1
|
Zhang J, Zhang Z, Su M, Xu X, Gao R, Yu B, Yan X. Cyclometalated N-Difluoromethylbenzimidazolylidene Platinum(II) Complexes with Built-in Secondary Coordination Spheres: Photophysical Properties and Bioimaging. Inorg Chem 2024. [PMID: 39546802 DOI: 10.1021/acs.inorgchem.4c03713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Bidentate Pt(II) complexes with cyclometalated N-heteroarene or N-heterocyclic carbene (NHC) ligands have been extensively studied as phosphorescent emitters over the past two decades. Herein, we introduce a difluoromethyl group (CF2H) into the wingtip of NHCs, where CF2H acts as a lipophilic hydrogen bond (HB) donor. Their cyclometalated Pt(II) complexes show excellent PLQYs (up to 93%) and phosphorescence lifetimes mainly due to the rigid structure with hydrogen bonding between the CF2H group and the adjacent O atom at the β-diketonate ligand. Bioimaging studies demonstrate high cellular uptake efficiency and deep tumor penetration capability of complex 7 in HeLa cells and multicellular tumor spheroids, highlighting their potential as bioimaging probes.
Collapse
Affiliation(s)
- Jingli Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Mengrui Su
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingyu Xu
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, Shanxi, China
| | - Rongyao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Bingran Yu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
2
|
Riesebeck T, Tronnier A, Strassner T. Cyclometalated C^C* Platinum(IV) NHC Complexes. Inorg Chem 2024. [PMID: 39250523 DOI: 10.1021/acs.inorgchem.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
We present a previously unknown series of cyclometalated platinum(IV) NHC complexes, obtained by oxidative addition of iodine, iodomethane, and different benzyl bromides to platinum(II) complexes with cyclometalated C^C* dibenzofuran, dibenzothiophene, and phenylimidazole ligands together with an acetylacetonate ligand. All compounds were characterized by standard techniques (1H, 13C, and 195Pt NMR and elemental analysis), and for three complexes, solid-state structures could be obtained. DFT calculations (B3LYP(d3)/def2-TZVPP including dispersion interactions in dichloromethane and acetone) were performed to investigate the mechanism of the oxidation and explain the exclusive formation of the observed trans products.
Collapse
Affiliation(s)
- Tim Riesebeck
- Fakultät Chemie und Lebensmittelchemie, Professur für Physikalische Organische Chemie, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | - Alexander Tronnier
- Fakultät Chemie und Lebensmittelchemie, Professur für Physikalische Organische Chemie, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | - Thomas Strassner
- Fakultät Chemie und Lebensmittelchemie, Professur für Physikalische Organische Chemie, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| |
Collapse
|
3
|
Qiao L, Kong X, Li K, Yuan L, Shen Y, Zhang Y, Zhou L. Phosphorescent Pd II-Pd II Emitter-Based Red OLEDs with an EQE max of 20.52. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404621. [PMID: 39031006 PMCID: PMC11425235 DOI: 10.1002/advs.202404621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/02/2024] [Indexed: 07/22/2024]
Abstract
Three dinuclear Pd(II) complexes (1, 2, and 3) with intense red phosphorescence at room temperature are here synthesized using strong ligand field strength compounds. All three complexes are characterized by nuclear magnetic resonance, high-resolution mass spectrometry, and elemental analyses. Complexes 2 and 3 are characterized by single-crystal X-ray diffraction. The crystalline data of 2 and 3 reveal complex double-layer structures, with Pd-Pd distances of 2.8690(9) Å and 2.8584(17) Å, respectively. Furthermore, complexes 1, 2, and 3 show phosphorescence at room temperature in their solid states at the wavelengths of 678, 601, and 672 nm, respectively. In addition, they show phosphorescence at 634, 635, and 582 nm, respectively, in the 2 wt.% (PMMA) films, and phosphorescence at 670, 675, and 589 nm, respectively, in the deoxygenated CH2Cl2 solutions. Among three complexes, complex 1 shows red emission at 634 nm with phosphorescent quantum yield Ф = 67% in the 2 wt.% PMMA film. Furthermore, complex 1-based organic light-emitting diode is fabricated using a vapor-phase deposition process, and their maximum external quantum efficiency reaches 20.52%, which is the highest percentage obtained by using the dinuclear Pd(II) complex triplet emitters with the CIE coordinates of (0.62, 0.38).
Collapse
Affiliation(s)
- Lige Qiao
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Xiangjun Kong
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Kechun Li
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Lequn Yuan
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Yunjun Shen
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Yuzhen Zhang
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| |
Collapse
|
4
|
Zhan F, Lin GL, Zhang TS, Xu K, Yang YF, Li G, She Y. Pt-S Bond-Enabled Temperature-Dependent Phosphorescence in S-Heteroaryl Tetradentate Pt(S^C^N^O) Complexes. Inorg Chem 2024; 63:8822-8831. [PMID: 38696545 DOI: 10.1021/acs.inorgchem.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
This study presents the rare examples of S-heteroaryl tetradentate Pt(S^C^N^O) luminescent complexes (PtSZ and PtSZtBu) containing a Pt-S bond. The presence of the Pt-S bond allows the novel Pt(S^C^N^O) complexes to exhibit temperature-dependent phosphorescent emission behavior. The PtSZtBu exhibits dual-emission phenomena and biexponential transient decay spectra above 250 K, indicating the presence of two minimal excited states in the potential energy surface (PES) of the T1 state. Through complementary experimental and computational studies, we have identified changes in orbital composition between Pt(dxy)-S(px) and Pt(dyz)-S(pz) in excited states with increasing temperature. This results in two energy minima, enabling the excited states to decay selectively and radiatively at different temperatures. Consequently, this leads to remarkable steady-state and transient emission spectra changes. Our work not only provides valuable insights for the development of novel Pt-S bond-based tetradentate Pt(II) complexes but also enhances our understanding of the distinctive properties governed by the Pt-S bond.
