1
|
Hao Z, Yue X, Zhou X, Ma Z, Han Z, Lin J, Lu G. Selective Oxidation of C (sp
3
)−H Bonds Enabled by Ruthenium Clusters Containing Pyridine‐alkoxide Ligands. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhiqiang Hao
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang People’s Republic of China
| | - Xiaohui Yue
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang People’s Republic of China
| | - Xiaoyu Zhou
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang People’s Republic of China
| | - Zhihong Ma
- School of Pharmacy Hebei Medical University Shijiazhuang People’s Republic of China
| | - Zhangang Han
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang People’s Republic of China
| | - Jin Lin
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang People’s Republic of China
| | - Guo‐Liang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences The University of Auckland Auckland New Zealand
- Maurice Wilkins Centre The University of Auckland Auckland New Zealand
| |
Collapse
|
2
|
Jurd PM, Li HL, Bhadbhade M, Watson JD, Field LD. Ferralactone formation from iron acetylides and carbon dioxide. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Noonikara-Poyil A, Ridlen SG, Fernández I, Dias HVR. Isolable acetylene complexes of copper and silver. Chem Sci 2022; 13:7190-7203. [PMID: 35799825 PMCID: PMC9214850 DOI: 10.1039/d2sc02377f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
Copper and silver play important roles in acetylene transformations but isolable molecules with acetylene bonded to Cu(i) and Ag(i) ions are scarce. This report describes the stabilization of π-acetylene complexes of such metal ions supported by fluorinated and non-fluorinated, pyrazole-based chelators. These Cu(i) and Ag(i) complexes were formed readily in solutions under an atmosphere of excess acetylene and the appropriate ligand supported metal precursor, and could be isolated as crystalline solids, enabling complete characterization using multiple tools including X-ray crystallography. Molecules that display κ2-or κ3-ligand coordination modes and trigonal planar or tetrahedral metal centers have been observed. Different trends in coordination shifts of the acetylenic carbon resonance were revealed by 13C NMR spectroscopy for the Cu(i) and Ag(i) complexes. The reduction in acetylene
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C due to metal ion coordination is relatively large for copper adducts. Computational tools were also used to quantitatively understand in detail the bonding situation in these species. It is found that the interaction between the transition metal fragment and the acetylene ligand is significantly stronger in the copper complexes, which is consistent with the experimental findings. The CC distance of these copper and silver acetylene complexes resulting from routine X-ray models suffers due to incomplete deconvolution of thermal smearing and anisotropy of the electron density in acetylene, and is shorter than expected. A method to estimate the CC distance of these metal complexes based on their experimental CC is also presented. Gaseous acetylene can be trapped on copper(i) and silver(i) sites supported by pyrazole-based scorpionates to produce isolable molecules for detailed investigations and the study of metal-acetylene bonding.![]()
Collapse
Affiliation(s)
- Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Shawn G. Ridlen
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA
| |
Collapse
|
4
|
Noonikara-Poyil A, Muñoz-Castro A, Dias HVR. Terminal and Internal Alkyne Complexes and Azide-Alkyne Cycloaddition Chemistry of Copper(I) Supported by a Fluorinated Bis(pyrazolyl)borate. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010016. [PMID: 35011246 PMCID: PMC8746352 DOI: 10.3390/molecules27010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/19/2022]
Abstract
Copper plays an important role in alkyne coordination chemistry and transformations. This report describes the isolation and full characterization of a thermally stable, copper(I) acetylene complex using a highly fluorinated bis(pyrazolyl)borate ligand support. Details of the related copper(I) complex of HC≡CSiMe3 are also reported. They are three-coordinate copper complexes featuring η2-bound alkynes. Raman data show significant red-shifts in C≡C stretch of [H2B(3,5-(CF3)2Pz)2]Cu(HC≡CH) and [H2B(3,5-(CF3)2Pz)2]Cu(HC≡CSiMe3) relative to those of the corresponding alkynes. Computational analysis using DFT indicates that the Cu(I) alkyne interaction in these molecules is primarily of the electrostatic character. The π-backbonding is the larger component of the orbital contribution to the interaction. The dinuclear complexes such as Cu2(μ-[3,5-(CF3)2Pz])2(HC≡CH)2 display similar Cu-alkyne bonding features. The mononuclear [H2B(3,5-(CF3)2Pz)2]Cu(NCMe) complex catalyzes [3 + 2] cycloadditions between tolyl azide and a variety of alkynes including acetylene. It is comparatively less effective than the related trinuclear copper catalyst {μ-[3,5-(CF3)2Pz]Cu}3 involving bridging pyrazolates.
