Pashan, Pune, 411008, India
| | - Ravi Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road Pashan, Pune, 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road Pashan, Pune, 411008, India
| | - Aryya Ghosh
- Department of Chemistry, Ashoka University, Sonipat, Haryana, 131029, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
Sheng H, Liu Q, Zhang BB, Wang ZX, Chen XY. Visible-Light-Induced N-Heterocyclic Carbene-Catalyzed Single Electron Reduction of Mono-Fluoroarenes. Angew Chem Int Ed Engl 2023; 62:e202218468. [PMID: 36633173 DOI: 10.1002/anie.202218468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/13/2023]
Abstract
Fluoroarenes are abundant and readily available feedstocks. However, due to the high reduction potentials of mono-fluoroarenes, their photoreduction remains a continuing challenge, motivating the development of efficient activation modes to address this issue. This report presents the blue light-induced N-heterocyclic carbene (NHC)-catalyzed single electron reduction of mono-fluoroarenes for biaryl cross-couplings. We discovered that under blue light irradiation, NHC/tBuOK combination could construct powerful photoactive architectures to promote single electron transfer for Caryl -F bond reduction via forming highly reducing NHC radical anion. Notably, the strategy was also successful to reduce Caryl -O, Caryl -N, and Caryl -S bonds for biaryl cross-couplings.
Collapse
Affiliation(s)
- He Sheng
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, China
| |
Collapse
|
6
|
Breitwieser K, Bahmann H, Weiss R, Munz D. Gauging Radical Stabilization with Carbenes. Angew Chem Int Ed Engl 2022; 61:e202206390. [PMID: 35796423 PMCID: PMC9545232 DOI: 10.1002/anie.202206390] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 11/29/2022]
Abstract
Carbenes, including N-heterocyclic carbene (NHC) ligands, are used extensively to stabilize open-shell transition metal complexes and organic radicals. Yet, it remains unknown, which carbene stabilizes a radical well and, thus, how to design radical-stabilizing C-donor ligands. With the large variety of C-donor ligands experimentally investigated and their electronic properties established, we report herein their radical-stabilizing effect. We show that radical stabilization can be understood by a captodative frontier orbital description involving π-donation to- and π-donation from the carbenes. This picture sheds a new perspective on NHC chemistry, where π-donor effects usually are assumed to be negligible. Further, it allows for the intuitive prediction of the thermodynamic stability of covalent radicals of main group- and transition metal carbene complexes, and the quantification of redox non-innocence.
Collapse
Affiliation(s)
- Kevin Breitwieser
- Coordination ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| | - Hilke Bahmann
- Physical and Theoretical ChemistrySaarland UniversityCampus B2.266123SaarbrückenGermany
| | - Robert Weiss
- Organische ChemieFriedrich-Alexander-Universität (FAU) Erlangen-NürnbergHenkestr. 4291054ErlangenGermany
| | - Dominik Munz
- Coordination ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
- Inorganic and General ChemistryFriedrich-Alexander-Universität (FAU) Erlangen-NürnbergEgerlandstr. 191058ErlangenGermany
| |
Collapse
|
7
|
Synthesis and Characterisation of a Heterobimetallic N-heterocyclic Carbene Rhodium Ruthenium Complex as Catalyst for Transfer Hydrogenation. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Breitwieser K, Bahmann H, Weiss R, Munz D. Gauging Radical Stabilization with Carbenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kevin Breitwieser
- Saarland University: Universitat des Saarlandes Coordination Chemistry GERMANY
| | - Hilke Bahmann
- Saarland University: Universitat des Saarlandes Theoretical Chemistry GERMANY
| | - Robert Weiss
- FAU Erlangen Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Organic Chemistry GERMANY
| | - Dominik Munz
- Universitat des Saarlandes Inorganic Chemistry: Coordination Chemistry Campus C 4.1 66123 Saarbrücken GERMANY
| |
Collapse
|
9
|
Vanston CR, Nicholls TP, Bissember AC, Gardiner MG, Ho CC. Cationic Charge-Appended Abnormal Carbenes: Synthesis and Study of Electronically Modified Abnormal N-Heterocyclic Carbenes. Inorg Chem 2021; 61:622-632. [PMID: 34941242 DOI: 10.1021/acs.inorgchem.1c03336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A range of palladium complexes featuring electronically modified, imidazole-based abnormal N-heterocyclic carbene (aNHC) ligands have been prepared in the hopes of accessing a new class of cationic aNHC ligands electronically distinct from normal NHCs and aNHCs. These palladium complexes represent the first examples of transition metal-ligated aNHC complexes featuring a cationic moiety adjacent to the abnormal carbene center. It was anticipated that these design principles could facilitate electron transfer between the imidazolinylidene and the cationic heterocycle, thus reducing the electron density at the abnormal carbene center. However, this case study suggests that greater conformational restrictions that allow for heterocycle coplanarity are necessary to achieve significant electron transfer and enable access to a new class of cationic charge-appended aNHCs with unique electronic properties.
