1
|
Fan Q, Li Q, Sun H, Li X. Dinitrogen silylation catalyzed by silylene cobalt(I) and silylene iron(I) chlorides. Dalton Trans 2024; 53:16261-16270. [PMID: 39308194 DOI: 10.1039/d4dt02057j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In this contribution, Co(PMe3)3Cl (1), bis(silylene) cobalt chlorides Co(LSi:)2(PMe3)2Cl (LSi: = {PhC(NtBu)2}SiCl (2); {p-CH3C6H4C(NtBu)2}SiCl (3); and {p-tBuC6H4C(NtBu)2}SiCl (4)) and bis(silylene) iron chlorides Fe(LSi:)2(PMe3)2Cl (LSi: = {PhC(NtBu)2}SiCl (5); {p-CH3C6H4C(NtBu)2}SiCl (6); {p-tBuC6H4C(NtBu)2}SiCl (7) and Fe(PMe3)2Cl2 (8)) were synthesized to study the effects of different metals and silylene ligands on the catalytic activity of complexes 1-8 in dinitrogen silylation reaction. The experimental results indicate that there is no substantial difference in catalytic activity between the phosphine cobalt complex 1 and the silylene cobalt chlorides 2-4 although the cobalt silylene complex 2 has slightly better catalytic activity than complexes 1, 3 and 4 in the dinitrogen silylation. Silylene iron complexes 5-7 are more active than the phosphine iron complex 8. Among the three silylene iron(I) chlorides 5-7, complex 5 is the most effective catalyst for dinitrogen silylation and 402 equiv. of N(SiMe3)3 could be obtained per Fe atom. In the dinitrogen silylation reaction catalyzed by iron complexes, the introduction of the silylene ligand made the silylene iron complexes 5-7 more active than the phosphine iron complex 8. In addition, iron chlorides 5-8 are more effective catalysts than cobalt(I) chlorides 1-4 for the dinitrogen silylation reaction. Complexes 3, 4, 6 and 7 were new complexes, and their molecular structures were determined by single crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Qingshuang Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| |
Collapse
|
2
|
Zhang M, Dong Y, Li Q, Sun H, Li X. Catalytic Properties of [PSiP] Pincer Cobalt(II) Chlorides Supported by Trimethylphosphine for Alkene Hydrosilylation Reactions. Inorg Chem 2024; 63:8807-8815. [PMID: 38688019 DOI: 10.1021/acs.inorgchem.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In this paper, six silyl [PSiP] pincer cobalt(II) chlorides 1-6 [(2-Ph2PC6H4)2MeSiCo(Cl)(PMe3)] (1), [(2-Ph2PC6H4)2HSiCo(Cl)(PMe3)] (2), [(2-Ph2PC6H4)2PhSiCo(Cl)(PMe3)] (3), [(2-iPr2PC6H4)2HSiCo(Cl)(PMe3)] (4), [(2-iPr2PC6H4)2MeSiCo(Cl)(PMe3)] (5), and [(2-iPr2PC6H4)2PhSiCo(Cl)(PMe3)] (6)) were prepared from the corresponding [PSiP] pincer preligands (L1-L6), CoCl2 and PMe3 by Si-H bond activation. The catalytic activity of complexes 1-6 for alkene hyrdosilylation was studied. It was confirmed that complex 1 is the best catalyst with excellent regioselectivity among the six complexes. Using 1 as the catalyst, the catalytic reaction was completed within 1 h at 50 °C, predominantly affording Markovnikov products for aryl alkenes and anti-Markovnikov products for aliphatic alkene substrates. During the investigation of the catalytic mechanism, the Co(II) hydrides [(2-Ph2PC6H4)2MeSiCo(H)(PMe3)] (8) and [(2-iPr2PC6H4)2MeSiCo(H)(PMe3)] (9) were obtained from the stoichiometric reactions of complex 1 and 5 with NaBHEt3, respectively. Complexes 8 and 9 could also be obtained by the reactions of preligands L1 and L5 with Co(PMe3)4 via Si-H bond cleavage. More experiments corroborated that complex 8 is the real catalyst for this catalytic system. Under the same catalytic conditions as complex 1, using complex 8 as a catalyst, complete conversion of styrene was also achieved in 1 h, and the selectivity remained unchanged. Based on the experimental results, we propose a plausible mechanism for this catalytic reaction. The addition of B(C6F5)3 to catalyst 1 can reverse the selectivity of styrene hydrosilylation from the Markovnikov product as the main product (b/l = 99:1) to the anti-Markovnikov product as the main product (b/l = 40:60). Further study indicated that using the (CoCl2 + L1) system instead of complex 1, the selectivity was changed from Markovnikov to anti-Markovnikov product (b/l = 1:99.7). Therefore, the selectivity for the substrate styrene is influenced by the presence of a PMe3 ligand. The different selectivities may be caused by different active species. For the system of complex 1, a cobalt(II) hydride is the real catalyst, but for the (CoCl2 + L1) system, a cobalt(I) complex is proposed as active species. The molecular structures of Co(II) compounds 5 and 9 were resolved by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Min Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China
| | - Yanhong Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China
| | - Qingshuang Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
3
|
Gao J, Ge Y, He C. X-type silyl ligands for transition-metal catalysis. Chem Soc Rev 2024; 53:4648-4673. [PMID: 38525837 DOI: 10.1039/d3cs00893b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Given the critical importance of novel ligand development for transition-metal (TM) catalysis, as well as the resurgence of the field of organosilicon chemistry and silyl ligands, to summarize the topic of X-type silyl ligands for TM catalysis is highly attractive and timely. This review particularly emphasizes the unique σ-donating characteristics and trans-effects of silyl ligands, highlighting their crucial roles in enhancing the reactivity and selectivity of various catalytic reactions, including small molecule activation, Kumada cross-coupling, hydrofunctionalization, C-H functionalization, and dehydrogenative Si-O coupling reactions. Additionally, future developments in this field are also provided, which would inspire new insights and applications in catalytic synthetic chemistry.