Collapse
Affiliation(s)
- Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA;
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago 8910060, Chile
- Correspondence: (A.M.-C.); (H.V.R.D.)
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA;
- Correspondence: (A.M.-C.); (H.V.R.D.)
| |
Collapse
|
5
|
Beromi MM, Younker JM, Zhong H, Pabst TP, Chirik PJ. Catalyst Design Principles Enabling Intermolecular Alkene-Diene [2+2] Cycloaddition and Depolymerization Reactions. J Am Chem Soc 2021; 143:17793-17805. [PMID: 34652908 DOI: 10.1021/jacs.1c08912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aryl-substituted pyridine(diimine) iron complexes promote the catalytic [2 + 2] cycloadditions of alkenes and dienes to form vinylcyclobutanes as well as the oligomerization of butadiene to generate divinyl(oligocyclobutane), a microstructure of poly(butadiene) that is chemically recyclable. A systematic study on a series of iron butadiene complexes as well as their ruthenium congeners has provided insights into the essential features of the catalyst that promotes these cycloaddition reactions. Structural and computational studies on iron butadiene complexes identified that the structural rigidity of the tridentate pincer enables rare s-trans diene coordination. This geometry, in turn, promotes dissociation of one of the alkene arms of the diene, opening a coordination site for the incoming substrate to engage in oxidative cyclization. Studies on ruthenium congeners established that this step occurs without redox involvement of the pyridine(diimine) chelate. Cyclobutane formation occurs from a metallacyclic intermediate by reversible C(sp3)-C(sp3) reductive coupling. A series of labeling experiments with pyridine(diimine) iron and ruthenium complexes support the favorability of accessing the +3 oxidation state to trigger C(sp3)-C(sp3) reductive elimination, involving spin crossover from S = 0 to S = 1. The high density of states of iron and the redox-active pyridine(diimine) ligand facilitate this reactivity under thermal conditions. For the ruthenium congener, the pyridine(diimine) remains redox innocent and irradiation with blue light was required to promote the analogous reactivity. These structure-activity relationships highlight important design principles for the development of next generation catalysts for these cycloaddition reactions as well as the promotion of chemical recycling of cycloaddition polymers.
Collapse
Affiliation(s)
- Megan Mohadjer Beromi
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jarod M Younker
- ExxonMobil Chemical Company, Baytown, Texas 77520, United States
| | - Hongyu Zhong
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Roglans A, Pla-Quintana A, Solà M. Mechanistic Studies of Transition-Metal-Catalyzed [2 + 2 + 2] Cycloaddition Reactions. Chem Rev 2020; 121:1894-1979. [DOI: 10.1021/acs.chemrev.0c00062] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anna Roglans
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, C/Maria Aurèlia Capmany, 69, E-17003, Girona, Catalonia, Spain
| | - Anna Pla-Quintana
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, C/Maria Aurèlia Capmany, 69, E-17003, Girona, Catalonia, Spain
| | - Miquel Solà
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, C/Maria Aurèlia Capmany, 69, E-17003, Girona, Catalonia, Spain
| |
Collapse
|
7
|
Levis MC, Pearce KG, Crossley IR. Controlled Reactivity of Terminal Cyaphide Complexes: Isolation of the 5-Coordinate [Ru(dppe) 2(C≡P)] . Inorg Chem 2019; 58:14800-14807. [PMID: 31633922 DOI: 10.1021/acs.inorgchem.9b02471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The novel cyaphide complex trans-[Ru(dppe)2Me(C≡P)] is obtained in excellent yields and exhibits the first instance of controlled reactivity of any terminal cyaphide complex. Its treatment with ZnX2/PPh3 effects selective metathesis of the methyl moiety to afford the unprecedented halocyaphide complexes trans-[Ru(dppe)2(X)(C≡P)] (X = Cl, Br, I), which are structurally characterized (X = Cl, Br). Exemplified with the trans-bromide, these compounds are susceptible to substitution of the halides by nucleophilic reagents-illustrated with Me2Mg-and also readily undergo halide abstraction by TlOTf to afford the first hypocoordinate cyaphide complex, viz., [Ru(dppe)2(C≡P)]·OTf, which is isolable in bulk and exhibits good stability. NMR spectroscopic and crystallographic data reveal the latter to adopt a square-pyramidal geometry with an accessible coordinate vacancy, which is susceptible to the addition of nucleophiles. This is illustrated analytically by reactions with Me2Mg and LiC≡CPh and with its facile bulk carbonylation to afford trans-[Ru(dppe)2(CO)(C≡P)]+.