Collapse
Affiliation(s)
- Catriona R Vanston
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Thomas P Nicholls
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alex C Bissember
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Michael G Gardiner
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Curtis C Ho
- School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
10
|
Gaiser AN, Celis-Barros C, White FD, Beltran-Leiva MJ, Sperling JM, Salpage SR, Poe TN, Gomez Martinez D, Jian T, Wolford NJ, Jones NJ, Ritz AJ, Lazenby RA, Gibson JK, Baumbach RE, Páez-Hernández D, Neidig ML, Albrecht-Schönzart TE. Creation of an unexpected plane of enhanced covalency in cerium(III) and berkelium(III) terpyridyl complexes. Nat Commun 2021; 12:7230. [PMID: 34893651 PMCID: PMC8664847 DOI: 10.1038/s41467-021-27576-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022] Open
Abstract
Controlling the properties of heavy element complexes, such as those containing berkelium, is challenging because relativistic effects, spin-orbit and ligand-field splitting, and complex metal-ligand bonding, all dictate the final electronic states of the molecules. While the first two of these are currently beyond experimental control, covalent M‒L interactions could theoretically be boosted through the employment of chelators with large polarizabilities that substantially shift the electron density in the molecules. This theory is tested by ligating BkIII with 4'-(4-nitrophenyl)-2,2':6',2"-terpyridine (terpy*), a ligand with a large dipole. The resultant complex, Bk(terpy*)(NO3)3(H2O)·THF, is benchmarked with its closest electrochemical analog, Ce(terpy*)(NO3)3(H2O)·THF. Here, we show that enhanced Bk‒N interactions with terpy* are observed as predicted. Unexpectedly, induced polarization by terpy* also creates a plane in the molecules wherein the M‒L bonds trans to terpy* are shorter than anticipated. Moreover, these molecules are highly anisotropic and rhombic EPR spectra for the CeIII complex are reported.
Collapse
Affiliation(s)
- Alyssa N Gaiser
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Frankie D White
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Maria J Beltran-Leiva
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Sahan R Salpage
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Todd N Poe
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Daniela Gomez Martinez
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Tian Jian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nikki J Wolford
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Nathaniel J Jones
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Amanda J Ritz
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Robert A Lazenby
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ryan E Baumbach
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Dayán Páez-Hernández
- Center for Applied Nanosciences, Universidad Andres Bello, República 275, Santiago, Chile
| | - Michael L Neidig
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | | |
Collapse
|
11
|
Zhan L, Zhu M, Liu L, Wang J, Xie C, Zhang J. Synthesis of MAuAg (M = Ni, Pd, or Pt) and NiAuCu Heterotrimetallic Complexes Ligated by a Tritopic Carbanionic N-Heterocyclic Carbene. Inorg Chem 2021; 60:16035-16041. [PMID: 34648263 DOI: 10.1021/acs.inorgchem.1c01964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heterotrimetallic complexes (NiAuAg, PdAuAg, PtAuAg, and NiAuCu) containing a tritopic N-heterocyclic carbene (NHC) have been synthesized for the first time through the deprotonation and metalation of heterodimetallic complexes and were structurally characterized by single-crystal X-ray diffraction. The carbene character of the donor groups in the tritopic NHC complexes was established on the basis of structural and NMR analyses.
Collapse
Affiliation(s)
- Licheng Zhan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Mingqiu Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Lin Liu
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiwei Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Congyun Xie
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Jun Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
12
|
Poyatos M, Peris E. Insights into the past and future of Janus-di-N-heterocyclic carbenes. Dalton Trans 2021; 50:12748-12763. [PMID: 34581341 DOI: 10.1039/d1dt02035h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Janus di-N-heterocyclic carbene (NHC) ligands are a subclass of poly-NHCs that feature coordination to two transition metals in a facially opposed manner. The combination of the structural features of Janus type ligands, with the properties conferred by the NHC ligands, has conferred Janus-di-NHCs with privileged attributes for their use in diverse areas of research, such as homogeneous catalysis, materials chemistry and supramolecular chemistry. In molecular chemistry, Janus di-NHCs constitute one of the most useful chemical platforms for constructing dimetallic structures, and this includes both homo- and hetero-dimetallic compounds. This review aims to cover the most relevant advances in the use of Janus-di-NHCs during the last 15 years, by classifying them according to their specific structural features.
Collapse
Affiliation(s)
- Macarena Poyatos
- Institute of Advanced Materials (INAM), Universitat Jaume I, Av. Vicente Sos Baynat s/n, Castellón, E-1271, Spain.
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Universitat Jaume I, Av. Vicente Sos Baynat s/n, Castellón, E-1271, Spain.
| |
Collapse
|
13
|
Song H, Lee E. Theoretical Assessment of Dinitrogen Fixation on Carbon Atom. Chem Asian J 2021; 16:2421-2425. [PMID: 34250740 DOI: 10.1002/asia.202100567] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/26/2021] [Indexed: 11/07/2022]
Abstract
Dinitrogen activation in non-metallic systems has received considerable attention in recent years. Herein, we report the theoretical feasibility of N2 fixation using aminocarbenes (L) or their anionic derivatives. The molecular descriptors of L and anionic L- , which affect the interaction of L and anionic L- with N2 , were identified through multiple linear regression analysis. Additionally, the electron flow during C-N bond formation was confirmed by performing intrinsic reaction coordination calculations with intrinsic bond orbital analysis for the reaction of anionic L- with N2 .
Collapse
Affiliation(s)
- Hayoung Song
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Graduate school of artificial intelligence, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
14
|
Grineva AA, Filippov OA, Canac Y, Sortais JB, Nefedov SE, Lugan N, César V, Valyaev DA. Experimental and Theoretical Insights into the Electronic Properties of Anionic N-Heterocyclic Dicarbenes through the Rational Synthesis of Their Transition Metal Complexes. Inorg Chem 2021; 60:4015-4025. [DOI: 10.1021/acs.inorgchem.1c00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alina A. Grineva
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| | - Oleg A. Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28 Vavilov str., GSP-1, B-334, Moscow 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., Moscow 117997, Russia
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Jean-Baptiste Sortais
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Sergei E. Nefedov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| | - Noël Lugan
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Vincent César
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Dmitry A. Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| |
Collapse
|
15
|
Anga S, Acharya J, Chandrasekhar V. An Unsymmetric Imino-Phosphanamidinate Ligand and its Y(III) Complex: Synthesis, Characterization, and Catalytic Hydroboration of Carbonyl Compounds. J Org Chem 2021; 86:2224-2234. [PMID: 33290079 DOI: 10.1021/acs.joc.0c02383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An imino-phosphanamide ligand, [NHIiPr2Me2P(Ph)NH-2,6-iPr2C6H3] (LH), containing two different N-substituents was prepared by the direct reaction of the lithium salt of N-heterocyclic imine (NHI) with phenylchloro-2,6-diisopropylphenyl phosphanamine, PhP(Cl)NH-2,6-iPr2-C6H3. Reaction of LH with Y(N(SiMe3)2)3 afforded the heteroleptic complex, [{L}Y(N(SiMe3)2)2] (1), by elimination of HN(SiMe3)2. Compound 1 was characterized by multinuclear NMR and X-ray crystallography. In the complex, the Y(III) center was found to be tetracoordinate in a distorted tetrahedral geometry. The ligand, imino-phosphanamidinate, [L]-, functions in a chelating manner, and its coordination to Y(III) results in a distorted 4-membered YPN2 ring. As a proof of principle of its activity, 1 was used as a precatalyst for the hydroboration of various aldehydes and ketones using HBpin as the hydrogen source. The hydroboration reaction was rapid and clean even with low catalyst loadings (0.01-0.1 mol %). In addition, a very good functional group tolerance was observed in these reactions.