Collapse
Affiliation(s)
- Jihui Gao
- School of Chemistry and Chemical Engineering, Heilongjiang Provincial, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Yicong Ge
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
4
|
Saunders TM, Shepard SB, Hale DJ, Robertson KN, Turculet L. Highly Selective Nickel-Catalyzed Isomerization-Hydroboration of Alkenes Affords Terminal Functionalization at Remote C-H Position. Chemistry 2023; 29:e202301946. [PMID: 37466914 DOI: 10.1002/chem.202301946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/20/2023]
Abstract
We report herein the synthesis and characterization of nickel complexes supported by tridentate and bidentate phosphino(silyl) ancillary ligands, along with the successful application of these complexes as precatalysts for the hydroboration of terminal and internal alkenes using pinacolborane (HBPin). These reactions proceeded with low nickel loadings of 2.5-5 mol % in the absence of co-solvent, and in some cases at room temperature. Isomerization to afford exclusively the terminal hydroboration product was obtained across a range of internal alkenes, including tri- and tetra-substituted examples. This reactivity is unprecedented for nickel and offers a powerful means of achieving functionalization at a C-H position remote from the C=C double bond. Nickel-catalyzed deuteroboration experiments using DBPin support a mechanism involving 1,2-insertion of the alkene and subsequent chain-walking, which results in isotopic scrambling.
Collapse
Affiliation(s)
- Tyler M Saunders
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Sydney B Shepard
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Dylan J Hale
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Katherine N Robertson
- Department of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Laura Turculet
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
5
|
Banach Ł, Brykczyńska D, Gorczyński A, Wyrzykiewicz B, Skrodzki M, Pawluć P. Markovnikov-selective double hydrosilylation of challenging terminal aryl alkynes under cobalt and iron catalysis. Chem Commun (Camb) 2022; 58:13763-13766. [PMID: 36421006 DOI: 10.1039/d2cc04015h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Geminal bis(silanes) are unique compounds with interesting properties. The most straightforward way to access them is double hydrosilylation of alkynes, which was established only recently. Previous articles about transition metal-catalysed double hydrosilylation show that terminal aryl alkynes are a challenge. We report on cobalt(II) and iron(III) complexes with the easy-to-synthesise N,N,N-tridentate hydrazone ligand being active precatalysts in Markovnikov-selective double hydrosilylation of terminal aryl alkynes. The influence of the hydrazone ligand structure and the potential role of the sodium triethylborohydride activator were studied. Sets of geminal bis(silanes) with two identical or different silyl groups were synthesised, showing the applicability of the reported method.
Collapse
Affiliation(s)
- Łukasz Banach
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego St. 10, 61-614 Poznań, Poland.
| | - Daria Brykczyńska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego St. 8, 61-614 Poznań, Poland
| | - Adam Gorczyński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego St. 8, 61-614 Poznań, Poland
| | - Bożena Wyrzykiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego St. 8, 61-614 Poznań, Poland
| | - Maciej Skrodzki
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego St. 10, 61-614 Poznań, Poland. .,Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego St. 8, 61-614 Poznań, Poland
| | - Piotr Pawluć
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego St. 10, 61-614 Poznań, Poland. .,Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego St. 8, 61-614 Poznań, Poland
| |
Collapse
|
6
|
Frutos M, Parvin N, Baceiredo A, Madec D, Saffon‐Merceron N, Branchadell V, Kato T. A Silylene Stabilized by a σ‐Donating Nickel(0) Fragment. Angew Chem Int Ed Engl 2022; 61:e202201932. [PMID: 35510398 PMCID: PMC9400971 DOI: 10.1002/anie.202201932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/23/2022]
Abstract
A donor‐stabilized silylene 4 featuring a Ni0‐based donating ligand was synthesized. Complex 4 exhibits a pyramidalized and nucleophilic SiII center and shows a peculiar behavior due to the cooperative reactivity of Si and Ni centers. Calculations indicate that the orientation of Ni‐ligands with respect to the silylene moiety is crucial in determining the role of the Ni‐fragment (Lewis acid or Lewis base) towards silylene. Indeed, a simple 90° rotation of the Si−Ni bond, reverses the role of Ni, and transforms a classical silylene→Ni0 complex into an unprecedented Ni0→silylene complex.