Collapse
Affiliation(s)
- Feng Zhan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Guo-Liang Lin
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Teng-Shuo Zhang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Kewei Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Guijie Li
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yuanbin She
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| |
Collapse
|
5
|
Yan J, Feng ZQ, Wu Y, Zhou DY, Yiu SM, Chan CY, Pan Y, Lau KC, Liao LS, Chi Y. Blue Electrophosphorescence from Iridium(III) Phosphors Bearing Asymmetric Di-N-aryl 6-(trifluoromethyl)-2H-imidazo[4,5-b]pyridin-2-ylidene Chelates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305273. [PMID: 37461316 DOI: 10.1002/adma.202305273] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 09/22/2023]
Abstract
Efficient blue phosphors remain a formidable challenge for organic light-emitting diodes (OLEDs). To circumvent this obstacle, a series of Ir(III)-based carbene complexes bearing asymmetric di-N-aryl 6-(trifluoromethyl)-2H-imidazo[4,5-b]pyridin-2-ylidene chelates, namely, f-ct6a‒c, are synthesized, and their structures and photophysical properties are comprehensively investigated. Moreover, these emitters can undergo interconversion in refluxing 1,2,4-trichlorobenzene, catalyzed by a mixture of sodium acetate (NaOAc) and p-toluenesulfonic acid monohydrate (TsOH·H2O) without decomposition. All Ir(III) complexes present good photoluminescence quantum yield (ΦPL = 83-88%) with peak maximum (max.) at 443-452 nm and narrowed full width at half maximum (FWHM = 66-73 nm). Among all the fabricated OLED devices, f-ct6b delivers a max. external quantum efficiency (EQE) of 23.4% and Commission Internationale de L'Eclairage CIEx , y coordinates of (0.14, 0.12), whereas the hyper-OLED device based on f-ct6a and 5H,9H,11H,15H-[1,4] benzazaborino [2,3,4-kl][1,4]benzazaborino[4',3',2':4,5][1,4]benzazaborino[3,2-b]phenazaborine-7,13-diamine, N7,N7,N13,N13,5,9,11,15-octaphenyl (ν-DABNA) exhibits max. EQE of 26.2% and CIEx , y of (0.12, 0.13). Finally, the corresponding tandem OLED with f-ct6b as dopant gives a max. luminance of over 10 000 cd m-2 and max. EQE of 42.1%, confirming their candidacies for making true-blue OLEDs.
Collapse
Affiliation(s)
- Jie Yan
- Department of Materials Sciences and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Zi-Qi Feng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yixin Wu
- Department of Materials Sciences and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Dong-Ying Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Shek-Man Yiu
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Chin-Yiu Chan
- Department of Materials Sciences and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Yi Pan
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Kai Chung Lau
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Liang-Sheng Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yun Chi
- Department of Materials Sciences and Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
6
|
Luo Y, Cheng Y, Zhang D, Mei X, Tang D, Hu J, Luo T. Controlling the Triplet Potential Energy Surface of Bimetallic Platinum(II) Complex by Constructing Structure-Property Relationship: A Theoretical Exploration. Inorg Chem 2023; 62:2440-2455. [PMID: 36701493 DOI: 10.1021/acs.inorgchem.2c04421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
For phosphorescent materials, managing the triplet potential energy surface stands for controlling the phosphorescence quantum yield. However, due to the complexity and variability, the triplet potential energy surface can be managed with difficulty. In this work, a series of bimetallic Pt(II) complexes, namely Pt-1, Pt-1-1, Pt-1-2, Pt-2, Pt-3-5, and Pt-6-7, are employed as models to construct a relationship between the structures and triplet potential energy surfaces, aiming to achieve meaningful information to manage the triplet potential energy surface. On the basis of the results, it is observed that the triplet potential energy surface has an intimate connection with the structures of bimetallic Pt(II) complexes. In the case of the primordial Pt(II) complex, the triplet potential energy surface consists of two minimal points, illustrating various properties, which can largely affect the phosphorescence quantum yield. Once the intramolecular steric hindrance, restriction effect, and metallophilic interaction (Pt-Pd/Pd-Pd) are employed by tailoring the structures of primordial Pt(II) complexes, the triplet potential energy surface can be reconstructed via one minimal point-charactered short metal-metal distance, resulting in different photophysical properties. The relationship between the triplet potential energy surface and structure is essentially unveiled from the structural and electronic viewpoints. The conclusions originated from the structural and electronic investigations can be regarded as indicators to accurately and expediently predict the triplet potential energy surfaces of bimetallic Pt(II) complexes. The results presented here are helpful in addressing the designed strategies as they show that the triplet potential energy surfaces of bimetallic Pt(II) complexes can be properly tuned.
Collapse
Affiliation(s)
- Yafei Luo
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Yan Cheng
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Derong Zhang
- School of Marxism, Chengdu Vocational & Technical College of Industry, Chengdu 610081, P.R. China
| | - Xinyue Mei
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Dianyong Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Jianping Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu 610106, P.R. China
| | - Ting Luo
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
7
|
Amouri H. Luminescent Complexes of Platinum, Iridium, and Coinage Metals Containing N-Heterocyclic Carbene Ligands: Design, Structural Diversity, and Photophysical Properties. Chem Rev 2023; 123:230-270. [PMID: 36315851 DOI: 10.1021/acs.chemrev.2c00206] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The employment of N-heterocyclic carbenes (NHCs) to design luminescent metal compounds has been the focus of recent intense investigations because of the strong σ-donor properties, which bring stability to the whole system and tend to push the d-d dark states so high in energy that they are rendered thermally inaccessible, thereby generating highly emissive complexes for useful applications such as organic light-emitting diodes (OLEDs), or featuring chiroptical properties, a field that is still in its infancy. Among the NHC complexes, those containing organic chromophores such as naphthalimide, pyrene, and carbazole exhibit rich emission behavior and thus have attracted extensive interest in the past five years, especially carbene coinage metal complexes with carbazolate ligands. In this review, the design strategies of NHC-based luminescent platinum and iridium complexes with large spin-orbit-coupling (SOC) are described first. Subsequent paragraphs illustrate the recent advances of luminescent coinage metal complexes with nucleophilic- and electrophilic-based carbenes based on silver, gold, and copper metal complexes that have the ability to display rich excited state emissions in particular via thermally activated delayed fluorescence (TADF). The luminescence mechanism and excited state dynamics are also described. We then summarize the advance of NHC-metal complexes in the aforementioned fields in recent years. Finally, we propose the development trend of this fast-growing field of luminescent NHC-metal complexes.