Collapse
Affiliation(s)
- Srinivas Anga
- Tata Institute of Fundamental Research Hyderabad, Gopanpally 500046, Hyderabad, India
| | - Joydev Acharya
- Tata Institute of Fundamental Research Hyderabad, Gopanpally 500046, Hyderabad, India.,Department of Chemistry, IIT Kanpur, Kanpur 208016, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally 500046, Hyderabad, India.,Department of Chemistry, IIT Kanpur, Kanpur 208016, India
| |
Collapse
|
16
|
Romain C, Bellemin-Laponnaz S, Dagorne S. Recent progress on NHC-stabilized early transition metal (group 3–7) complexes: Synthesis and applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213411] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Huh DN, Ciccone SR, Bekoe S, Roy S, Ziller JW, Furche F, Evans WJ. Synthesis of Ln II -in-Cryptand Complexes by Chemical Reduction of Ln III -in-Cryptand Precursors: Isolation of a Nd II -in-Cryptand Complex. Angew Chem Int Ed Engl 2020; 59:16141-16146. [PMID: 32441487 DOI: 10.1002/anie.202006393] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 01/15/2023]
Abstract
Lanthanide triflates have been used to incorporate NdIII and SmIII ions into the 2.2.2-cryptand ligand (crypt) to explore their reductive chemistry. The Ln(OTf)3 complexes (Ln=Nd, Sm; OTf=SO3 CF3 ) react with crypt in THF to form the THF-soluble complexes [LnIII (crypt)(OTf)2 ][OTf] with two triflates bound to the metal encapsulated in the crypt. Reduction of these LnIII -in-crypt complexes using KC8 in THF forms the neutral LnII -in-crypt triflate complexes [LnII (crypt)(OTf)2 ]. DFT calculations on [NdII (crypt)]2+ ], the first NdII cryptand complex, assign a 4f4 electron configuration to this ion.
Collapse
Affiliation(s)
- Daniel N Huh
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sierra R Ciccone
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Samuel Bekoe
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Saswata Roy
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - William J Evans
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
18
|
Nikolaevskii SA, Petrov PA, Sukhikh TS, Yambulatov DS, Kiskin MA, Sokolov MN, Eremenko IL. Simple synthetic protocol to obtain 3d-4f-heterometallic carboxylate complexes of N-heterocyclic carbenes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Kiernicki JJ, Zeller M, Szymczak NK. Examining the Generality of Metal-Ligand Cooperativity Across a Series of First-Row Transition Metals: Capture, Bond Activation, and Stabilization. Inorg Chem 2020; 59:9279-9286. [PMID: 32551605 PMCID: PMC7340558 DOI: 10.1021/acs.inorgchem.0c01163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We outline the generality and requirements for cooperative N2H4 capture, N-N bond scission, and amido stabilization across a series of first-row transition metal complexes bearing a pyridine(dipyrazole) ligand. This ligand contains a pair of flexibly tethered trialkylborane Lewis acids that enable hydrazine capture and M-NH2 stabilization. While the Lewis acids are required to bind N2H4, the identity of the metal dictates whether N-N bond scission can occur. The redox properties of the M(II) bis(amidoborane) series of complexes were investigated and reveal that ligand-based events prevail; oxidation results in the generation of a transiently formed aminyl radical, while reduction occurs at the redox-active pyridine(dipyrazole) ligand.
Collapse
Affiliation(s)
- John J. Kiernicki
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nathaniel K. Szymczak
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Huh DN, Ciccone SR, Bekoe S, Roy S, Ziller JW, Furche F, Evans WJ. Synthesis of Ln
II
‐in‐Cryptand Complexes by Chemical Reduction of Ln
III
‐in‐Cryptand Precursors: Isolation of a Nd
II
‐in‐Cryptand Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Daniel N. Huh
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - Sierra R. Ciccone
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - Samuel Bekoe
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - Saswata Roy
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - Joseph W. Ziller
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - Filipp Furche
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - William J. Evans
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| |
Collapse
|
21
|
Evans KJ, Mansell SM. Functionalised N-Heterocyclic Carbene Ligands in Bimetallic Architectures. Chemistry 2020; 26:5927-5941. [PMID: 31981386 PMCID: PMC7317719 DOI: 10.1002/chem.201905510] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Indexed: 12/18/2022]
Abstract
N-Heterocyclic carbenes (NHCs) have become immensely successful ligands in coordination chemistry and homogeneous catalysis due to their strong terminal σ-donor properties. However, by targeting NHC ligands with additional functionalisation, a new area of NHC coordination chemistry has developed that has enabled NHCs to be used to build up bimetallic and multimetallic architectures. This minireview covers the development of functionalised NHC ligands that incorporate additional donor sites in order to coordinate two or more metal atoms. This can be through the N-atom of the NHC ring, through a donor group attached to the N-atom or the carbon backbone, coordination of the π-bond or an annulated π-donor on the backbone, or through direct metalation of the backbone.