Collapse
Affiliation(s)
- María Frutos
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse, CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Nasrina Parvin
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse, CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Antoine Baceiredo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse, CNRS 118 route de Narbonne F-31062 Toulouse France
| | - David Madec
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse, CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Nathalie Saffon‐Merceron
- Institut de Chimie de Toulouse (UAR 2599) Université de Toulouse, CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Vicenç Branchadell
- Departament de Química Universitat Autònoma de Barcelona 08193 Bellaterra Spain
| | - Tsuyoshi Kato
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse, CNRS 118 route de Narbonne F-31062 Toulouse France
| |
Collapse
|
7
|
Frutos M, Parvin N, Baceiredo A, Madec D, Saffon‐Merceron N, Branchadell V, Kato T. A Silylene Stabilized by a σ‐Donating Nickel(0) Fragment. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- María Frutos
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse, CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Nasrina Parvin
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse, CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Antoine Baceiredo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse, CNRS 118 route de Narbonne F-31062 Toulouse France
| | - David Madec
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse, CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Nathalie Saffon‐Merceron
- Institut de Chimie de Toulouse (UAR 2599) Université de Toulouse, CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Vicenç Branchadell
- Departament de Química Universitat Autònoma de Barcelona 08193 Bellaterra Spain
| | - Tsuyoshi Kato
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069) Université de Toulouse, CNRS 118 route de Narbonne F-31062 Toulouse France
| |
Collapse
|
8
|
Fan Q, Li Q, Qi X, Du X, Ren S, Li X, Fuhr O, Sun H. Synthesis and structure of silylene iron complex. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qingqing Fan
- School of Chemistry and Chemical Engineering Key Laboratory of Special Functional Aggregated Materials Ministry of Education Shandong University Shanda Nanlu 27 250199 Jinan PR China
| | - Qingshuang Li
- School of Chemistry and Chemical Engineering Key Laboratory of Special Functional Aggregated Materials Ministry of Education Shandong University Shanda Nanlu 27 250199 Jinan PR China
| | - Xinghao Qi
- School of Chemistry and Chemical Engineering Key Laboratory of Special Functional Aggregated Materials Ministry of Education Shandong University Shanda Nanlu 27 250199 Jinan PR China
| | - Xinyu Du
- School of Chemistry and Chemical Engineering Key Laboratory of Special Functional Aggregated Materials Ministry of Education Shandong University Shanda Nanlu 27 250199 Jinan PR China
| | - Shishuai Ren
- School of Chemistry and Chemical Engineering Key Laboratory of Special Functional Aggregated Materials Ministry of Education Shandong University Shanda Nanlu 27 250199 Jinan PR China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering Key Laboratory of Special Functional Aggregated Materials Ministry of Education Shandong University Shanda Nanlu 27 250199 Jinan PR China
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering Key Laboratory of Special Functional Aggregated Materials Ministry of Education Shandong University Shanda Nanlu 27 250199 Jinan PR China
| |
Collapse
|
9
|
Kim J. Metal complexes containing
silicon‐based
pincer ligands: Reactivity and application in small molecule activation. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jin Kim
- Department of Chemistry Sunchon National University Suncheon Jeollanam‐do Republic of Korea
| |
Collapse
|
10
|
Nihala R, Hisana KN, Afsina CMA, Anilkumar G. Applications of iron pincer complexes in hydrosilylation reactions. RSC Adv 2022; 12:24339-24361. [PMID: 36128525 PMCID: PMC9414319 DOI: 10.1039/d2ra04239h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Due to its abundance, low cost and low toxicity, the first-row transition metal, iron is widely preferred as a catalyst in organic synthesis. The only drawback of lower selectivity due to high reactivity and low stability of the metal centre is tuned by using pincer ligands of different types. The different iron pincer complexes thus prepared are extensively used in catalyzing different types of organic reactions with great selectivity and functional group tolerance under moderate reaction conditions. In this review, we focus on the applications of iron pincer complexes in hydrosilylation reactions, especially the hydrosilylation of carbonyl derivatives and alkene/alkynes. Iron pincer complexes are efficient in catalyzing various organic reactions with excellent selectivity and functional group tolerance at moderate reaction conditions. This review focuses on the applications of iron pincer complexes in hydrosilylation reactions.![]()
Collapse
Affiliation(s)
- Rasheed Nihala
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India, +91-481-2731036
| | - Kalathingal Nasreen Hisana
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - C. M. A. Afsina
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Gopinathan Anilkumar
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India, +91-481-2731036
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| |
Collapse
|
11
|
Hale DJ, Ferguson MJ, Turculet L. (PSiP)Ni-Catalyzed (E)-Selective Semihydrogenation of Alkynes with Molecular Hydrogen. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04537] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dylan J. Hale
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada
| | - Michael J. Ferguson
- X-Ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Laura Turculet
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada
| |
Collapse
|
12
|
Chang G, Zhang P, Yang W, Dong Y, Xie S, Sun H, Li X, Fuhr O, Fenske D. Synthesis of silyl iron dinitrogen complexes for activation of dihydrogen and catalytic silylation of dinitrogen. Dalton Trans 2021; 50:17594-17602. [PMID: 34792061 DOI: 10.1039/d1dt02832d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three novel iron dinitrogen hydrides, [FeH(iPr-PSiMeP)(N2)(PMe3)] (1), [FeH(iPr-PSiPhP)(N2)(PMe3)] (2), and [FeH(iPr-PSiPh)(N2)(PMe3)] (3), supported by a silyl ligand are synthesized for the first time by changing the electronic effect and steric hindrance of the ligands through the reaction of ligands L1-L3 with Fe(PMe3)4 in a nitrogen atmosphere. The ligands containing an electron-donating group with large steric hindrance on the phosphorus atom are beneficial for the formation of dinitrogen complexes. A penta-coordinate iron hydride [FeH(iPr-PSiPh)(PMe3)2] (4) was formed through the reaction of ligand L3 with Fe(PMe3)4 in an argon atmosphere under the same conditions. The reactions between complexes 1-3 with an atmospheric pressure of dihydrogen gas resulted in Fe(II) dihydrides, [(iPr-PSiMe(μ-H)P)Fe(H)2(PMe3)] (5), [(iPr-PSiPh(μ-H)P)Fe(H)2(PMe3)] (6) and [(iPr-PSiPh(μ-H))Fe(H)2(PMe3)2] (7), with an η2-(Si-H) coordination. The isolation of dihydrides 5-7 demonstrates the ability of the dinitrogen complexes 1-3 to realize the activation of dihydrogen under ambient temperature and pressure. The molecular structures of complexes 1-7 were elucidated by single crystal X-ray diffraction analysis. The iron dinitrogen hydrides 1-3 are effective catalysts for the silylation of dinitrogen under ambient conditions and among them 3 is the best catalyst.