Collapse
Affiliation(s)
- Hani Amouri
- CNRS, IPCM (UMR 8232), Sorbonne Université-Faculté des Sciences et Ingénerie Campus Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, Cedex 05, France
| |
Collapse
|
8
|
Yang X, Zhou X, Zhang Y, Li D, Li C, You C, Chou T, Su S, Chou P, Chi Y. Blue Phosphorescence and Hyperluminescence Generated from Imidazo[4,5-b]pyridin-2-ylidene-Based Iridium(III) Phosphors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201150. [PMID: 35822668 PMCID: PMC9443441 DOI: 10.1002/advs.202201150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/02/2022] [Indexed: 05/19/2023]
Abstract
Four isomeric, homoleptic iridium(III) metal complexes bearing 5-(trifluoromethyl)imidazo[4,5-b]pyridin-2-ylidene and 6-(trifluoromethyl)imidazo[4,5-b]pyridin-2-ylidene-based cyclometalating chelates are successfully synthesized. The meridional isomers can be converted to facial isomers through acid induced isomerization. The m-isomers display a relatively broadened and red-shifted emission, while f-isomers exhibit narrowed blue emission band, together with higher photoluminescent quantum yields and reduced radiative lifetime relative to the mer-counterparts. Maximum external quantum efficiencies of 13.5% and 22.8% are achieved for the electrophosphorescent devices based on f-tpb1 and m-tpb1 as dopant emitter together with CIE coordinates of (0.15, 0.23) and (0.22, 0.45), respectively. By using f-tpb1 as the sensitizing phosphor and t-DABNA as thermally activated delayed fluorescence (TADF) terminal emitter, hyperluminescent OLEDs are successfully fabricated, giving high efficiency of 29.6%, full width at half maximum (FWHM) of 30 nm, and CIE coordinates of (0.13, 0.11), confirming the efficient Förster resonance energy transfer (FRET) process.
Collapse
Affiliation(s)
- Xilin Yang
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Xiuwen Zhou
- School of Mathematics and PhysicsThe University of QueenslandBrisbaneQueensland4072Australia
| | - Ye‐Xin Zhang
- Suzhou Joysun Advanced Materials Co., Ltd. SuzhouJiangsu215126China
| | - Deli Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Chensen Li
- Department of ChemistryDepartment of Materials Sciences and Engineeringand Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SAR999077China
| | - Caifa You
- Department of ChemistryDepartment of Materials Sciences and Engineeringand Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SAR999077China
| | - Tai‐Che Chou
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Shi‐Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Pi‐Tai Chou
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Yun Chi
- Department of ChemistryDepartment of Materials Sciences and Engineeringand Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SAR999077China
| |
Collapse
|
9
|
Zhang M, Zhang SW, Wu C, Li W, Wu Y, Yang C, Meng Z, Xu W, Tang MC, Xie R, Meng H, Wei G. Fine Emission Tuning from Near-Ultraviolet to Saturated Blue with Rationally Designed Carbene-Based [3 + 2 + 1] Iridium(III) Complexes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1546-1556. [PMID: 34978413 DOI: 10.1021/acsami.1c19127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We designed and synthesized a new class of six phosphorescent [3 + 2 + 1] iridium(III) complexes [(pbib)Ir(C^C)CN] bearing a tridentate 1,3-bis(1-butylimidazolin-2-ylidene) phenyl N-heterocyclic carbene (NHC)-based pincer ligand (pbib), bidentate imidazole-based NHC ligands (C^C), and a monodentate cyano group and investigated their photophysical, electrochemical, and thermal stabilities and electroluminescent properties. The extended π-conjugation of the imidazole-based C^C ligand is found to be the key to fine-tune the emission energies from ultraviolet blue (λ = 378 nm) to saturated blue (λ = 482 nm), as shown by electrochemical and photophysical studies, which is also revealed by the density functional theory (DFT) and time-dependent DFT calculations. Vacuum-deposited organic light-emitting diode devices have been fabricated with these newly synthesized emitters and exhibited the best external quantum efficiency of 6.4% and Commission International de L'Éclairage (CIE) coordinates of (0.163, 0.096), where the CIE y is very similar to the National Television System Committee standard blue CIE (x, y) coordinates of (0.149, 0.085). These results indicate that the novel [3 + 2 + 1] coordinated iridium(III) complexes [(pbib)Ir(C^C)CN], having a saturated blue emission, not only could alleviate the photodegradation of the emitters when compared to [(pbib)Ir(pmi)CN] but also provide new design strategies of saturated-blue-emitting iridium(III) complexes.
Collapse
Affiliation(s)
- Meng Zhang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
- Institute of Materials Science, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Si-Wei Zhang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
- Institute of Materials Science, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chengcheng Wu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
- Institute of Materials Science, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wansi Li
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
- Institute of Materials Science, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yuan Wu
- PURI Materials, Shenzhen 518133, China
| | - Chen Yang
- PURI Materials, Shenzhen 518133, China
| | - Zhimin Meng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Wenzhan Xu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
- Institute of Materials Science, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Man-Chung Tang
- Institute of Materials Science, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Rongjun Xie
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Hong Meng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Guodan Wei
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
- Institute of Materials Science, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
10
|
Tang D, Chen Z, Luo Y, Xu Z, Xu J. Theoretical Investigation of Triplet Energy Potential Surfaces for (C^C*) Cyclometalated Platinum(II) Complexes and Corresponding Control Strategies. NEW J CHEM 2022. [DOI: 10.1039/d2nj03062d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triplet energy potential surfaces, for phosphorescent material, play a predominate role in determining the radiative and non-radiative decay processes. It is significant and meaningful for providing the promising strategy to...
Collapse
|
11
|
Paramasivam K, Fialho CB, Cruz TFC, Rodrigues AI, Ferreira B, Gomes CSB, Vila-Viçosa D, Charas A, Esperança JMSS, Vieira Ferreira LF, Calhorda MJ, Maçanita AL, Morgado J, Gomes PT. New luminescent tetracoordinate boron complexes: an in-depth experimental and theoretical characterisation and their application in OLEDs. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00403d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
New luminescent 2-iminopyrrolyl boron complexes with different BX2 moieties are extensively studied via complementary experimental and theoretical methodologies, including application in OLEDs.