Collapse
Affiliation(s)
- Kieren J. Evans
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | | |
Collapse
|
22
|
Sau SC, Hota PK, Mandal SK, Soleilhavoup M, Bertrand G. Stable abnormal N-heterocyclic carbenes and their applications. Chem Soc Rev 2020; 49:1233-1252. [PMID: 31998907 DOI: 10.1039/c9cs00866g] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although N-heterocyclic carbenes (NHCs) have been known as ligands for organometallic complexes since the 1960s, these carbenes did not attract considerable attention until Arduengo et al. reported the isolation of a metal-free imidazol-2-ylidene in 1991. In 2001 Crabtree et al. reported a few complexes featuring an NHC isomer, namely an imidazol-5-ylidene, also termed abnormal NHC (aNHCs). In 2009, it was shown that providing to protect the C-2 position of an imidazolium salt, the deprotonation occurred at the C-5 position, affording imidazol-5-ylidenes that could be isolated. Over the last ten years, stable aNHCs have been used for designing a range of catalysts employing Pd(ii), Cu(i), Ni(ii), Fe(0), Zn(ii), Ag(i), and Au(i/iii) metal based precursors. These catalysts were utilized for different organic transformations such as the Suzuki-Miyaura cross-coupling reaction, C-H bond activation, dehydrogenative coupling, Huisgen 1,3-dipolar cycloaddition (click reaction), hydroheteroarylation, hydrosilylation reaction and migratory insertion of carbenes. Main-group metal complexes were also synthesized, including K(i), Al(iii), Zn(ii), Sn(ii), Ge(ii), and Si(ii/iv). Among them, K(i), Al(iii), and Zn(ii) complexes were used for the polymerization of caprolactone and rac-lactide at room temperature. In addition, based on the superior nucleophilicity of aNHCs, relative to that of their nNHCs isomers, they were used for small molecules activation, such as carbon dioxide (CO2), nitrous oxide (N2O), tetrahydrofuran (THF), tetrahydrothiophene and 9-borabicyclo[3.3.1]nonane (9BBN). aNHCs have also been shown to be efficient metal-free catalysts for ring opening polymerization of different cyclic esters at room temperature; they are among the most active metal-free catalysts for ε-caprolactone polymerization. Recently, aNHCs successfully accomplished the metal-free catalytic formylation of amides using CO2 and the catalytic reduction of carbon dioxide, including atmospheric CO2, into methanol, under ambient conditions. Although other transition metal complexes featuring aNHCs as ligand have been prepared and used in catalysis, this review article summarize the results obtained with the isolated aNHCs.
Collapse
Affiliation(s)
- Samaresh Chandra Sau
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India.
| | | | | | | | | |
Collapse
|
23
|
Kundu G, De S, Tothadi S, Das A, Koley D, Sen SS. Saturated N-Heterocyclic Carbene Based Thiele's Hydrocarbon with a Tetrafluorophenylene Linker. Chemistry 2019; 25:16533-16537. [PMID: 31609519 DOI: 10.1002/chem.201904421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/06/2019] [Indexed: 01/24/2023]
Abstract
The synthesis of a SIPr [1,3-bis(2,6-diisopropylphenyl)-imidazolin-2-ylidene] derived Kekulé diradicaloid with a tetrafluorophenylene spacer (3) has been described. Two synthetic routes have been reported to access 3. The cleavage of C-F bond of C6 F6 by SIPr in the presence of BF3 led to double C-F activated compound with two tetrafluoro borate counter anions (2), which upon reduction by lithium metal afforded 3. Alternatively, 3 can be directly accessed in one step by reacting SIPr with C6 F6 in presence of Mg metal. Compounds 2 and 3 were well characterized spectroscopically and by single-crystal X-ray diffraction studies. Experimental and computational studies support the cumulenic closed-shell singlet state of 3 with a singlet-triplet energy gap (ΔES-T ) of 23.7 kcal mol-1 .
Collapse
Affiliation(s)
- Gargi Kundu
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad, 201002, India
| | - Sriman De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Srinu Tothadi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Abhishek Das
- Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad, 201002, India
| |
Collapse
|
24
|
Hu Z, Ma X, Wang J, Wang H, Han X, Shi M, Zhang J. Six-Membered Janus-type Ditopic N-Heterocyclic Carbene Coinage Metal Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zejun Hu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xufeng Ma
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Jiwei Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Han Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xiaoyan Han
- Testing and Analysis Center, Soochow University, Suzhou 215123, China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | - Jun Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
25
|
Pardatscher L, Bitzer MJ, Jandl C, Kück JW, Reich RM, Kühn FE, Baratta W. Cationic abnormal N-heterocyclic carbene ruthenium complexes as suitable precursors for the synthesis of heterobimetallic compounds. Dalton Trans 2019; 48:79-89. [DOI: 10.1039/c8dt03713b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterobimetallic dicarbene compounds are easily prepared from cationic imidazolyl-based abnormal N-heterocyclic carbene ruthenium complexes which allow facile metallation.
