1
|
Freudenberg J, Bunz UHF. How to Stabilize Large Soluble (Hetero-)Acenes. J Am Chem Soc 2024; 146:16937-16949. [PMID: 38862130 PMCID: PMC11212629 DOI: 10.1021/jacs.4c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
The higher acenes and azaacenes (>(aza)heptacenes) are fascinating, yet elusive materials. Their reactivity and sensitivity increases concomitantly with their size. In recent years, confinement techniques, that is isolation of acenes in matrices and on surfaces, has surpassed solution-based chemistry with respect to accessing the larger (hetero)acenes at the price of the accessibility of no more than a couple thousands of molecules. Isolating acenes in bulk quantities and in processable form is vital for applications in organic electronics as well as from a viewpoint from basic research. In this Perspective, we will discuss after a short historical outline their degradation pathways, and then will selectively highlight recent efforts in stabilizing soluble (aza)acenes.
Collapse
Affiliation(s)
- Jan Freudenberg
- Ruprecht-Karls-Universität
Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Uwe H. F. Bunz
- Ruprecht-Karls-Universität
Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Hou Y, Papadopoulos I, Bo Y, Wollny AS, Ferguson MJ, Mai LA, Tykwinski RR, Guldi DM. Catalyzing Singlet Fission by Transition Metals: Second versus Third Row Effects. PRECISION CHEMISTRY 2023; 1:555-564. [PMID: 38037593 PMCID: PMC10685717 DOI: 10.1021/prechem.3c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 12/02/2023]
Abstract
The synthesis and characterization of platinum(II) and palladium(II) complexes bearing two (dimers Pt(Lpc)2Cl2 and Pd(Lpc)2Cl2), one (monomers Pt(Lpc)(Lref)Cl2 and Pd(Lpc)(Lref)Cl2), or no (reference compounds Pt(Lref)2Cl2 and Pd(Lref)2Cl2) pentacene-based pyridyl ligands are presented. Photophysical properties of the dimers are probed by means of steady-state and time-resolved transient absorption measurements in comparison to the monomer and model compounds. Our results document that despite enhanced spin-orbit coupling from the presence of heavy atoms, intramolecular singlet fission (iSF) is not challenged by intersystem crossing. iSF thus yields correlated triplet pairs and even uncorrelated triplet excited states upon decoherence. Importantly, significant separation of the two pentacenyl groups facilitates decoupling of the two chromophores. Furthermore, the mechanism of iSF is altered depending on the respective metal center, that is, Pt(II) versus Pd(II). The dimer based on Pt(II), Pt(Lpc)2Cl2, exhibits a direct pathway for the iSF and forms a correlated triplet pair with singlet-quintet spin-mixing within 10 ns in variable solvents. On the other hand, the dimer based on Pd(II), Pd(Lpc)2Cl2, leads to charge transfer mixing during the population of the correlated triplet pair that is dependent on solvent polarity. Moreover, Pd(Lpc)2Cl2 gives rise to a stable equilibrium between singlet and quintet correlated triplet pairs with lifetimes of up to 170 ns. Inherent differences in the size and polarizability, when contrasting platinum(II) with palladium(II), are the most likely rationale for the underlying trends.