Collapse
Affiliation(s)
- Krishnamoorthy Paramasivam
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Centre for Environmental Research, Department of Chemistry, Kongu Engineering College, Perundurai, Erode 638 060, India
| | - Carina B. Fialho
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tiago F. C. Cruz
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana I. Rodrigues
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Bruno Ferreira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Clara S. B. Gomes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Diogo Vila-Viçosa
- BioISI - Biosystems & Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisboa, Portugal
| | - Ana Charas
- Instituto de Telecomunicações, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - José M. S. S. Esperança
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Luís F. Vieira Ferreira
- BSIRG – Biospectroscopy and Interfaces Research Group, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria José Calhorda
- BioISI - Biosystems & Integrative Sciences Institute, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisboa, Portugal
| | - António L. Maçanita
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge Morgado
- Instituto de Telecomunicações, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro T. Gomes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
12
|
Wang D, Chen X, Yang H, Zhong D, Liu B, Yang X, Yue L, Zhou G, Ma M, Wu Z. The synthesis of cyclometalated platinum(II) complexes with benzoaryl-pyridines as C^N ligands for investigating their photophysical, electrochemical and electroluminescent properties. Dalton Trans 2020; 49:15633-15645. [PMID: 33057516 DOI: 10.1039/d0dt02224a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of (C^N)Pt(acac)-type complexes has been successfully synthesized with a benzo[b]furan, benzo[b]thiophene, benzo[b]selenophene, or benzo[b]tellurophene group in the benzoaryl-pyridine ligand. Using X-ray crystallography, the chemical structures of the complexes with benzo[b]selenophene and benzo[b]tellurophene groups have been clearly revealed. The photophysical, electrochemical, and electroluminescent (EL) behaviors of these (C^N)Pt(acac)-type complexes have been fully characterized. Furthermore, both time-dependent functional theory (TD-DFT) and natural transition orbital (NTO) theoretical results have been obtained to gain insight into the absorption and emission features. It has been shown that both the absorption bands with the lowest energy and the phosphorescence emission behaviors are dominated by the benzoaryl-pyridine cyclometalating ligand. Importantly, the effects of the group VIA atoms on the properties of these (C^N)Pt(acac)-type complexes have been revealed. Owing to the rareness of (C^N)Pt(acac)-type complexes with benzo[b]selenophene and benzo[b]tellurophene groups, their EL abilities have been characterized using solution-processed organic light-emitting diodes (OLEDs). The optimized red OLEDs with the complex bearing a benzo[b]selenophene unit show a maximum external quantum efficiency (ηext) of 6.3%, current efficiency (ηL) of 10.5 cd A-1, and power efficiency (ηP) of 9.1 lm W-1, while the EL device with the complex bearing a benzo[b]tellurophene unit can give deep-red emission at ca. 636 nm with ηext of 6.3%, ηL of 6.5 cd A-1, and ηP of 5.8 lm W-1. This research not only provides novel (C^N)Pt(acac)-type complexes, but also furnishes critical information regarding the photophysical and EL behavior of these new complexes.
Collapse
Affiliation(s)
- Dezhi Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China. and Department of Applied Chemistry, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Xi Chen
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Hua Yang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Daokun Zhong
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Boao Liu
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Xiaolong Yang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Ling Yue
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Guijiang Zhou
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Miaofeng Ma
- Department of Applied Chemistry, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
13
|
Rodrigues AI, Krishnamoorthy P, Gomes CSB, Carmona N, Di Paolo RE, Pander P, Pina J, Sérgio Seixas de Melo J, Dias FB, Calhorda MJ, Maçanita AL, Morgado J, Gomes PT. Luminescent halogen-substituted 2-(N-arylimino)pyrrolyl boron complexes: the internal heavy-atom effect. Dalton Trans 2020; 49:10185-10202. [DOI: 10.1039/d0dt01845g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New luminescent halogen-substituted 2-iminopyrrolyl boron complexes exhibited an internal-heavy atom effect depending on the position of the halogen atom, and activity in OLEDs.
Collapse
|
14
|
|
15
|
Pinter P, Strassner T. Prediction of emission wavelengths of phosphorescent NHC based emitters for OLEDs. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Wang Z, Jiang L, Ng CK, Song X, Hor TSA, Zhao J. Isolation and Crystallographic Identification of Photoactive Pt
II
Tris‐ and Bis(
N
‐methylbenzimidazole‐NHC) Complexes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhe Wang
- Institute of Materials Research and Engineering Agency for Science Innovis 2 Fusionopolis Way 138634 Singapore Singapore
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Lu Jiang
- Institute of Materials Research and Engineering Agency for Science Innovis 2 Fusionopolis Way 138634 Singapore Singapore
| | - Chee Koon Ng
- Institute of Materials Research and Engineering Agency for Science Innovis 2 Fusionopolis Way 138634 Singapore Singapore
| | - Xiaolu Song
- Institute of Materials Research and Engineering Agency for Science Innovis 2 Fusionopolis Way 138634 Singapore Singapore
| | - T. S. Andy Hor
- Department of Chemistry The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Jin Zhao
- Institute of Materials Research and Engineering Agency for Science Innovis 2 Fusionopolis Way 138634 Singapore Singapore
| |
Collapse
|
17
|
Suter D, van Summeren LTCG, Blacque O, Venkatesan K. Highly Stable and Strongly Emitting N-Heterocyclic Carbene Platinum(II) Biaryl Complexes. Inorg Chem 2018; 57:8160-8168. [DOI: 10.1021/acs.inorgchem.8b00564] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dominik Suter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Luuk T. C. G. van Summeren
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Department of Molecular Materials, Radboud University, Nijmegen, 6525 AJ, Netherlands
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Koushik Venkatesan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Department of Molecular Sciences, Macquarie University,
North Ryde, NSW 2109, Australia
| |
Collapse
|
18
|
Red-emitting cyclometalated platinum(II) complexes with imidazolyl phenanthrolines: Synthesis and photophysical properties. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.04.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Karthik S, Gandhi T. Dibenzofuran and dibenzothiophene based palladium(ii)/NHC catalysts – synthesis and applications in C–C bond formation. NEW J CHEM 2018. [DOI: 10.1039/c8nj02989j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the quest for a new ligand system for Pd(ii)/NHCs, we developed new dibenzofuran and dibenzothiophene based palladium N-heterocyclic carbene catalystsD1–D6in good yields and applied it in C–C bond formation.