Collapse
Affiliation(s)
- Guoliang Chang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Peng Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Wenjing Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Yanhong Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Shangqing Xie
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
13
|
Hurst MR, Zakharov LN, Cook AK. The mechanism of oxidative addition of Pd(0) to Si-H bonds: electronic effects, reaction mechanism, and hydrosilylation. Chem Sci 2021; 12:13045-13060. [PMID: 34745535 PMCID: PMC8513848 DOI: 10.1039/d1sc04419b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
The oxidative addition of Pd to Si-H bonds is a crucial step in a variety of catalytic applications, and many aspects of this reaction are poorly understood. One important yet underexplored aspect is the electronic effect of silane substituents on reactivity. Herein we describe a systematic investigation of the formation of silyl palladium hydride complexes as a function of silane identity, focusing on electronic influence of the silanes. Using [(μ-dcpe)Pd]2 (dcpe = dicyclohexyl(phosphino)ethane) and tertiary silanes, data show that equilibrium strongly favours products formed from electron-deficient silanes, and is fully dynamic with respect to both temperature and product distribution. A notable kinetic isotope effect (KIE) of 1.21 is observed with H/DSiPhMe2 at 233 K, and the reaction is shown to be 0.5th order in [(μ-dcpe)Pd]2 and 1st order in silane. Formed complexes exhibit temperature-dependent intramolecular H/Si ligand exchange on the NMR timescale, allowing determination of the energetic barrier to reversible oxidative addition. Taken together, these results give unique insight into the individual steps of oxidative addition and suggest the initial formation of a σ-complex intermediate to be rate-limiting. The insight gained from these mechanistic studies was applied to hydrosilylation of alkynes, which shows parallel trends in the effect of the silanes' substituents. Importantly, this work highlights the relevance of in-depth mechanistic studies of fundamental steps to catalysis.
Collapse
Affiliation(s)
- Michael R Hurst
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR 97403 USA
| | - Lev N Zakharov
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR 97403 USA
| | - Amanda K Cook
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR 97403 USA
| |
Collapse
|
14
|
Muraoka T, Ishii Y, Siti N, Nasu M, Wahida NA, Ueno K. Syntheses and Structures of Gallyliron Complexes with Pyridine Ligands and Their Reactions with Methyl Acrylate. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takako Muraoka
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Yasuhisa Ishii
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Nursaliha Siti
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Masahiro Nasu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Nurul Ain Wahida
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Keiji Ueno
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| |
Collapse
|
15
|
Du X, Qi X, Li K, Li X, Sun H, Fuhr O, Fenske D. Synthesis and catalytic activity of N‐heterocyclic silylene (NHSi) iron (II) hydride for hydrosilylation of aldehydes and ketones. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xinyu Du
- School of Chemistry and Chemical Engineering Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University Jinan China
| | - Xinghao Qi
- School of Chemistry and Chemical Engineering Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University Jinan China
| | - Kai Li
- School of Chemistry and Chemical Engineering Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University Jinan China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University Jinan China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University Jinan China
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) und Karlsruher Nano‐Micro‐Facility (KNMF) Karlsruher Institut für Technologie (KIT) Eggenstein‐Leopoldshafen Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT) und Karlsruher Nano‐Micro‐Facility (KNMF) Karlsruher Institut für Technologie (KIT) Eggenstein‐Leopoldshafen Germany
| |
Collapse
|
16
|
Holsten S, Malaspina LA, Kleemiss F, Mebs S, Hupf E, Grabowsky S, Beckmann J. Different Reactivities of (5-Ph2P-Ace-6-)2MeSiH toward the Rhodium(I) Chlorides [(C2H4)2RhCl]2 and [(CO)2RhCl]2. Hirshfeld Atom Refinement of a Rh–H···Si Interaction. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sebastian Holsten
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Lorraine A. Malaspina
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Florian Kleemiss
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Stefan Mebs
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Emanuel Hupf
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Simon Grabowsky
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jens Beckmann
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|
17
|
Majhi PK, Zimmer M, Morgenstern B, Scheschkewitz D. Transition-Metal Complexes of Heavier Cyclopropenes: Non-Dewar–Chatt–Duncanson Coordination and Facile Si═Ge Functionalization. J Am Chem Soc 2021; 143:8981-8986. [DOI: 10.1021/jacs.1c04419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paresh Kumar Majhi
- Krupp-Chair of General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Michael Zimmer
- Krupp-Chair of General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Bernd Morgenstern
- Krupp-Chair of General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - David Scheschkewitz
- Krupp-Chair of General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
18
|
Heins SP, Schneider PE, Speelman AL, Hammes-Schiffer S, Appel AM. Electrocatalytic Oxidation of Alcohol with Cobalt Triphosphine Complexes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Spencer P. Heins