Collapse
Affiliation(s)
- Lorenz Pardatscher
- Department of Chemistry & Catalysis Research Center
- Molecular Catalysis
- Technische Universität München
- D-85747 Garching bei München
- Germany
| | - Mario J. Bitzer
- Department of Chemistry & Catalysis Research Center
- Molecular Catalysis
- Technische Universität München
- D-85747 Garching bei München
- Germany
| | - Christian Jandl
- Department of Chemistry & Catalysis Research Center
- Molecular Catalysis
- Technische Universität München
- D-85747 Garching bei München
- Germany
| | - Jens W. Kück
- Department of Chemistry & Catalysis Research Center
- Molecular Catalysis
- Technische Universität München
- D-85747 Garching bei München
- Germany
| | - Robert M. Reich
- Department of Chemistry & Catalysis Research Center
- Molecular Catalysis
- Technische Universität München
- D-85747 Garching bei München
- Germany
| | - Fritz E. Kühn
- Department of Chemistry & Catalysis Research Center
- Molecular Catalysis
- Technische Universität München
- D-85747 Garching bei München
- Germany
| | | |
Collapse
|
26
|
Maity L, Parua SP, Rana BK, Isab AA, Bielawski CW, Dinda J. Electronic Tuning and Catalytic Activity of a Novel Pd(II) Complex Supported by a Tetracoordinate Ligand. ChemistrySelect 2018. [DOI: 10.1002/slct.201803071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lakshmikanta Maity
- Department of ChemistryUtkal University Bhubaneswar- 751004, Odisha India
| | - Sankar Prasad Parua
- Department of ChemistryJadavpur University, Kolkata- 700032 West Bengal India
| | - Bidyut Kumar Rana
- Department of Applied ScienceHaldia Institute of Technology, Haldia-32 West Bengal India
| | - Anvarhusein A. Isab
- Department of ChemistryKing Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM)Institute for Basic Science (IBS), Ulsan South Korea 44919
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan South Korea 44919
- Department of Energy EngineeringUNIST, Ulsan South Korea 44919
| | - Joydev Dinda
- Department of ChemistryUtkal University Bhubaneswar- 751004, Odisha India
| |
Collapse
|
27
|
Guo Z, Blair V, Deacon GB, Junk PC. Can Bismuth Replace Mercury in Redox Transmetallation/Protolysis Syntheses from Free Lanthanoid Metals? Chemistry 2018; 24:17464-17474. [DOI: 10.1002/chem.201804703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Zhifang Guo
- School of Chemistry; Monash University; Clayton 3800 Australia
| | - Victoria Blair
- School of Chemistry; Monash University; Clayton 3800 Australia
| | - Glen B. Deacon
- School of Chemistry; Monash University; Clayton 3800 Australia
| | - Peter C. Junk
- College of Science & Engineering; James Cook University; Townsville 4811 QLD Australia
| |
Collapse
|
28
|
Messelberger J, Grünwald A, Pinter P, Hansmann MM, Munz D. Carbene derived diradicaloids - building blocks for singlet fission? Chem Sci 2018; 9:6107-6117. [PMID: 30090299 PMCID: PMC6053972 DOI: 10.1039/c8sc01999a] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Organic singlet diradicaloids promise application in non-linear optics, electronic devices and singlet fission. The stabilization of carbon allotropes/cumulenes (C1, C2, C4) by carbenes has been equally an area of high activity. Combining these fields, we showed recently that carbene scaffolds allow as well for the design of diradicaloids. Herein, we report a comprehensive computational investigation (CASSCF/NEVPT2; fractional occupation DFT) on the electronic properties of carbene-bridge-carbene type diradicaloids. We delineate how to adjust the properties of these ensembles through the choice of carbene and bridge and show that already a short C2 bridge results in remarkable diradicaloid character. The choice of the carbene separately tunes the energies of the S1 and T1 excited states, whereas the bridge adjusts the overall energy level of the excited states. Accordingly, we develop guidelines on how to tailor the electronic properties of these molecules. Of particular note, fractional occupation DFT is an excellent tool to predict singlet-triplet gaps.
Collapse
Affiliation(s)
- Julian Messelberger
- Friedrich-Alexander Universität Erlangen-Nürnberg , Anorganische und Allgemeine Chemie , Egerlandstr. 1 , 91058 Erlangen , Germany .
| | - Annette Grünwald
- Friedrich-Alexander Universität Erlangen-Nürnberg , Anorganische und Allgemeine Chemie , Egerlandstr. 1 , 91058 Erlangen , Germany .
| | - Piermaria Pinter
- Technische Universität Dresden, Physikalische Organische Chemie , Bergstr. 66 , 01069 Dresden , Germany
| | - Max M Hansmann
- Georg-August Universität Göttingen , Institut für Organische und Biomolekulare Chemie , Tammannstraße 2 , 37073 Göttingen , Germany
| | - Dominik Munz
- Friedrich-Alexander Universität Erlangen-Nürnberg , Anorganische und Allgemeine Chemie , Egerlandstr. 1 , 91058 Erlangen , Germany .
| |
Collapse
|
29
|
Nesterov V, Reiter D, Bag P, Frisch P, Holzner R, Porzelt A, Inoue S. NHCs in Main Group Chemistry. Chem Rev 2018; 118:9678-9842. [PMID: 29969239 DOI: 10.1021/acs.chemrev.8b00079] [Citation(s) in RCA: 527] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since the discovery of the first stable N-heterocyclic carbene (NHC) in the beginning of the 1990s, these divalent carbon species have become a common and available class of compounds, which have found numerous applications in academic and industrial research. Their important role as two-electron donor ligands, especially in transition metal chemistry and catalysis, is difficult to overestimate. In the past decade, there has been tremendous research attention given to the chemistry of low-coordinate main group element compounds. Significant progress has been achieved in stabilization and isolation of such species as Lewis acid/base adducts with highly tunable NHC ligands. This has allowed investigation of numerous novel types of compounds with unique electronic structures and opened new opportunities in the rational design of novel organic catalysts and materials. This Review gives a general overview of this research, basic synthetic approaches, key features of NHC-main group element adducts, and might be useful for the broad research community.