Collapse
Affiliation(s)
- Shanmugam Karthik
- Department of Chemistry
- School of Advanced Sciences
- VIT University
- Vellore 632014
- India
| | | |
Collapse
|
20
|
Jiang X, Chen GH, Gu MQ, Wang Q, Wu D. Theoretical Study and Design of Phosphorescent Cyclometalated (C ∧C*)Pt II(acac) Complexes: The Substituent Effect Controls the Radiative and Nonradiative Decay Processes. J Phys Chem A 2017; 121:6231-6242. [PMID: 28763208 DOI: 10.1021/acs.jpca.7b04329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density functional theory (DFT) and time-dependent DFT calculations were performed to evaluate the influence of substituent effect of (1) R = 4-Me, (2) R = 4-OMe, and (3) R = 2,3-OC6H4 on the phenyl ring of (C∧C*)PtII(acac) (C∧C* = phenylimidazole, acac = acetylacetone), respectively, on absorption and phosphorescent spectra properties, as well as the radiative and nonradiative processes. We found that emissions of complexes 2 and 3 originate from the Kasha-like T1 state, whereas that of complex 1 originates from non-Kasha T2 state. Compared with the emission of complex 1, the emission peaks of 2 and 3 are red-shifted, which is attributed to p-π and π-π conjugation effects resulting from the electron-donating groups -OCH3 and -OC6H4 with ligand C∧C*, respectively. The radiative rate constants (κr) of 2 and 3 are larger than that of 1, namely, κr(1) < κr(2) < κr(3), indicating that κr can be efficiently increased by enlarging π-conjugation at the main ligand of (C∧C*)PtII(acac), which can cause the increase of spin-orbit coupling (SOC) matrix elements. At the same time, the activation energy barriers for the rate-limiting step can be largely raised accompanied by enlarging the ability of electron-donation of the substituent group at the main ligand of (C∧C*)PtII(acac), which can cause the decrease of the nonradiative rate constant (κnr), namely, κnr(1) > κnr(2) > κnr(3). According to ΦP = κr/(κr + κnr), the quantum yields should have the sequence ΦP(1) < ΦP(2) < ΦP(3), which is in accordance with the experiment. In addition, to guide experimental synthesis of highly efficient (C∧C*)PtII(acac), a new complex 4 through extending the π-conjugation in the C∧C* ligand of (C∧C*)PtII(acac) was theoretically designed, which has a larger quantum yield than 1-3.
Collapse
Affiliation(s)
| | | | | | - Qiang Wang
- Department of Applied Chemistry, Nanjing Tech University , Nanjing 210009, China
| | - Di Wu
- Institute of Theoretical Chemistry, Jilin University , Changchun 130023, China
| |
Collapse
|
21
|
Fuertes S, Chueca AJ, Arnal L, Martín A, Giovanella U, Botta C, Sicilia V. Heteroleptic Cycloplatinated N-Heterocyclic Carbene Complexes: A New Approach to Highly Efficient Blue-Light Emitters. Inorg Chem 2017; 56:4829-4839. [PMID: 28387513 DOI: 10.1021/acs.inorgchem.6b02826] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New heteroleptic compounds of platinum(II)-containing cyclometalated N-heterocyclic carbenes, [PtCl(R-C^C*)(PPh3)] [R-CH^C*-κC* = 3-methyl-1-(naphthalen-2-yl)-1H-imidazol-2-ylidene (R-C = Naph; 1A), 1-[4-(ethoxycarbonyl)phenyl]-3-methyl-1H-imidazol-2-ylidene (R = CO2Et; 1B), and [Pt(R-C^C*)(py)(PPh3)]PF6 (py = pyridine; R-C = Naph, 2A; R = CO2Et, 2B], have been prepared and fully characterized. All of them were obtained as the trans-(C*,PPh3) isomer in high yields. The selectivity of their synthesis has been explained in terms of the degree of transphobia (T) of pairs of ligands in trans positions. X-ray diffraction studies on both 2A and 2B revealed that only in 2A, containing a C^C* with a more extended π system, do the molecules assemble themselves into head-to-tail pairs through intermolecular π···π contacts. The photophysical properties of 2A and 2B and those of the related compounds [Pt(NC-C^C*)(PPh3)L]PF6 [NC-CH^C*-κC* = 1-(4-cyanophenyl)-3-methyl-1H-imidazol-2-ylidene; L = pyridine (py; 2C), 2,6-dimethylphenylisocyanide (CNXyl; 3C), and 2-mercapto-1-methylimidazole (MMI; 4C)] have been examined to analyze the influence of the R substituent on R-C^C* (R-C = Naph; R = CO2Et, CN) and that of the ancillary ligands (L) on them. Experimental data and time-dependent density functional theory calculations showed the similarity of the electronic features associated with R-C^C* (R = CN, CO2Et) and their difference with respect to R-C^C* (R-C = Naph). All of the compounds are very efficient blue emitters in poly(methyl methacrylate) films under an argon atmosphere, with QY values ranging from 68% (2B) to 93% (2C). In the solid state, the color of the emission changes to yellowish-orange for compounds 2A (λmax = 600 nm) and 3C (λmax = 590 nm) because of the formation of aggregates through intermolecular π···π interactions. 2C and 3C were chosen to fabricate fully solution-processed electroluminescent devices with blue-light (2C), yellow-orange-light (3C), and white-light (mixtures of 2C and 3C) emission from neat films of the compounds as emitting layers.
Collapse
Affiliation(s)
- Sara Fuertes
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea, CSIC, Universidad de Zaragoza , Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Andrés J Chueca
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea, CSIC, Universidad de Zaragoza , Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Lorenzo Arnal
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea, CSIC, Universidad de Zaragoza , Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Antonio Martín
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea, CSIC, Universidad de Zaragoza , Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Umberto Giovanella
- Istituto per lo Studio delle Macromolecole, Consiglio Nazionale delle Ricerche (CNR) , Via Corti 12, 20133 Milano, Italy
| | - Chiara Botta
- Istituto per lo Studio delle Macromolecole, Consiglio Nazionale delle Ricerche (CNR) , Via Corti 12, 20133 Milano, Italy
| | - Violeta Sicilia
- Departamento de Química Inorgánica, Escuela de Ingeniería y Arquitectura de Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea, CSIC, Universidad de Zaragoza , Campus Río Ebro, Edificio Torres Quevedo, 50018 Zaragoza, Spain
| |
Collapse
|
22
|
Pinter P, Unger Y, Strassner T. Cyclometalated N-Heterocyclic Carbene Platinum(II) Complexes with Bridging Pyrazolates: Enhanced Photophysical Properties of Binuclear Blue Emitters. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201600065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- P. Pinter
- Fachrichtung Chemie und Lebensmittelchemie; TU Dresden; Bergstrasse 66 01062 Dresden Germany
| | - Y. Unger
- Fachrichtung Chemie und Lebensmittelchemie; TU Dresden; Bergstrasse 66 01062 Dresden Germany
| | - T. Strassner
- Fachrichtung Chemie und Lebensmittelchemie; TU Dresden; Bergstrasse 66 01062 Dresden Germany
| |
Collapse
|
23
|
Solomatina AI, Aleksandrova IO, Karttunen AJ, Tunik SP, Koshevoy IO. Dibenzothiophene-platinated complexes: probing the effect of ancillary ligands on the photophysical performance. Dalton Trans 2017; 46:3895-3905. [DOI: 10.1039/c7dt00349h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Alteration of the ancillary mono- and bidentate ligands was used to influence the photoemission behaviour of a family of cyclometalated platinum complexes.