Collapse
Affiliation(s)
- Yuxuan Hou
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Ilias Papadopoulos
- Department
of Chemistry and Pharmacy & Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-University
Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Yifan Bo
- Department
of Chemistry and Pharmacy & Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-University
Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Anna-Sophie Wollny
- Department
of Chemistry and Pharmacy & Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-University
Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Michael J. Ferguson
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Lukas A. Mai
- Department
of Chemistry and Pharmacy & Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-University
Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Rik R. Tykwinski
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Dirk M. Guldi
- Department
of Chemistry and Pharmacy & Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-University
Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Auty AJ, Scattergood PA, Keane T, Cheng T, Wu G, Carson H, Shipp J, Sadler A, Roseveare T, Sazanovich IV, Meijer AJHM, Chekulaev D, Elliot PIP, Towrie M, Weinstein JA. A stronger acceptor decreases the rates of charge transfer: ultrafast dynamics and on/off switching of charge separation in organometallic donor-bridge-acceptor systems. Chem Sci 2023; 14:11417-11428. [PMID: 37886100 PMCID: PMC10599469 DOI: 10.1039/d2sc06409j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
To unravel the role of driving force and structural changes in directing the photoinduced pathways in donor-bridge-acceptor (DBA) systems, we compared the ultrafast dynamics in novel DBAs which share a phenothiazine (PTZ) electron donor and a Pt(ii) trans-acetylide bridge (-C[triple bond, length as m-dash]C-Pt-C[triple bond, length as m-dash]C-), but bear different acceptors conjugated into the bridge (naphthalene-diimide, NDI; or naphthalene-monoimide, NAP). The excited state dynamics were elucidated by transient absorption, time-resolved infrared (TRIR, directly following electron density changes on the bridge/acceptor), and broadband fluorescence-upconversion (FLUP, directly following sub-picosecond intersystem crossing) spectroscopies, supported by TDDFT calculations. Direct conjugation of a strong acceptor into the bridge leads to switching of the lowest excited state from the intraligand 3IL state to the desired charge-separated 3CSS state. We observe two surprising effects of an increased strength of the acceptor in NDI vs. NAP: a ca. 70-fold slow-down of the 3CSS formation-(971 ps)-1vs. (14 ps)-1, and a longer lifetime of the 3CSS (5.9 vs. 1 ns); these are attributed to differences in the driving force ΔGet, and to distance dependence. The 100-fold increase in the rate of intersystem crossing-to sub-500 fs-by the stronger acceptor highlights the role of delocalisation across the heavy-atom containing bridge in this process. The close proximity of several excited states allows one to control the yield of 3CSS from ∼100% to 0% by solvent polarity. The new DBAs offer a versatile platform for investigating the role of bridge vibrations as a tool to control excited state dynamics.
Collapse
Affiliation(s)
- Alexander J Auty
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | | | - Theo Keane
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Tao Cheng
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Guanzhi Wu
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Heather Carson
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - James Shipp
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Andrew Sadler
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Thomas Roseveare
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Igor V Sazanovich
- Laser for Science Facility, Rutherford Appleton Laboratory, RCaH, STFC OX11 0QX UK
| | | | - Dimitri Chekulaev
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Paul I P Elliot
- Department of Chemical Sciences, University of Huddersfield HD1 3DH UK
| | - Mike Towrie
- Laser for Science Facility, Rutherford Appleton Laboratory, RCaH, STFC OX11 0QX UK
| | - Julia A Weinstein
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| |
Collapse
|
4
|
Tanaka Y, Kawano R, Akita M. Acene Size-Dependent Transition of The Radical Centers From the Metal to The Acene Parts In Monocationic Dinuclear (Diethynylacene)diyl Complexes. Chemistry 2022; 28:e202201358. [PMID: 35680560 PMCID: PMC9804824 DOI: 10.1002/chem.202201358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 01/09/2023]
Abstract
Controlling radical localization/delocalization is important for functional materials. The present paper describes synthesis and results of electrochemical, spectroscopic, and theoretical studies of diruthenium (p-diethynylacene)diyl complexes, Me3 Si-(C≡C)2 -Ru(dppe)2 -C≡C-Ar-C≡C-Ru(dppe)2 -(C≡C)2 -SiMe3 (1-6) (dppe: 1,2-bis(diphenylphosphino)ethane), and their monocationic radical species ([1]+ -[6]+ ). The HOMO-LUMO energy gaps can be finely tuned by the acene rings in the bridging ligands installed, as indicated by the absorption maxima of the electronic spectra of 1-6 ranging from the UV region even to the NIR region. The cationic species [1]+ -[6]+ show two characteristic NIR bands, which are ascribed to the charge resonance (CR) and π-π* transition bands, as revealed by spectroelectrochemistry. Expansion of the acene rings in [1]+ -[6]+ causes (1) blue shifts of the CR bands and red shifts of the π-π* transition bands and (2) charge localization on the acene parts as evidenced by the ESR, DFT and TD-DFT analyses. Notably, the monocationic complexes of the larger acene derivatives are characterized as the non-classical acene-localized radicals.