Collapse
Affiliation(s)
- Madeleine C Levis
- Department of Chemistry , University of Sussex , Falmer , Brighton BN1 9QJ , U.K
| | - Kyle G Pearce
- Department of Chemistry , University of Sussex , Falmer , Brighton BN1 9QJ , U.K
| | - Ian R Crossley
- Department of Chemistry , University of Sussex , Falmer , Brighton BN1 9QJ , U.K
| |
Collapse
|
8
|
Peschel LM, Vidovič C, Belaj F, Neshchadin D, Mösch‐Zanetti NC. Activation and Photoinduced Release of Alkynes on a Biomimetic Tungsten Center: The Photochemical Behavior of the W-S-Phoz System. Chemistry 2019; 25:3893-3902. [PMID: 30773712 PMCID: PMC6563718 DOI: 10.1002/chem.201805665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/13/2018] [Indexed: 01/09/2023]
Abstract
The synthesis and structural determination of four tungsten alkyne complexes coordinated by the bio-inspired S,N-donor ligand 2-(4',4'-dimethyloxazoline-2'-yl)thiophenolate (S-Phoz) is presented. A previously established protocol that involved the reaction of the respective alkyne with the bis-carbonyl precursor [W(CO)2 (S-Phoz)2 ] was used for the complexes [W(CO)(C2 R2 )(S-Phoz)2 ] (R=H, 1 a; Me, 1 b; Ph, 1 c). Oxidation with pyridine-N-oxide gave the corresponding W-oxo species [WO(C2 R2 )(S-Phoz)2 ] (R=H, 2 a; Me, 2 b; Ph, 2 c). All W-oxo-alkyne complexes (2 a, b, c) were found to be capable of alkyne release upon light irradiation to afford five-coordinate [WO(S-Phoz)2 ] (3). The photoinduced release of the alkyne ligand was studied in detail by in situ 1 H NMR measurements, which revealed correlation of the photodissociation rate constant (2 b>2 a>2 c) with the elongation of the alkyne C≡C bond in the molecular structures. Oxidation of [WO(S-Phoz)2 ] (3) with pyridine-N-oxide yielded [WO2 (S-Phoz)2 ] (4), which shows highly fluxional behavior in solution. Variable-temperature 1 H NMR spectroscopy revealed three isomeric forms with respect to the ligand arrangement versus each other. Furthermore, compound 4 rearranges to tetranuclear oxo compound [W4 O4 (μ-O)6 (S-Phoz)4 ] (5) and dinuclear [{WO(μ-O)(S-Phoz)}2 ] (6) over time. The latter two were identified by single-crystal X-ray diffraction analyses.
Collapse
Affiliation(s)
- Lydia M. Peschel
- Institute of ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Carina Vidovič
- Institute of ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Ferdinand Belaj
- Institute of ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Dmytro Neshchadin
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | | |
Collapse
|
9
|
Römelt C, Weyhermüller T, Wieghardt K. Structural characteristics of redox-active pyridine-1,6-diimine complexes: Electronic structures and ligand oxidation levels. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.09.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Parasar D, Ponduru TT, Noonikara-Poyil A, Jayaratna NB, Dias HVR. Acetylene and terminal alkyne complexes of copper(i) supported by fluorinated pyrazolates: syntheses, structures, and transformations. Dalton Trans 2019; 48:15782-15794. [DOI: 10.1039/c9dt03350e] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A variety of isolable, 2 : 1 and 1 : 1 copper(i)–alkyne complexes of containing pyrazolate ligand supports are presented as well as the copper pyrazolate mediated acetylenic C–H and alkyne CC bond functionalizations.