Collapse
Affiliation(s)
| | | | | | | | - Igor O. Koshevoy
- University of Eastern Finland
- Department of Chemistry
- Joensuu
- Finland
| |
Collapse
|
24
|
Abstract
This Account describes our achievements toward the development of a new class of platinum(II) complexes with interesting photophysical properties. The general motif of a strongly donating N-heterocyclic carbene with a cyclometalating phenyl group attached to the nitrogen atom together with β-diketonate based counterligands enabled us to synthesize a new class of phosphorescent emitters for use in organic light-emitting diodes (OLEDs). This Account is divided into sections and introduces imidazolium based as well as triazolium based structures and discusses the effects of structural changes on the photophysical properties. Starting from the basic methylated (substituted) phenylimidalium presursors, we initially extended the π-system of the phenyl ring to the dibenzofuran ligand, its regioisomer, and thio-derivative. As the substituents of the β-diketonate ligands turned out to have a strong influence on the photophysical properties (higher quantum yields as well as shorter decay times) a series of dibenzofuranyl-3-methylimidazol as well as diphenylbenzimidazol platinum complexes were synthesized to investigate the different steric and electronic effects, which are described in a separate section. The next section of the Account then describes other extensions of the π-system. Exchange of the methyl group against a phenyl ring, as well as the extension of the π-system in the backbone of the NHC-ligand lead to a significant improvement of the photophysical properties, which reached a maximum for the diphenylbenzimidazole (DPBIC) system. Further extension of the π-system to the diphenylnaphthylimidazol then lead to a unfavorable long decay time. The effect of substitution is discussed for cyano groups, which change the electronic situation and lead to highly emissive complexes. We are currently working on studying the effect of other substituents on the photophysical properties, as well as the introduction of additional heteroatoms into the general motif. Our initial work in that area had been on 1,2,4-triazole complexes. For the basic phenyl/methyl substituted system, two different isomers are accessible, the 4-phenyl-4H-1,2,4-triazoles as well as the 1-phenyl-1H-1,2,4 triazoles. It was interesting to note that the photophysical properties of the corresponding complexes are strongly dependent on the substituent R of the β-diketonate ligand. For R = methyl, the properties are significantly different, while we found almost identical photophysical results for R = mesityl for both 1,2,4-triazole isomers. The last section describes the synthesis of bimetallic complexes. To investigate whether it is possible to cyclometalate twice into the same phenyl ring, we synthesized dicationic NHC precursors from para- and meta-disubstituted bis(imidazole)benzenes. The bimetallic complexes show interesting photophysical properties with quantum yields of up to 93%. All experimental work was accompanied by quantum chemical calculations, which turned out to be very useful for the prediction of the emission wavelengths as well as the interpretation of the emissive states of the platinum complexes.
Collapse
Affiliation(s)
- Thomas Strassner
- Physikalische Organische
Chemie, Technische Universität Dresden, D-01069 Dresden, Germany
| |
Collapse
|
25
|
Rajendra Kumar G, Thilagar P. Tuning the Phosphorescence and Solid State Luminescence of Triarylborane-Functionalized Acetylacetonato Platinum Complexes. Inorg Chem 2016; 55:12220-12229. [DOI: 10.1021/acs.inorgchem.6b01827] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- George Rajendra Kumar
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| | - Pakkirisamy Thilagar
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
26
|
Fuertes S, Chueca AJ, Perálvarez M, Borja P, Torrell M, Carreras J, Sicilia V. White Light Emission from Planar Remote Phosphor Based on NHC Cycloplatinated Complexes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:16160-16169. [PMID: 27268265 DOI: 10.1021/acsami.6b03288] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report on the generation of bright white luminescence through solid-state illumination of remote phosphors based on novel cycloplatinated N-heterocyclic carbene (NHC) compounds. Following a stepwise protocol we got the new NHC compound [{Pt(μ-Cl)(C(∧)C*)}2] (4) (HC(∧)C*-κC* = 1-(4-(ethoxycarbonyl)phenyl)-3-methyl-1H-imidazol-2-ylidene), which was used together with the related ones 4a (HC(∧)C*-κC*= 1-(4-cyanophenyl)-3-methyl-1H-imidazol-2-ylidene) and 4b (HC(∧)C*-κC*= 3-methyl-1-(naphthalen-2-yl)-1H-imidazol-2-ylidene) as starting materials for the synthesis of the new ionic derivatives [Pt(R-C(∧)C*) (CNR')2]PF6 (R = -COOEt, R' = t-Bu (5), Xyl (6); R = -CN, R' = t-Bu (7), Xyl (8); R(∧)C = Naph, R' = t-Bu (9), Xyl (10)). The X-ray structures of 6 and 8-10 have been determined. The photophysical properties of these cationic compounds have been studied and supported by the time-dependent-density functional theory (TD-DFT) calculations. The compounds 5, 8, and 9 have been revealed as the most efficient emitters in the solid state with quantum yields of 41%, 21%, and 40%, respectively. White-light remote-phosphors have been prepared just by stacking different combinations of these compounds and [Pt(bzq) (CN) (CN(t)Bu)] (R1) as blue (5, 8), yellow (9), and red (R1) components onto the same substrate. The CCT (correlated color temperature) and the CRI (color rendering index) of the emitted white-light have been tuned by accurately controlling the individual contributions.