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States
| | - Patrick E. Schneider
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Amy L. Speelman
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States
| | | | - Aaron M. Appel
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States
| |
Collapse
|
19
|
Dong Y, Xie S, Zhang P, Fan Q, Du X, Sun H, Li X, Fuhr O, Fenske D. Selectivity Reverse of Hydrosilylation of Aryl Alkenes Realized by Pyridine N-Oxide with [PSiP] Pincer Cobalt(III) Hydride as Catalyst. Inorg Chem 2021; 60:4551-4562. [PMID: 33677959 DOI: 10.1021/acs.inorgchem.0c03483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Six silyl cobalt(III) hydrides 1-6 with [PSiP] pincer ligands having different substituents at the P and Si atoms ([(2-Ph2PC6H4)2MeSiCo(H)(Cl)(PMe3)] (1), [(2-Ph2PC6H4)2HSiCo(H)(Cl)(PMe3)] (2), [(2-Ph2PC6H4)2PhSiCo(H)(Cl)(PMe3)] (3), [(2-iPr2PC6H4)2HSiCo(H)(Cl)(PMe3)] (4), [(2-iPr2PC6H4)2MeSiCo(H)(Cl)(PMe3)] (5), and [(2-iPr2PC6H4)2PhSiCo(H)(Cl)(PMe3)] (6)) were synthesized through the reactions of the ligands (L1-L6) with CoCl(PMe3)3 via Si-H bond cleavage. Compounds 1-6 have catalytic activity for alkene hydrosilylation, and among them, complex 3 is the best catalyst with excellent anti-Markovnikov regioselectivity. A silyl dihydrido cobalt(III) complex 7 from the reaction of 3 with Ph2SiH2 was isolated, and its catalytic activity is equivalent to that of complex 3. Complex 7 and its derivatives 10-12 could also be obtained through the reactions of complexes 3, 1, 4, and 5 with NaBHEt3. The molecular structure of 7 was indirectly verified by the structures of 10-12. To our delight, the addition of pyridine N-oxide reversed the selectivity of the reaction, from anti-Markovnikov to Markovnikov addition. At the same time, the reaction temperature was reduced from 70 to 30 °C on the premise of high yield and excellent selectivity. However, this catalytic system is only applicable to aromatic alkenes. On the basis of the experimental information, two reaction mechanisms are proposed. The molecular structures of cobalt(III) complexes 3-6 and 10-12 were determined by single crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Yanhong Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Shangqing Xie
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Peng Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xinyu Du
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
20
|
Efficient Solvent-Free Hydrosilylation of Aldehydes and Ketones Catalyzed by Fe2(CO)9/C6H4-o-(NCH2PPh2)2BH. Catal Letters 2021. [DOI: 10.1007/s10562-021-03578-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Wu X, Ding G, Lu W, Yang L, Wang J, Zhang Y, Xie X, Zhang Z. Nickel-Catalyzed Hydrosilylation of Terminal Alkenes with Primary Silanes via Electrophilic Silicon-Hydrogen Bond Activation. Org Lett 2021; 23:1434-1439. [PMID: 33522233 DOI: 10.1021/acs.orglett.1c00111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a simple and effective nickel-based catalytic system, NiCl2·6H2O/tBuOK, for the electrophilically activated hydrosilylation of terminal alkenes with primary silanes. This protocol provides excellent performance under mild reaction conditions: exclusive anti-Markovnikov selectivity, broad functional group tolerance (36 examples), and good scalability (TON = 5500). However, the secondary and tertiary silanes are not suitable. Mechanistic studies revealed that this homogeneous catalytic hydrosilylation includes an electrophilically activated Si-H bond process without the generation of nickel hydrides.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guangni Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenkui Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liqun Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jingyang Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuxuan Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaomin Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
22
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
23
|
Walaijai K, Cavill SA, Whitwood AC, Douthwaite RE, Perutz RN. Electrocatalytic Proton Reduction by a Cobalt(III) Hydride Complex with Phosphinopyridine PN Ligands. Inorg Chem 2020; 59:18055-18067. [PMID: 33275426 DOI: 10.1021/acs.inorgchem.0c02505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cobalt complexes with 2-(diisopropylphosphinomethyl)pyridine (PN) ligands have been synthesized with the aim of demonstrating electrocatalytic proton reduction to dihydrogen with a well-defined hydride complex of an Earth-abundant metal. Reactions of simple cobalt precursors with 2-(diisopropylphosphino-methyl)pyridine (PN) yield [CoII(PN)2(MeCN)][BF4]2 1, [CoIII(PN)2(H)(MeCN)][PF6]2 2, and [CoIII(PN)2(H)(Cl)][PF6] 3. Complexes 1 and 3 have been characterized crystallographically. Unusually for a bidentate PN ligand, all three exhibit geometries with mutually trans phosphorus and nitrogen ligands. Complex 1 exhibits a distorted square-pyramidal geometry with an axial MeCN ligand in a low-spin electronic state. In complexes 2 and 3, the PN ligands lie in a plane leaving the hydride trans to MeCN or chloride, respectively. The redox behavior of the three complexes has been studied by cyclic voltammetry at variable scan rates and by spectroelectrochemistry. A catalytic wave is observed in the presence of trifluoroacetic acid (TFA) at an applied potential close to the Co(II/I) couple of 1. Bulk electrolysis of 1, 2, or 3 at a potential of ca. -1.4 V vs E(Fc+/Fc) in the presence of TFA yields H2 with Faradaic yields close to 100%. A catalytic mechanism is proposed in which the pyridine moiety of a PN ligand acts as a pendant proton donor following opening of the chelate ring. Additional mechanisms may also operate, especially in the presence of high acid concentration where speciation changes.