Collapse
Affiliation(s)
- Vitaly Nesterov
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Dominik Reiter
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Prasenjit Bag
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Philipp Frisch
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Richard Holzner
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Amelie Porzelt
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| |
Collapse
|
30
|
Grindell R, Day BM, Guo FS, Pugh T, Layfield RA. Activation of C-H bonds by rare-earth metallocene-butyl complexes. Chem Commun (Camb) 2018; 53:9990-9993. [PMID: 28832031 DOI: 10.1039/c7cc05597h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stable metallocene-butyl complexes [(CpMe)2M(nBu)]2 (M = Y, Dy) were synthesized and their reactivity towards to ferrocene and bulky N-heterocyclic carbenes investigated. Selective mono-deprotonation of ferrocene and a benzylic methyl group of IMes were observed, whereas a control reaction of (CpMe)3M with IMes resulted in a normal-to-abnormal NHC rearrangement.
Collapse
Affiliation(s)
- Richard Grindell
- School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.
| | | | | | | | | |
Collapse
|
31
|
Srivastava R, Moneuse R, Petit J, Pavard PA, Dardun V, Rivat M, Schiltz P, Solari M, Jeanneau E, Veyre L, Thieuleux C, Quadrelli EA, Camp C. Early/Late Heterobimetallic Tantalum/Rhodium Species Assembled Through a Novel Bifunctional NHC-OH Ligand. Chemistry 2018; 24:4361-4370. [DOI: 10.1002/chem.201705507] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Ravi Srivastava
- C2P2 UMR 5265, Institut de Chimie de Lyon; Université de Lyon, CNRS, Université Lyon 1, ESCPE Lyon; 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Raphaël Moneuse
- C2P2 UMR 5265, Institut de Chimie de Lyon; Université de Lyon, CNRS, Université Lyon 1, ESCPE Lyon; 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Julien Petit
- C2P2 UMR 5265, Institut de Chimie de Lyon; Université de Lyon, CNRS, Université Lyon 1, ESCPE Lyon; 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Paul-Alexis Pavard
- C2P2 UMR 5265, Institut de Chimie de Lyon; Université de Lyon, CNRS, Université Lyon 1, ESCPE Lyon; 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Vincent Dardun
- C2P2 UMR 5265, Institut de Chimie de Lyon; Université de Lyon, CNRS, Université Lyon 1, ESCPE Lyon; 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Madleen Rivat
- C2P2 UMR 5265, Institut de Chimie de Lyon; Université de Lyon, CNRS, Université Lyon 1, ESCPE Lyon; 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Pauline Schiltz
- C2P2 UMR 5265, Institut de Chimie de Lyon; Université de Lyon, CNRS, Université Lyon 1, ESCPE Lyon; 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Marius Solari
- C2P2 UMR 5265, Institut de Chimie de Lyon; Université de Lyon, CNRS, Université Lyon 1, ESCPE Lyon; 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon; Université de Lyon, Université Lyon 1, Site CLEA-Bâtiment ISA; 5 rue de la Doua 69100 Villeurbanne France
| | - Laurent Veyre
- C2P2 UMR 5265, Institut de Chimie de Lyon; Université de Lyon, CNRS, Université Lyon 1, ESCPE Lyon; 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Chloé Thieuleux
- C2P2 UMR 5265, Institut de Chimie de Lyon; Université de Lyon, CNRS, Université Lyon 1, ESCPE Lyon; 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Elsje Alessandra Quadrelli
- C2P2 UMR 5265, Institut de Chimie de Lyon; Université de Lyon, CNRS, Université Lyon 1, ESCPE Lyon; 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Clément Camp
- C2P2 UMR 5265, Institut de Chimie de Lyon; Université de Lyon, CNRS, Université Lyon 1, ESCPE Lyon; 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| |
Collapse
|
32
|
Affiliation(s)
- Dominik Munz
- Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
33
|
Uzelac M, Hevia E. Polar organometallic strategies for regioselective C–H metallation of N-heterocyclic carbenes. Chem Commun (Camb) 2018; 54:2455-2462. [DOI: 10.1039/c8cc00049b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This Feature Article focuses on the recent emergence of s-block metal-mediated N-heterocyclic carbene metallations and the new opportunities this methodology offers to access unique anionic NHC fragments.