Collapse
Affiliation(s)
- Sara Fuertes
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza , Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Andrés J Chueca
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza , Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Mariano Perálvarez
- IREC, Catalonia Institute for Energy Research , Jardins de les Dones de Negre 1, PL2, 08930 Sant Adrià de Besòs, Barcelona Spain
| | - Pilar Borja
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza , Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Marc Torrell
- IREC, Catalonia Institute for Energy Research , Jardins de les Dones de Negre 1, PL2, 08930 Sant Adrià de Besòs, Barcelona Spain
| | - Josep Carreras
- IREC, Catalonia Institute for Energy Research , Jardins de les Dones de Negre 1, PL2, 08930 Sant Adrià de Besòs, Barcelona Spain
| | - Violeta Sicilia
- Departamento de Química Inorgánica, Escuela de Ingeniería y Arquitectura de Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza , Campus Río Ebro, Edificio Torres Quevedo, 50018, Zaragoza, Spain
| |
Collapse
|
27
|
Pinter P, Mangold H, Stengel I, Münster I, Strassner T. Enhanced Photoluminescence Quantum Yields through Excimer Formation of Cyclometalated Platinum(II) N-Heterocyclic Carbene Complexes. Organometallics 2016. [DOI: 10.1021/acs.organomet.5b00982] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Piermaria Pinter
- Professur
für Physikalische Organische Chemie, TU Dresden, Bergstrasse
66, 01062 Dresden, Germany
| | | | | | | | - Thomas Strassner
- Professur
für Physikalische Organische Chemie, TU Dresden, Bergstrasse
66, 01062 Dresden, Germany
| |
Collapse
|
28
|
Omae I. Application of the five-membered ring blue light-emitting iridium products of cyclometalation reactions as OLEDs. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.08.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Fuertes S, Chueca AJ, Sicilia V. Exploring the Transphobia Effect on Heteroleptic NHC Cycloplatinated Complexes. Inorg Chem 2015; 54:9885-95. [DOI: 10.1021/acs.inorgchem.5b01655] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sara Fuertes
- Departamento de Química Inorgánica,
Facultad de Ciencias, Instituto de Síntesis Química
y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Andrés J. Chueca
- Departamento de Química Inorgánica,
Facultad de Ciencias, Instituto de Síntesis Química
y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Violeta Sicilia
- Departamento de
Química Inorgánica, Escuela de Ingeniería y Arquitectura
de Zaragoza, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Campus Río
Ebro, Edificio Torres Quevedo, 50018 Zaragoza, Spain
| |
Collapse
|
30
|
Huo S, Carroll J, Vezzu DAK. Design, Synthesis, and Applications of Highly Phosphorescent Cyclometalated Platinum Complexes. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500246] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shouquan Huo
- Department of Chemistry; East Carolina University; Greenville North Carolina 27858 USA
| | - Jeffrey Carroll
- Department of Chemistry; East Carolina University; Greenville North Carolina 27858 USA
| | | |
Collapse
|
31
|
Tenne M, Metz S, Wagenblast G, Münster I, Strassner T. C∧C* Cyclometalated Platinum(II) Complexes with Dibenzofuranyl-1,2,4-triazol-5-ylidene Ligands: Synthesis, Characterization, and Photoluminescent Properties. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mario Tenne
- Physikalische
Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | | | | | | | - Thomas Strassner
- Physikalische
Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
32
|
Tronnier A, Wagenblast G, Münster I, Strassner T. Phosphorescent Platinum(II) Complexes with C^C* Cyclometalated NHC Dibenzofuranyl Ligands: Impact of Different Binding Modes on the Decay Time of the Excited State. Chemistry 2015. [DOI: 10.1002/chem.201502087] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Tenne M, Metz S, Wagenblast G, Münster I, Strassner T. C^C* cyclometalated platinum(II) N-heterocyclic carbene complexes with a sterically demanding β-diketonato ligand – synthesis, characterization and photophysical properties. Dalton Trans 2015; 44:8444-55. [PMID: 25884050 DOI: 10.1039/c4dt03613a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Neutral cyclometalated platinum(ii) N-heterocyclic carbene complexes [Pt(C^C*)(O^O)] with C^C* ligands based on 1-phenyl-1,2,4-triazol-5-ylidene and 4-phenyl-1,2,4-triazol-5-ylidene, as well as acetylacetonato (O^O = acac) and 1,3-bis(2,4,6-trimethylphenyl)propan-1,3-dionato (O^O = mesacac) ancillary ligands were synthesized and characterized. All complexes are emissive at room temperature in a poly(methyl methacrylate) (PMMA) matrix with emission maxima in the blue region of the spectrum. High quantum efficiencies and short decay times were observed for all complexes with mesacac ancillary ligands. The sterically demanding mesityl groups of the mesacac ligand effectively prevent molecular stacking. The emission behavior of these emitters is in general independent of the position of the nitrogen in the backbone of the N-heterocyclic carbene (NHC) unit and a variety of substituents in 4-position of the phenyl unit, meta to the cyclometalating bond.
Collapse
Affiliation(s)
- M Tenne
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany.
| | | | | | | | | |
Collapse
|
34
|
Turning-On of Coumarin Phosphorescence in Acetylacetonato Platinum Complexes of Cyclometalated Pyridyl-Substituted Coumarins. INORGANICS 2015. [DOI: 10.3390/inorganics3020055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
Geist F, Jackel A, Winter RF. Dual ligand-based fluorescence and phosphorescence emission at room temperature from platinum thioxanthonyl complexes. Dalton Trans 2015; 44:3974-87. [DOI: 10.1039/c4dt02410a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum complexes with σ-bonded thioxanthonyl (Tx) ligands exhibit, on irradiation into the Tx π→π* band, dual Tx-based fluorescence and phosphorescence emission with phosphorescence quantum yields of up to 19% in fluid solution at room temperature.
Collapse
Affiliation(s)
- Fabian Geist
- Fachbereich Chemie der Universität Konstanz
- D-78457 Konstanz
- Germany
| | - Andrej Jackel
- Fachbereich Chemie der Universität Konstanz
- D-78457 Konstanz
- Germany
| | - Rainer F. Winter
- Fachbereich Chemie der Universität Konstanz
- D-78457 Konstanz
- Germany
| |
Collapse
|
36
|
Ko SB, Park HJ, Gong S, Wang X, Lu ZH, Wang S. Blue phosphorescent N-heterocyclic carbene chelated Pt(ii) complexes with an α-duryl-β-diketonato ancillary ligand. Dalton Trans 2015; 44:8433-43. [DOI: 10.1039/c4dt03085k] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blue phosphorescent Pt(ii) complexes that display bright blue emission in the solid state have been obtained employing NHC-based C∧C*-chelate ligands and an α-duryl-β-diketonato ancillary ligand that provides steric blocking to minimize intermolecular interactions.