Collapse
Affiliation(s)
- Khanittha Walaijai
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Stuart A Cavill
- Department of Physics, University of York, York YO10 5DD, United Kingdom
| | - Adrian C Whitwood
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | | | - Robin N Perutz
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
24
|
Dong Y, Zhang P, Fan Q, Du X, Xie S, Sun H, Li X, Fuhr O, Fenske D. The Effect of Substituents on the Formation of Silyl [PSiP] Pincer Cobalt(I) Complexes and Catalytic Application in Both Nitrogen Silylation and Alkene Hydrosilylation. Inorg Chem 2020; 59:16489-16499. [PMID: 33108179 DOI: 10.1021/acs.inorgchem.0c02332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four different [PSiP]-pincer ligands L1-L4 ((2-Ph2PC6H4)2SiHR (R = H (L1) and Ph (L2)) and (2-iPr2PC6H4)2SiHR' (R' = Ph (L3) and H (L4)) were used to investigate the effect of substituents at P and/or Si atom of the [PSiP] pincer ligands on the formation of silyl cobalt(I) complexes by the reactions with CoMe(PMe3)4 via Si-H cleavage. Two penta-coordinated silyl cobalt(I) complexes, (2-Ph2PC6H4)2HSiCo(PMe3)2 (1) and (2-Ph2PC6H4)2PhSiCo(PMe3)2 (2), were obtained from the reactions of L1 and L2 with CoMe(PMe3)4, respectively. Under similar reaction conditions, a tetra-coordinated cobalt(I) complex (2-iPr2PC6H4)2PhSiCo(PMe3) (3) was isolated from the interaction of L3 with CoMe(PMe3)4. It was found that, only in the case of ligand L4, silyl dinitrogen cobalt(I) complex 4, [(2-iPr2PC6H4)2HSiCo(N2)(PMe3)], was formed. Our results indicate that the increasing of electron cloud density at the Co center is beneficial for the formation of a dinitrogen cobalt complex because the large electron density at Co center leads to the enhancement of the π-backbonding from cobalt to the coordinated N2. It was found that silyl dinitrogen cobalt(I) complex 4 is an effective catalyst for catalytic transformation of dinitrogen into silylamine. Among these four silyl cobalt(I) complexes, complex 1 is the best catalyst for hydrosilylation of alkenes with excellent regioselectivity. For aromatic alkenes, catalyst 1 provided Markovnikov products, while for aliphatic alkenes, anti-Markovnikov products could be obtained. Both catalytic reaction mechanisms were proposed and discussed. The molecular structures of complexes 1-4 were confirmed by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Yanhong Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Peng Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xinyu Du
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Shangqing Xie
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
25
|
Affiliation(s)
- Yingze Li
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Jeanette A. Krause
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Hairong Guan
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
26
|
Nakata N, Aoyama M, Takahashi S, Kato N, Ishii A. Synthesis, Structure, and Dynamic Behavior of Hydrido(dihydrosilyl) Platinum(II) Complex Having Me 3P Ligands. CHEM LETT 2020. [DOI: 10.1246/cl.200356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Norio Nakata
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Motoo Aoyama
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Shintaro Takahashi
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Nanami Kato
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Akihiko Ishii
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
27
|
Pribanic B, Trincado M, Eiler F, Vogt M, Comas‐Vives A, Grützmacher H. Hydrogenolysis of Polysilanes Catalyzed by Low‐Valent Nickel Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201907525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bruno Pribanic
- Department of Chemistry and Applied Biosciences ETH Zürich 8093 Zürich Switzerland
| | - Monica Trincado
- Department of Chemistry and Applied Biosciences ETH Zürich 8093 Zürich Switzerland
| | - Frederik Eiler
- Department of Chemistry and Applied Biosciences ETH Zürich 8093 Zürich Switzerland
| | - Matthias Vogt
- Universität Bremen Fachbereich 2 Biologie/Chemie Institut für Anorganische Chemie und Kristallographie Leobenerstr. 7 28359 Bremen Germany
| | - Aleix Comas‐Vives
- Chemistry Department Universitat Autònoma de Barcelona Cerdanyola del Vallès 08193 Bellaterra Catalonia Spain
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences ETH Zürich 8093 Zürich Switzerland
| |
Collapse
|
28
|
Pribanic B, Trincado M, Eiler F, Vogt M, Comas-Vives A, Grützmacher H. Hydrogenolysis of Polysilanes Catalyzed by Low-Valent Nickel Complexes. Angew Chem Int Ed Engl 2020; 59:15603-15609. [PMID: 32049402 DOI: 10.1002/anie.201907525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 11/11/2022]
Abstract
The dehydrogenation of organosilanes (Rx SiH4-x ) under the formation of Si-Si bonds is an intensively investigated process leading to oligo- or polysilanes. The reverse reaction is little studied. To date, the hydrogenolysis of Si-Si bonds requires very harsh conditions and is very unselective, leading to multiple side products. Herein, we describe a new catalytic hydrogenation of oligo- and polysilanes that is highly selective and proceeds under mild conditions. New low-valent nickel hydride complexes are used as catalysts and secondary silanes, RR'SiH2 , are obtained as products in high purity.
Collapse
Affiliation(s)
- Bruno Pribanic
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Monica Trincado
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Frederik Eiler
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Matthias Vogt
- Universität Bremen, Fachbereich 2 Biologie/Chemie, Institut für Anorganische Chemie und Kristallographie, Leobenerstr. 7, 28359, Bremen, Germany
| | - Aleix Comas-Vives
- Chemistry Department, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Bellaterra, Catalonia, Spain
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
29
|
Wen J, Dong B, Zhu J, Zhao Y, Shi Z. Revealing Silylation of C(sp
2
)/C(sp
3
)–H Bonds in Arylphosphines by Ruthenium Catalysis. Angew Chem Int Ed Engl 2020; 59:10909-10912. [DOI: 10.1002/anie.202003865] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Jian Wen
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Ben Dong
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Jinjun Zhu
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Yue Zhao
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| |