Collapse
Affiliation(s)
- Yuya Tanaka
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
| | - Reo Kawano
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
| |
Collapse
|
5
|
Nguyen TD, Lau MT, Hoang KL, Dinh TH, Nguyen HH, Nguyen MH. Exploring the syntheses, crystal structures and photophysical properties of new anthracene-tethered Ni(II) dithiocarbamates. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Papadopoulos I, Gao Y, Hetzer C, Tykwinski RR, Guldi DM. Singlet Fission in Enantiomerically Pure Pentacene Dimers. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ilias Papadopoulos
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Yueze Gao
- Department of Chemistry University of Alberta, Edmonton Alberta T6G 2G2 Canada
| | - Constantin Hetzer
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Rik R. Tykwinski
- Department of Chemistry University of Alberta, Edmonton Alberta T6G 2G2 Canada
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| |
Collapse
|
7
|
|
8
|
Basel BS, Young RM, Krzyaniak MD, Papadopoulos I, Hetzer C, Gao Y, La Porte NT, Phelan BT, Clark T, Tykwinski RR, Wasielewski MR, Guldi DM. Influence of the heavy-atom effect on singlet fission: a study of platinum-bridged pentacene dimers. Chem Sci 2019; 10:11130-11140. [PMID: 32206262 PMCID: PMC7069226 DOI: 10.1039/c9sc04410h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/20/2019] [Indexed: 12/11/2022] Open
Abstract
Two platinum-bridged pentacene dimers undergo efficient singlet fission to form a correlated triplet pair (T1T1). The internal heavy-atom effect of the platinum allows for 1(T1T1)–3(T1T1) mixing leading to the formation of mainly (T1S0).
The process of singlet fission (SF) produces two triplet excited states (T1 + T1) from one singlet excited exciton (S1) and a molecule in its ground state (S0). It, thus, possesses the potential to boost the solar cell efficiency above the thermodynamic Shockley–Queisser limit of 33%. A key intermediate in the SF mechanism is the singlet correlated triplet pair state 1(T1T1). This state is of great relevance, as its formation is spin-allowed and, therefore, very fast and efficient. Three fundamentally different pathways to formation of 1(T1T1) have been documented so far. The factors that influence which mechanism is associated with which chromophore, however, remain largely unknown. In order to harvest both triplet excitons independently, a decorrelation of the correlated triplet pair state to two individual triplets is required. This second step of the SF process implies a change in the total spin quantum number. In the case of a dimer, this is usually only possible if the coupling between the two pentacenes is sufficiently weak. In this study, we present two platinum-bridged pentacene dimers in which the pentacenes are coupled strongly, so that spin-decorrelation yielding (T1 + T1) was initially expected to be outcompeted by triplet–triplet annihilation (TTA) to the ground state. Both platinum-bridged pentacene dimers undergo quantitative formation of the (T1T1) state on a picosecond timescale that is unaffected by the internal heavy-atom effect of the platinum. Instead of TTA of (T1T1) to the ground state, the internal heavy-atom effect allows for 1(T1T1)–3(T1T1) and 1(T1T1)–5(T1T1) mixing and, thus, triggers subsequent TTA to the (T1S0) state and minor formation of (T1 + T1). A combination of transient absorption and transient IR spectroscopy is applied to investigate the mechanism of the (T1T1) formation in both dimers. Using a combination of experiment and quantum chemical calculations, we are able to observe a transition from the CT-mediated to the direct SF mechanism and identify relevant factors that influence the mechanism that dominates SF in pentacene. Moreover, a combination of time-resolved optical and electron paramagnetic resonance spectroscopic data allows us to develop a kinetic model that describes the effect of enhanced spin–orbit couplings on the correlated triplet pair state.
Collapse
Affiliation(s)
- Bettina S Basel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Egerlandstrasse 3 , 91058 Erlangen , Germany .
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern (ISEN) , Northwestern University , Evanston , IL 60208-3113 , USA .
| | - Matthew D Krzyaniak
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern (ISEN) , Northwestern University , Evanston , IL 60208-3113 , USA .
| | - Ilias Papadopoulos
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Egerlandstrasse 3 , 91058 Erlangen , Germany .
| | - Constantin Hetzer
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Nikolaus-Fiebiger-Strasse 10 , 91058 Erlangen , Germany
| | - Yueze Gao
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada .
| | - Nathan T La Porte
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern (ISEN) , Northwestern University , Evanston , IL 60208-3113 , USA .
| | - Brian T Phelan
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern (ISEN) , Northwestern University , Evanston , IL 60208-3113 , USA .
| | - Timothy Clark
- Department of Chemistry and Pharmacy & Computer-Chemistry-Center (CCC) , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Nägelsbachstrasse 25 , 91052 Erlangen , Germany .
| | - Rik R Tykwinski
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada .
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern (ISEN) , Northwestern University , Evanston , IL 60208-3113 , USA .
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Egerlandstrasse 3 , 91058 Erlangen , Germany .
| |
Collapse
|
9
|
Harvey PD. Organometallic and Coordination Polymers, and Linear and Star Oligomers Using the trans-Pt(PR3)2(C≡C)2 Linker. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0673-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Melník M, Mikuš P. Organophosphines in organoplatinum complexes: structural aspects of trans-PtP2C2 derivatives. REV INORG CHEM 2017. [DOI: 10.1515/revic-2016-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThis review summarized and analyzed the structural parameters of 174 monomeric organoplatinum complexes with an inner coordination sphere of trans-PtP2C2. These complexes crystallized in four crystal systems: hexagonal (x2), orthorhombic (x13), triclinic (x76), and monoclinic (x84). These complexes, on the basis of the coordination mode of the respective donor ligands, can be divided into the seven sub-groups: Pt(PL)2(CL)2, Pt(PL)2(η2-C2L), Pt(η2-P2L)(CL)2, Pt(PL)(η2-P,CL)(CL), Pt(η2-P,CL)2, Pt(η3-P,C,PL)(CL), and Pt(η3-C,P,CL)(PL). The chelating ligands create 4-, 5-, 6-, 16-, 17-, 18-, and 19-membered rings. The total mean values of Pt-L bond distances are 2.055 Å (C) and 2.300 Å (P). There are examples that exist in two isomeric forms and are examples of distortion isomerism. The structural parameters of trans-PtP2C2 are discussed with those of cis-PtP2C2 derivatives.
Collapse
Affiliation(s)
- Milan Melník
- 1Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia Republic
| | - Peter Mikuš
- 2Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, Bratislava, Slovakia Republic
- 3Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, Bratislava, Slovakia Republic
| |
Collapse
|
11
|
Melník M, Mikuš P. Organophosphines in organoplatinum complexes – Structural aspects OF PtP2CX (X = Br or I) derivatives. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Otaki Y, Marumoto M, Miyagi Y, Hirao T, Haino T, Sanda F. Synthesis and Properties of Novel Optically Active Platinum-containing Poly(phenyleneethynylene)s. CHEM LETT 2016. [DOI: 10.1246/cl.160385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Bonnot A, Harvey PD. Pentacene- and BODIPY-Containing trans-Bis(ethynyl)bis(phosphine)platinum(II) Organometallic Polymers: A DFT Point of View. J Inorg Organomet Polym Mater 2016. [DOI: 10.1007/s10904-016-0405-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Miyagi Y, Shibutani Y, Otaki Y, Sanda F. Synthesis of platinum-containing poly(phenyleneethynylene)s having various chromophores: aggregation and optical properties. Polym Chem 2016. [DOI: 10.1039/c5py01584g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various platinum-containing phenylene–ethynylene–arylene polymers were synthesized, and the relationships between the optical properties and aggregation behaviour were examined.
Collapse
Affiliation(s)
- Yu Miyagi
- Department of Chemistry and Materials Engineering
- Faculty of Chemistry
- Materials and Bioengineering
- Kansai University
- Suita
| | - Yuno Shibutani
- Department of Chemistry and Materials Engineering
- Faculty of Chemistry
- Materials and Bioengineering
- Kansai University
- Suita
| | - Yoshinori Otaki
- Department of Chemistry and Materials Engineering
- Faculty of Chemistry
- Materials and Bioengineering
- Kansai University
- Suita
| | - Fumio Sanda
- Department of Chemistry and Materials Engineering
- Faculty of Chemistry
- Materials and Bioengineering
- Kansai University
- Suita
| |
Collapse
|
15
|
Yam VWW, Au VKM, Leung SYL. Light-Emitting Self-Assembled Materials Based on d8 and d10 Transition Metal Complexes. Chem Rev 2015; 115:7589-728. [DOI: 10.1021/acs.chemrev.5b00074] [Citation(s) in RCA: 1065] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vivian Wing-Wah Yam
- Institute of Molecular Functional
Materials (Areas of Excellence Scheme, University Grants Committee
(Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Vonika Ka-Man Au
- Institute of Molecular Functional
Materials (Areas of Excellence Scheme, University Grants Committee
(Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional
Materials (Areas of Excellence Scheme, University Grants Committee
(Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
16
|
Turning-On of Coumarin Phosphorescence in Acetylacetonato Platinum Complexes of Cyclometalated Pyridyl-Substituted Coumarins. INORGANICS 2015. [DOI: 10.3390/inorganics3020055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Geist F, Jackel A, Winter RF. Dual ligand-based fluorescence and phosphorescence emission at room temperature from platinum thioxanthonyl complexes. Dalton Trans 2015; 44:3974-87. [DOI: 10.1039/c4dt02410a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum complexes with σ-bonded thioxanthonyl (Tx) ligands exhibit, on irradiation into the Tx π→π* band, dual Tx-based fluorescence and phosphorescence emission with phosphorescence quantum yields of up to 19% in fluid solution at room temperature.