Collapse
Affiliation(s)
- Soo-Byung Ko
- Department of Chemistry
- Queen's University
- Kingston
- Canada
| | - Hee-Jun Park
- Department of Chemistry
- Queen's University
- Kingston
- Canada
| | - Shaolong Gong
- Department of Materials Science and Engineering
- University of Toronto
- Toronto
- Canada
| | - Xiang Wang
- Department of Chemistry
- Queen's University
- Kingston
- Canada
| | - Zheng-Hong Lu
- Department of Materials Science and Engineering
- University of Toronto
- Toronto
- Canada
| | - Suning Wang
- Department of Chemistry
- Queen's University
- Kingston
- Canada
| |
Collapse
|
37
|
Tronnier A, Schleicher D, Strassner T. (C∧C*)-cyclometalated platinum(II) imidazo[1,5-a]pyridine NHC complexes – Synthesis and characterization. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2014.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Jamshidi M, Nabavizadeh SM, Shahsavari HR, Rashidi M. Photophysical and DFT studies on cycloplatinated complexes: modification in luminescence properties by expanding of π-conjugated systems. RSC Adv 2015. [DOI: 10.1039/c5ra10922a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The luminescent properties of cycloplatinated complexes containing aryl and SMe2 ligands, [Pt(p-MeC6H4)(ĈN)(SMe2)], (ĈN = benzo[h]quinolate (bzq), 1, or 2-phenylpyridinate (ppy), 2), were investigated in solution and solid state.
Collapse
Affiliation(s)
- Mahboubeh Jamshidi
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz 71467-13565
- Iran
| | | | - Hamid R. Shahsavari
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences
- Zanjan
- Iran
| | - Mehdi Rashidi
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz 71467-13565
- Iran
| |
Collapse
|
39
|
Fuertes S, García H, Perálvarez M, Hertog W, Carreras J, Sicilia V. Stepwise Strategy to Cyclometallated PtIIComplexes with N-Heterocyclic Carbene Ligands: A Luminescence Study on New β-Diketonate Complexes. Chemistry 2014; 21:1620-31. [DOI: 10.1002/chem.201404915] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 01/12/2023]
|
40
|
Micksch M, Tenne M, Strassner T. C∧N-Cyclometalated Platinum(II) Complexes with Sterically Demanding 1,2-Diarylimidazole Ligands. Organometallics 2014. [DOI: 10.1021/om500383b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Maik Micksch
- Physikalische
Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | - Mario Tenne
- Physikalische
Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | - Thomas Strassner
- Physikalische
Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
41
|
Tronnier A, Pöthig A, Metz S, Wagenblast G, Münster I, Strassner T. Enlarging the π system of phosphorescent (C^C*) cyclometalated platinum(II) NHC complexes. Inorg Chem 2014; 53:6346-56. [PMID: 24866934 DOI: 10.1021/ic500971z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cyclometalated (C^C*) platinum(II) N-heterocyclic carbene (NHC) complexes are emerging as a new class of phosphorescent emitters for the application in organic light-emitting devices (OLEDs). We present the synthesis of six new complexes of this class to investigate the influence of extended π systems. Therefore, six different NHC ligands with a varying number of additional phenyl substituents were used in combination with the monoanionic acetylacetonate (acac) ligand to obtain complexes of the general formula [(NHC)Pt(II)(acac)]. The complexes were fully characterized by standard techniques and advanced spectroscopic methods ((195)Pt NMR). For all complexes the solid-state structure determination revealed a square-planar coordination of the platinum atom. Absorption and emission spectra were measured in thin amorphous poly(methyl methacrylate) films at room temperature. Four compounds emit in the blue-green region of the visible spectrum with quantum yields of up to 81%.
Collapse
Affiliation(s)
- Alexander Tronnier
- Physikalische Organische Chemie, Technische Universität Dresden , 01069 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Tronnier A, Poethig A, Herdtweck E, Strassner T. C∧C* Cyclometalated Platinum(II) NHC Complexes with β-Ketoimine Ligands. Organometallics 2014. [DOI: 10.1021/om401023f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Alexander Tronnier
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | - Alexander Poethig
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | - Eberhardt Herdtweck
- Anorganische Chemie, TU München, Lichtenbergstrasse
4, 85747 Garching, Germany
| | - Thomas Strassner
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
43
|
Recent advances in S-functionalized N-heterocyclic carbene ligands: From the synthesis of azolium salts and metal complexes to applications. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.09.036] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Kumar GR, Thilagar P. Triarylborane conjugated acacH ligands and their BF2 complexes: facile synthesis and intriguing optical properties. Dalton Trans 2014; 43:3871-9. [DOI: 10.1039/c3dt52768a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Tronnier A, Metz S, Wagenblast G, Muenster I, Strassner T. Blue phosphorescent nitrile containing C^C* cyclometalated NHC platinum(ii) complexes. Dalton Trans 2014; 43:3297-305. [DOI: 10.1039/c3dt53264j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Visbal R, Gimeno MC. N-heterocyclic carbene metal complexes: photoluminescence and applications. Chem Soc Rev 2014; 43:3551-74. [DOI: 10.1039/c3cs60466g] [Citation(s) in RCA: 520] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review covers the advances made in the synthesis and applications of luminescent transition metal complexes containing N-heterocyclic carbene (NHC) ligands.
Collapse
Affiliation(s)
- Renso Visbal
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza, Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza, Spain
| |
Collapse
|
47
|
Tronnier A, Nischan N, Metz S, Wagenblast G, Münster I, Strassner T. Phosphorescent C∧C* Cyclometalated PtIIDibenzofuranyl-NHC Complexes - An Auxiliary Ligand Study. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201301398] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
|
49
|
Tenne M, Metz S, Münster I, Wagenblast G, Strassner T. Phosphorescent Platinum(II) Complexes Based on C∧C* Cyclometalating Aryltriazol-5-ylidenes. Organometallics 2013. [DOI: 10.1021/om4004576] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mario Tenne
- Physikalische
Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | | | | | | | - Thomas Strassner
- Physikalische
Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
50
|
Highly Efficient Blue-Emitting Cyclometalated Platinum(II) Complexes by Judicious Molecular Design. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302541] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|