Collapse
Affiliation(s)
- Marina Uzelac
- WestCHEM
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
| | - Eva Hevia
- WestCHEM
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
| |
Collapse
|
34
|
Free methylidyne? CCC-NHC tantalum bis(imido) reactivity: protonation, rearrangement to a mixed unsymmetrical CCC-N-heterocyclic carbene/N-heterocyclic dicarbene (CCC-NHC/NHDC) pincer tantalum bis(imido) complex. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.08.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Zhang F, Cao XM, Wang J, Jiao J, Huang Y, Shi M, Braunstein P, Zhang J. A tritopic carbanionic N-heterocyclic dicarbene and its homo- and heterometallic coinage metal complexes. Chem Commun (Camb) 2018; 54:5736-5739. [DOI: 10.1039/c8cc02192a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homo (Au3)- and heterotrinuclear coinage metal complexes (Au2Ag and Au2Cu) ligated by the first tritopic dicarbanionic NHC have been prepared by deprotonation of ditopic NHC digold complexes.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xiao-Ming Cao
- Center for Computational Chemistry and Research Institute of Industrial Catalysis
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jiwei Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jiajun Jiao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yongming Huang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Pierre Braunstein
- Université de Strasbourg
- CNRS
- CHIMIE UMR 7177
- Laboratoire de Chimie de Coordination
- 67081 Strasbourg Cedex
| | - Jun Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
36
|
Freese T, Lücke AL, Schmidt CA, Polamo M, Nieger M, Namyslo JC, Schmidt A. Anionic N-heterocyclic carbenes derived from sydnone imines such as molsidomine. Trapping reactions with selenium, palladium, and gold. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Waters JB, Tucker LS, Goicoechea JM. Deprotonation of Group 14 Metal Amide Complexes Bearing Ditopic Carbanionic N-Heterocyclic Carbene Ligands. Constitutional Isomerism and Dynamic Behavior. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jordan B. Waters
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Lajoy S. Tucker
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jose M. Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
38
|
Specklin D, Fliedel C, Gourlaouen C, Bruyere J, Avilés T, Boudon C, Ruhlmann L, Dagorne S. N‐Heterocyclic Carbene Based Tri‐organyl‐Zn–Alkyl Cations: Synthesis, Structures, and Use in CO
2
Functionalization. Chemistry 2017; 23:5509-5519. [DOI: 10.1002/chem.201605907] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/17/2017] [Indexed: 01/18/2023]
Affiliation(s)
- David Specklin
- Institut de Chimie de Strasbourg, CNRS Université de Strasbourg 1, rue Blaise Pascal 67000 Strasbourg France
| | - Christophe Fliedel
- Institut de Chimie de Strasbourg, CNRS Université de Strasbourg 1, rue Blaise Pascal 67000 Strasbourg France
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa 2829-516 Caparica Portugal
| | - Christophe Gourlaouen
- Institut de Chimie de Strasbourg, CNRS Université de Strasbourg 1, rue Blaise Pascal 67000 Strasbourg France
| | - Jean‐Charles Bruyere
- Institut de Chimie de Strasbourg, CNRS Université de Strasbourg 1, rue Blaise Pascal 67000 Strasbourg France
| | - Teresa Avilés
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa 2829-516 Caparica Portugal
| | - Corinne Boudon
- Institut de Chimie de Strasbourg, CNRS Université de Strasbourg 1, rue Blaise Pascal 67000 Strasbourg France
| | - Laurent Ruhlmann
- Institut de Chimie de Strasbourg, CNRS Université de Strasbourg 1, rue Blaise Pascal 67000 Strasbourg France
| | - Samuel Dagorne
- Institut de Chimie de Strasbourg, CNRS Université de Strasbourg 1, rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
39
|
Koch A, Krieck S, Görls H, Westerhausen M. Alkaline Earth Metal–Carbene Complexes with the Versatile Tridentate 2,6-Bis(3-mesitylimidazol-2-ylidene)pyridine Ligand. Organometallics 2017. [DOI: 10.1021/acs.organomet.6b00914] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Alexander Koch
- Institute of Inorganic and
Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldtstraße
8, D-07743 Jena, Germany
| | - Sven Krieck
- Institute of Inorganic and
Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldtstraße
8, D-07743 Jena, Germany
| | - Helmar Görls
- Institute of Inorganic and
Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldtstraße
8, D-07743 Jena, Germany
| | - Matthias Westerhausen
- Institute of Inorganic and
Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldtstraße
8, D-07743 Jena, Germany
| |
Collapse
|
40
|
Huh DN, Kotyk CM, Gembicky M, Rheingold AL, Ziller JW, Evans WJ. Synthesis of rare-earth-metal-in-cryptand dications, [Ln(2.2.2-cryptand)]2+, from Sm2+, Eu2+, and Yb2+ silyl metallocenes (C5H4SiMe3)2Ln(THF)2. Chem Commun (Camb) 2017; 53:8664-8666. [DOI: 10.1039/c7cc04396a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ln2+-in-cryptand complexes (Ln = Sm, Eu, Yb) containing +2 ions surrounded only by neutral ligands are readily formed from silyl metallocenes.
Collapse
Affiliation(s)
- Daniel N. Huh
- Department of Chemistry
- University of California-Irvine
- Irvine
- USA
| | | | - Milan Gembicky
- Department of Chemistry and Biochemistry
- University of California-San Diego
- La Jolla
- USA
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry
- University of California-San Diego
- La Jolla
- USA
| | | | | |
Collapse
|
41
|
Petrov PA, Sukhikh TS, Sokolov MN. NHC adducts of tantalum amidohalides: the first example of NHC abnormally coordinated to an early transition metal. Dalton Trans 2017; 46:4902-4906. [DOI: 10.1039/c7dt00748e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The first abnormally coordinated NHC complex of an early transition metal, [(aIMes)TaCl2(NMe2)3], is prepared.