Collapse
|
30
|
Wen J, Dong B, Zhu J, Zhao Y, Shi Z. Revealing Silylation of C(sp
2
)/C(sp
3
)–H Bonds in Arylphosphines by Ruthenium Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jian Wen
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Ben Dong
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Jinjun Zhu
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Yue Zhao
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| |
Collapse
|
31
|
Wang Y, Zhang H, Xie S, Sun H, Li X, Fuhr O, Fenske D. An Air-Stable N-Heterocyclic [PSiP] Pincer Iron Hydride and an Analogous Nitrogen Iron Hydride: Synthesis and Catalytic Dehydration of Primary Amides to Nitriles. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00880] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yajie Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People’s Republic of China
| | - Hua Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People’s Republic of China
| | - Shangqing Xie
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People’s Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People’s Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People’s Republic of China
| | - Olaf Fuhr
- Institut für Nanotechnologie und Karlsruher Nano-Micro-Facility, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Dieter Fenske
- Institut für Nanotechnologie und Karlsruher Nano-Micro-Facility, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
32
|
Verhoeven DGA, Orsino AF, Bienenmann RLM, Lutz M, Moret ME. Cooperative Si–H Addition to Side-On Ni(0)-Imine Complexes Forms Reactive Hydrosilazane Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dide G. A. Verhoeven
- Utrecht University, Organic Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Alessio F. Orsino
- Utrecht University, Organic Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Roel L. M. Bienenmann
- Utrecht University, Organic Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Martin Lutz
- Utrecht University, Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Marc-Etienne Moret
- Utrecht University, Organic Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
33
|
Chang G, Li X, Zhang P, Yang W, Li K, Wang Y, Sun H, Fuhr O, Fenske D. Lewis acid promoted dehydration of amides to nitriles catalyzed by [PSiP]‐pincer iron hydrides. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guoliang Chang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of EducationShandong University Shanda Nanlu 27 Jinan 250100 People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of EducationShandong University Shanda Nanlu 27 Jinan 250100 People's Republic of China
| | - Peng Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of EducationShandong University Shanda Nanlu 27 Jinan 250100 People's Republic of China
| | - Wenjing Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of EducationShandong University Shanda Nanlu 27 Jinan 250100 People's Republic of China
| | - Kai Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of EducationShandong University Shanda Nanlu 27 Jinan 250100 People's Republic of China
| | - Yajie Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of EducationShandong University Shanda Nanlu 27 Jinan 250100 People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of EducationShandong University Shanda Nanlu 27 Jinan 250100 People's Republic of China
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) und Karlsruher Nano‐Micro‐Facility (KNMF)Karlsruher Institut für Technologie (KIT) Hermann‐von‐Helmholtz‐Platz 1, 76344 Eggenstein‐Leopoldshafen Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT) und Karlsruher Nano‐Micro‐Facility (KNMF)Karlsruher Institut für Technologie (KIT) Hermann‐von‐Helmholtz‐Platz 1, 76344 Eggenstein‐Leopoldshafen Germany
| |
Collapse
|
34
|
Chang G, Zhang P, Yang W, Xie S, Sun H, Li X, Fuhr O, Fenske D. Pyridine N-oxide promoted hydrosilylation of carbonyl compounds catalyzed by [PSiP]-pincer iron hydrides. Dalton Trans 2020; 49:9349-9354. [DOI: 10.1039/d0dt00392a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five [PSiP]-pincer iron hydrides 1–5 were used as catalysts to study the effects of pyridine N-oxide and the electronic properties of [PSiP]-ligands on the catalytic hydrosilylation of carbonyl compounds.
Collapse
Affiliation(s)
- Guoliang Chang
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional Aggregated Materials
- Ministry of Education
- Shandong University
- Jinan 250100
| | - Peng Zhang
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional Aggregated Materials
- Ministry of Education
- Shandong University
- Jinan 250100
| | - Wenjing Yang
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional Aggregated Materials
- Ministry of Education
- Shandong University
- Jinan 250100
| | - Shangqing Xie
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional Aggregated Materials
- Ministry of Education
- Shandong University
- Jinan 250100
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional Aggregated Materials
- Ministry of Education
- Shandong University
- Jinan 250100
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional Aggregated Materials
- Ministry of Education
- Shandong University
- Jinan 250100
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT)
- Karlsruher Nano-Micro-Facility (KNMF)
- Karlsruher Institut für Technologie (KIT)
- Eggenstein-Leopoldshafen 76344
- Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT)
- Karlsruher Nano-Micro-Facility (KNMF)
- Karlsruher Institut für Technologie (KIT)
- Eggenstein-Leopoldshafen 76344
- Germany
| |
Collapse
|
35
|
Tamang SR, Findlater M. Emergence and Applications of Base Metals (Fe, Co, and Ni) in Hydroboration and Hydrosilylation. Molecules 2019; 24:E3194. [PMID: 31484333 PMCID: PMC6749197 DOI: 10.3390/molecules24173194] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023] Open
Abstract
Base metal catalysis offers an alternative to reactions, which were once dominated by precious metals in hydrofunctionalization reactions. This review article details the development of some base metals (Fe, Co, and Ni) in the hydroboration and hydrosilylation reactions concomitant with a brief overview of recent advances in the field. Applications of both commercially available metal salts and well-defined metal complexes in catalysis and opportunities to further advance the field is discussed as well.