Collapse
Affiliation(s)
- Fabian Geist
- Fachbereich Chemie der Universität Konstanz
- D-78457 Konstanz
- Germany
| | - Andrej Jackel
- Fachbereich Chemie der Universität Konstanz
- D-78457 Konstanz
- Germany
| | - Rainer F. Winter
- Fachbereich Chemie der Universität Konstanz
- D-78457 Konstanz
- Germany
| |
Collapse
|
18
|
Braunschweig H, Damme A, Dewhurst RD, Kelch H, Macha BB, Radacki K, Vargas A, Ye Q. Platinumtrans-Bis(borirene) Complexes Displaying Coplanarity and Communication Across a Platinum Metal Center. Chemistry 2014; 21:2377-86. [DOI: 10.1002/chem.201405803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 11/05/2022]
|
19
|
Gauthier S, Caro B, Robin-Le Guen F, Bhuvanesh N, Gladysz JA, Wojcik L, Le Poul N, Planchat A, Pellegrin Y, Blart E, Jacquemin D, Odobel F. Synthesis, photovoltaic performances and TD-DFT modeling of push-pull diacetylide platinum complexes in TiO2 based dye-sensitized solar cells. Dalton Trans 2014; 43:11233-42. [PMID: 24837848 DOI: 10.1039/c4dt00301b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this joint experimental-theoretical work, we present the synthesis and optical and electrochemical characterization of five new bis-acetylide platinum complex dyes end capped with diphenylpyranylidene moieties, as well as their performances in dye-sensitized solar cells (DSCs). Theoretical calculations relying on Time-Dependent Density Functional Theory (TD-DFT) and a range-separated hybrid show a very good match with experimental data and allow us to quantify the charge-transfer character of each compound. The photoconversion efficiency obtained reaches 4.7% for 8e (see TOC Graphic) with the tri-thiophene segment, which is among the highest efficiencies reported for platinum complexes in DSCs.
Collapse
Affiliation(s)
- Sébastien Gauthier
- Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, IUT de Lannion, rue Edouard Branly, BP 30219, F22302 Lannion Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
De Sousa S, Ducasse L, Kauffmann B, Toupance T, Olivier C. Functionalization of a Ruthenium-Diacetylide Organometallic Complex as a Next-Generation Push-Pull Chromophore. Chemistry 2014; 20:7017-24. [DOI: 10.1002/chem.201304611] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/02/2014] [Indexed: 11/06/2022]
|
21
|
Scattergood PA, Delor M, Sazanovich IV, Bouganov OV, Tikhomirov SA, Stasheuski AS, Parker AW, Greetham GM, Towrie M, Davies ES, Meijer AJHM, Weinstein JA. Electron transfer dynamics and excited state branching in a charge-transfer platinum(ii) donor–bridge-acceptor assembly. Dalton Trans 2014; 43:17677-93. [DOI: 10.1039/c4dt01682c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
22
|
Wang W, Yang HB. Linear neutral platinum–acetylide moiety: beyond the links. Chem Commun (Camb) 2014; 50:5171-5186. [DOI: 10.1039/c3cc47485b] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
23
|
Nguyen MH, Nguyen VH, Yip JHK. Sequence-Specific Synthesis of Platinum-Conjugated Trichromophoric Energy Cascades of Anthracene, Tetracene, and Pentacene and Fluorescent “Black Chromophores”. Organometallics 2013. [DOI: 10.1021/om400578t] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Minh-Hai Nguyen
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543
| | - Van Ha Nguyen
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543
| | - John H. K. Yip
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543
| |
Collapse
|