Collapse
Affiliation(s)
- Devaborniny Parasar
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
| | - Tharun T. Ponduru
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
| | - Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
| | - Naleen B. Jayaratna
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
| |
Collapse
|
11
|
Rahimi N, Herbert DE, Budzelaar PHM. Formation and Rearrangement of Reduced Diiminepyridine Complexes of Zr and Hf. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Naser Rahimi
- Department of Chemistry University of Manitoba 144 Dysart Road R3T 2N2 Winnipeg MB Canada
| | - David E. Herbert
- Department of Chemistry University of Manitoba 144 Dysart Road R3T 2N2 Winnipeg MB Canada
| | - Peter H. M. Budzelaar
- Department of Chemistry University of Manitoba 144 Dysart Road R3T 2N2 Winnipeg MB Canada
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Via Cintia 4 80126 Napoli Italia
| |
Collapse
|
12
|
Singh A, Mobin SM, Mathur P. Preparation of the Ru 3(CO) 8-pyridine-alcohol cluster and its use for the selective catalytic transformation of primary to secondary amines. Dalton Trans 2018; 47:14033-14040. [PMID: 30232491 DOI: 10.1039/c8dt02972e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of pyridine alcohol based ruthenium carbonyl clusters Ru3(hep)2(CO)8 (1), Ru3(hpp)2(CO)8 (2), and Ru3(bhmp-H)2(CO)8 (3) {hep-H = 2-(2-hydroxyethyl)pyridine, hpp-H = 2-(3-hydroxypropyl)pyridine and bhmp-H2 = 2,6-bis(hydroxymethyl)pyridine} has been carried out by the reaction of the corresponding pyridine-alcohol ligands with Ru3(CO)12. Clusters 1-3 have been characterized using elemental analysis, NMR, FT-IR, mass spectrometry and single-crystal X-ray structures. The clusters were explored for the selective catalytic transformation of primary amines into secondary amines using alcohols as the mono-alkylating agents via hydrogen transfer reactions. All three display efficient catalytic activity with 1 being the most effective.
Collapse
Affiliation(s)
- Ajeet Singh
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.
| | | | | |
Collapse
|
13
|
Noss ME, Hylden AT, Carroll PJ, Berry DH. Electrochemistry of Ruthenium Bis(imino)pyridine Compounds: Evidence for an ECE Mechanism and Isolation of Mono and Dicationic Complexes. Inorg Chem 2017; 57:435-445. [DOI: 10.1021/acs.inorgchem.7b02677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael E. Noss
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Anne T. Hylden
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Patrick J. Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Donald H. Berry
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
14
|
Joannou MV, Bezdek MJ, Al-Bahily K, Korobkov I, Chirik PJ. Synthesis and Reactivity of Pyridine(diimine) Molybdenum Olefin Complexes: Ethylene Dimerization and Alkene Dehydrogenation. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew V. Joannou
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Máté J. Bezdek
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Khalid Al-Bahily
- SABIC Corporate Research & Development, Fundamental Catalysis, Thuwal 23955-6900, Saudi Arabia
| | - Ilia Korobkov
- SABIC Corporate Research & Development, Fundamental Catalysis, Thuwal 23955-6900, Saudi Arabia
| | - Paul J. Chirik
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
Lepetit C, Maraval V, Canac Y, Chauvin R. On the nature of the dative bond: Coordination to metals and beyond. The carbon case. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Zhang H, Lin R, Li J, Zhu J, Xia H. Interconversion between Ruthenacyclohexadiene and Ruthenabenzene: A Combined Experimental and Theoretical Study. Organometallics 2014. [DOI: 10.1021/om500550a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hong Zhang
- Department
of Chemistry,
College of Chemistry and Chemical Engineering, and State Key Laboratory
of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Ran Lin
- Department
of Chemistry,
College of Chemistry and Chemical Engineering, and State Key Laboratory
of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Jinhua Li
- Department
of Chemistry,
College of Chemistry and Chemical Engineering, and State Key Laboratory
of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Jun Zhu
- Department
of Chemistry,
College of Chemistry and Chemical Engineering, and State Key Laboratory
of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Haiping Xia
- Department
of Chemistry,
College of Chemistry and Chemical Engineering, and State Key Laboratory
of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
17
|
Boyt SM, Chaplin AB. 2,6-Bis[1-(2,4,6-tri-methyl-phenyl-imino)-eth-yl]pyridine. Acta Crystallogr Sect E Struct Rep Online 2014; 70:o73. [PMID: 24855472 PMCID: PMC4029218 DOI: 10.1107/s1600536813033801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 11/20/2022]
Abstract
In the title molecule, C27H31N3, the imine C=N groups are orientated anti to the pyridine N atom, with N—C—C—N torsion angles of −164.91 (11) and −170.53 (10)°. In the crystal, molecules are connected by weak C—H⋯N and C—H⋯π interactions parallel to the b axis.
Collapse
Affiliation(s)
- Stuart M Boyt
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, England
| | - Adrian B Chaplin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, England
| |
Collapse
|
18
|
B. Blakey S, L. Bon J. Synthesis of Ruthenium(II) 2,6-Bis(imino)pyridyl Complexes for C-H Amination of Sulfamate Esters. HETEROCYCLES 2012. [DOI: 10.3987/com-11-s(p)64] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|