Collapse
Affiliation(s)
- Sem Raj Tamang
- Memorial Circle & Boston, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Michael Findlater
- Memorial Circle & Boston, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
36
|
Kim J, Kim YE, Park K, Lee Y. A Silyl-Nickel Moiety as a Metal–Ligand Cooperative Site. Inorg Chem 2019; 58:11534-11545. [DOI: 10.1021/acs.inorgchem.9b01388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeong-Eun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Koeun Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
37
|
Thompson CV, Arman HD, Tonzetich ZJ. Square-Planar Iron(II) Silyl Complexes: Synthesis, Characterization, and Insertion Reactivity. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- C. Vance Thompson
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Hadi D. Arman
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Zachary J. Tonzetich
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| |
Collapse
|
38
|
Raya-Barón Á, Oña-Burgos P, Fernández I. Iron-Catalyzed Homogeneous Hydrosilylation of Ketones and Aldehydes: Advances and Mechanistic Perspective. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00201] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Álvaro Raya-Barón
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, Almería E-04120, Spain
| | - Pascual Oña-Burgos
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, Almería E-04120, Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, Almería E-04120, Spain
| |
Collapse
|
39
|
Merz LS, Blasius CK, Wadepohl H, Gade LH. Square Planar Cobalt(II) Hydride versus T-Shaped Cobalt(I): Structural Characterization and Dihydrogen Activation with PNP–Cobalt Pincer Complexes. Inorg Chem 2019; 58:6102-6113. [DOI: 10.1021/acs.inorgchem.9b00384] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lukas S. Merz
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Clemens K. Blasius
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Hubert Wadepohl
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Lutz H. Gade
- Anorganisch Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| |
Collapse
|
40
|
Royo B. Recent advances in catalytic hydrosilylation of carbonyl groups mediated by well-defined first-row late transition metals. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2019. [DOI: 10.1016/bs.adomc.2019.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Affiliation(s)
- Duo Wei
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | | |
Collapse
|
42
|
Synthesis, Structure, and Reactivity of a Mononuclear η
2
‐(Ge–H)palladium(0) Complex Bearing a PGeP‐Pincer‐Type Germyl Ligand: Reactivity Differences between Silicon and Germanium. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Murphy LJ, Ferguson MJ, McDonald R, Lumsden MD, Turculet L. Synthesis of Bis(phosphino)silyl Pincer-Supported Iron Hydrides for the Catalytic Hydrogenation of Alkenes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00807] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Luke J. Murphy
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Michael J. Ferguson
- X-Ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Robert McDonald
- X-Ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Michael D. Lumsden
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Laura Turculet
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
44
|
Lepetit C, Vabre B, Canac Y, Alikhani ME, Zargarian D. Pentacoordinated, square pyramidal cationic PCP Ni(II) pincer complexes: ELF and QTAIM topological analyses of nickel–triflate interactions. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2332-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Murphy LJ, Ruddy AJ, McDonald R, Ferguson MJ, Turculet L. Activation of Molecular Hydrogen and Oxygen by PSiP Complexes of Cobalt. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800915] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Luke J. Murphy
- Department of Chemistry Dalhousie University 6274 Coburg Road P.O. Box 15000 Halifax Nova Scotia Canada, B3H 4R 2
| | - Adam J. Ruddy
- Department of Chemistry Dalhousie University 6274 Coburg Road P.O. Box 15000 Halifax Nova Scotia Canada, B3H 4R 2
| | - Robert McDonald
- X‐ray Crystallography Laboratory Department of Chemistry University of Alberta Edmonton Alberta CanadaT6G 2G2
| | - Michael J. Ferguson
- X‐ray Crystallography Laboratory Department of Chemistry University of Alberta Edmonton Alberta CanadaT6G 2G2
| | - Laura Turculet
- Department of Chemistry Dalhousie University 6274 Coburg Road P.O. Box 15000 Halifax Nova Scotia Canada, B3H 4R 2
| |
Collapse
|
46
|
Bennett MA, Bhargava SK, Mirzadeh N, Privér SH. The use of [2-C 6 R 4 PPh 2 ] − (R = H, F) and related carbanions as building blocks in coordination chemistry. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
47
|
Zhang P, Li X, Qi X, Sun H, Fuhr O, Fenske D. Transfer hydrogenation of aldehydes catalyzed by silyl hydrido iron complexes bearing a [PSiP] pincer ligand. RSC Adv 2018; 8:14092-14099. [PMID: 35539322 PMCID: PMC9079873 DOI: 10.1039/c8ra02606h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 11/21/2022] Open
Abstract
The synthesis and characterization of a series of silyl hydrido iron complexes bearing a pincer-type [PSiP] ligand (2-R2PC6H4)2SiH2 (R = Ph (1) and iPr (5)) or (2-Ph2PC6H4)2SiMeH (2) were reported. Preligand 1 reacted with Fe(PMe3)4 to afford complex ((2-Ph2PC6H4)SiH)Fe(H)(PMe3)2 (3) in toluene, which was structurally characterized by X-ray diffraction. ((2-iPr2PC6H4)SiH)Fe(H)(PMe3) (6) could be obtained from the reaction of preligand 5 with Fe(PMe3)4 in toluene. Furthermore, complex ((2-iPr2PC6H4)Si(OMe))Fe(H)(PMe3) (7) was isolated by the reaction of complex 6 with 2 equiv. MeOH in THF. The molecular structure of complex 7 was also determined by single-crystal X-ray analysis. Complexes 3, 4, 6 and 7 showed good to excellent catalytic activity for transfer hydrogenation of aldehydes under mild conditions, using 2-propanol as both solvent and hydrogen donor. α,β-Unsaturated aldehydes could be selectively reduced to corresponding α,β-unsaturated alcohols. The catalytic activity of penta-coordinate complex 6 or 7 is stronger than that of hexa-coordinate complex 3 or 4.
Collapse
Affiliation(s)
- Peng Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University Shanda Nanlu 27 250100 Jinan People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University Shanda Nanlu 27 250100 Jinan People's Republic of China
| | - Xinghao Qi
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University Shanda Nanlu 27 250100 Jinan People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University Shanda Nanlu 27 250100 Jinan People's Republic of China
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
48
|
Zhang P, Xu S, Li X, Qi X, Sun H, Fuhr O, Fenske D. Synthesis and reactivity of silyl cobalt complexes bearing a tetradentate phosphino silyl ligand via Si–H bond activation. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.09.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Zhang H, Xing J, Dong Y, Xie S, Ren S, Qi X, Sun H, Li X, Fuhr O, Fenske D. Phosphine-assisted C–H bond activation in Schiff bases and formation of novel organo cobalt complexes bearing Schiff base ligands. NEW J CHEM 2018. [DOI: 10.1039/c7nj03480f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sp2 C–H bond activation of the HCN moiety in diphenylphosphino benzalimines was realized using CoMe(PMe3)4 with the elimination of methane.
Collapse
|
50
|
Hydrogenation/Dehydrogenation of Unsaturated Bonds with Iron Pincer Catalysis. TOP ORGANOMETAL CHEM 2018. [DOI: 10.1007/3418_2018_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|