Collapse
Affiliation(s)
- Pavel A. Petrov
- Nikolaev Institute of Inorganic Chemistry SB RAS
- 630090 Novosibirsk
- Russian Federation
- Novosibirsk State University
- 630090 Novosibirsk
| | - Taisiya S. Sukhikh
- Nikolaev Institute of Inorganic Chemistry SB RAS
- 630090 Novosibirsk
- Russian Federation
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS
- 630090 Novosibirsk
- Russian Federation
- Novosibirsk State University
- 630090 Novosibirsk
| |
Collapse
|
42
|
Uzelac M, Kennedy AR, Hernán-Gómez A, Fuentes MÁ, Hevia E. Heavier Alkali-metal Gallates as Platforms for Accessing Functionalized Abnormal NHC Carbene-Gallium Complexes. Z Anorg Allg Chem 2016. [DOI: 10.1002/zaac.201600310] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Marina Uzelac
- WestCHEM; Department of Pure and Applied Chemistry; University of Strathclyde; G1 1XL Glasgow UK
| | - Alan R. Kennedy
- WestCHEM; Department of Pure and Applied Chemistry; University of Strathclyde; G1 1XL Glasgow UK
| | - Alberto Hernán-Gómez
- WestCHEM; Department of Pure and Applied Chemistry; University of Strathclyde; G1 1XL Glasgow UK
| | - M. Ángeles Fuentes
- WestCHEM; Department of Pure and Applied Chemistry; University of Strathclyde; G1 1XL Glasgow UK
| | - Eva Hevia
- WestCHEM; Department of Pure and Applied Chemistry; University of Strathclyde; G1 1XL Glasgow UK
| |
Collapse
|
43
|
Li J, Zhao C, Liu J, Huang H, Wang F, Xu X, Cui C. Activation of Ene-Diamido Samarium Methoxide with Hydrosilane for Selectively Catalytic Hydrosilylation of Alkenes and Polymerization of Styrene: an Experimental and Theoretical Mechanistic Study. Inorg Chem 2016; 55:9105-11. [DOI: 10.1021/acs.inorgchem.6b01670] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jianfeng Li
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Chaoyue Zhao
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jinxi Liu
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hanmin Huang
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Fengxin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiufang Xu
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, P. R. China
| |
Collapse
|
44
|
Turner ZR. Chemically Non-Innocent Cyclic (Alkyl)(Amino)Carbenes: Ligand Rearrangement, C−H and C−F Bond Activation. Chemistry 2016; 22:11461-8. [DOI: 10.1002/chem.201602264] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Zoë R. Turner
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
| |
Collapse
|
45
|
Nasr A, Winkler A, Tamm M. Anionic N-heterocyclic carbenes: Synthesis, coordination chemistry and applications in homogeneous catalysis. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.011] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
46
|
Cui P, Hoffbauer MR, Vyushkova M, Iluc VM. Heterobimetallic Pd-K carbene complexes via one-electron reductions of palladium radical carbenes. Chem Sci 2016; 7:4444-4452. [PMID: 30155092 PMCID: PMC6014298 DOI: 10.1039/c6sc00948d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/21/2016] [Indexed: 12/24/2022] Open
Abstract
Heterobimetallic Pd-K carbenes featuring Pd-Ccarbene-K moieties were synthesized via an unprecedented sequential substitution/reduction reaction from a radical precursor, [{PC˙(sp2)P} tBuPdI] ([PC(sp2)P] tBu = bis[2-(di-iso-propylphosphino)-4-tert-butylphenyl]methylene). Polymeric structures were observed in the solid state for the heterobimetallic compounds that can be interrupted in the presence of a donor solvent.
Collapse
Affiliation(s)
- Peng Cui
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN 46556 , USA .
| | - Melissa R Hoffbauer
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN 46556 , USA .
| | - Mariya Vyushkova
- Notre Dame Radiation Laboratory , University of Notre Dame , Notre Dame , IN 46556 , USA
| | - Vlad M Iluc
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN 46556 , USA .
| |
Collapse
|
47
|
Valyaev DA, Uvarova MA, Grineva AA, César V, Nefedov SN, Lugan N. Post-coordination backbone functionalization of an imidazol-2-ylidene and its application to synthesize heteropolymetallic complexes incorporating the ambidentate IMesCO2−ligand. Dalton Trans 2016; 45:11953-7. [DOI: 10.1039/c6dt02060g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The C4-carboxylation of the archetypal IMes ligand was achieved directly on its complexed form for the first time, and the resulting ambidentate IMesCO2−ligand was exploited for the formation of heteropolymetallic complexes.
Collapse
Affiliation(s)
- Dmitry A. Valyaev
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse
- UPS
| | - Marina A. Uvarova
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Alina A. Grineva
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Vincent César
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse
- UPS
| | - Sergei N. Nefedov
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Noël Lugan
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse
- UPS
| |
Collapse
|
48
|
Simler T, Braunstein P, Danopoulos AA. Cobalt PNCNHC ‘pincers’: ligand dearomatisation, formation of dinuclear and N2 complexes and promotion of C–H activation. Chem Commun (Camb) 2016; 52:2717-20. [DOI: 10.1039/c5cc10121b] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ligand dearomatisation in CoII phosphino-picoline NHC-type pincers and dicobalt complexes result from side-arm metalation or C–H activation at the NHC backbone; in the latter case, an ‘anionic dicarbene’ originates from a dearomatised CoI–N2 complex.
Collapse
Affiliation(s)
- Thomas Simler
- Laboratoire de Chimie de Coordination
- Institut de Chimie (UMR 7177 CNRS)
- Université de Strasbourg
- 67081 Strasbourg Cedex
- France
| | - Pierre Braunstein
- Laboratoire de Chimie de Coordination
- Institut de Chimie (UMR 7177 CNRS)
- Université de Strasbourg
- 67081 Strasbourg Cedex
- France
| | - Andreas A. Danopoulos
- Laboratoire de Chimie de Coordination
- Institut de Chimie (UMR 7177 CNRS)
- Université de Strasbourg
- 67081 Strasbourg Cedex
- France
| |
Collapse
|
49
|
Schnee G, Nieto Faza O, Specklin D, Jacques B, Karmazin L, Welter R, Silva López C, Dagorne S. Normal-to-Abnormal NHC Rearrangement of AlIII, GaIII, and InIIITrialkyl Complexes: Scope, Mechanism, Reactivity Studies, and H2Activation. Chemistry 2015; 21:17959-72. [DOI: 10.1002/chem.201503000] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 11/10/2022]
|
50
|
Maddock LCH, Cadenbach T, Kennedy AR, Borilovic I, Aromí G, Hevia E. Accessing Sodium Ferrate Complexes Containing Neutral and Anionic N-Heterocyclic Carbene Ligands: Structural, Synthetic, and Magnetic Insights. Inorg Chem 2015; 54:9201-10. [DOI: 10.1021/acs.inorgchem.5b01638] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Lewis C. H. Maddock
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, U.K. G1 1XL
| | - Thomas Cadenbach
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, U.K. G1 1XL
| | - Alan R. Kennedy
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, U.K. G1 1XL
| | - Ivana Borilovic
- Departament
de Quı́mica Inorgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Guillem Aromí
- Departament
de Quı́mica Inorgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Eva Hevia
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, U.K. G1 1XL
| |
Collapse
|