1
|
Straub H, Ryabchuk P, Rubina M, Rubin M. Preparation of Chiral Enantioenriched Densely Substituted Cyclopropyl Azoles, Amines, and Ethers via Formal SN2′ Substitution of Bromocylopropanes. Molecules 2022; 27:molecules27207069. [PMID: 36296663 PMCID: PMC9609026 DOI: 10.3390/molecules27207069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Enantiomerically enriched cyclopropyl ethers, amines, and cyclopropylazole derivatives possessing three stereogenic carbon atoms in a small cycle are obtained via the diastereoselective, formal nucleophilic substitution of chiral, non-racemic bromocyclopropanes. The key feature of this methodology is the utilization of the chiral center of the cyclopropene intermediate, which governs the configuration of the two adjacent stereocenters that are successively installed via 1,4-addition/epimerization sequence.
Collapse
Affiliation(s)
- Hillary Straub
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Pavel Ryabchuk
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Marina Rubina
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, North Caucasus Federal University, 355009 Stavropol, Russia
| | - Michael Rubin
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, North Caucasus Federal University, 355009 Stavropol, Russia
- Correspondence:
| |
Collapse
|
2
|
Planas F, Costantini M, Montesinos-Magraner M, Himo F, Mendoza A. Combined Experimental and Computational Study of Ruthenium N-Hydroxyphthalimidoyl Carbenes in Alkene Cyclopropanation Reactions. ACS Catal 2021; 11:10950-10963. [PMID: 34504736 PMCID: PMC8419840 DOI: 10.1021/acscatal.1c02540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/05/2021] [Indexed: 01/14/2023]
Abstract
A combined experimental-computational approach has been used to study the cyclopropanation reaction of N-hydroxyphthalimide diazoacetate (NHPI-DA) with various olefins, catalyzed by a ruthenium-phenyloxazoline (Ru-Pheox) complex. Kinetic studies show that the better selectivity of the employed redox-active NHPI diazoacetate is a result of a much slower dimerization reaction compared to aliphatic diazoacetates. Density functional theory calculations reveal that several reactions can take place with similar energy barriers, namely, dimerization of the NHPI diazoacetate, cyclopropanation (inner-sphere and outer-sphere), and a previously unrecognized migratory insertion of the carbene into the phenyloxazoline ligand. The calculations show that the migratory insertion reaction yields an unconsidered ruthenium complex that is catalytically competent for both the dimerization and cyclopropanation, and its relevance is assessed experimentally. The stereoselectivity of the reaction is argued to stem from an intricate balance between the various mechanistic scenarios.
Collapse
Affiliation(s)
| | | | - Marc Montesinos-Magraner
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Abraham Mendoza
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Lv C, Meng X, Wang M, Zhang Y, Hu C, Kim CK, Su Z. Mechanism and Selectivity of Cyclopropanation of 3-Alkenyl-oxindoles with Sulfoxonium Ylides Catalyzed by a Chiral N, N'-Dioxide-Mg(II) Complex. J Org Chem 2021; 86:11683-11697. [PMID: 34343433 DOI: 10.1021/acs.joc.1c01199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism and stereoselectivity of an asymmetric cyclopropanation reaction between 3-alkenyl-oxindole and sulfoxonium ylide catalyzed by a chiral N,N'-dioxide-Mg(II) complex were explored using the B3LYP-D3(BJ) functional and the def2-TZVP basis set. The noncatalytic reaction occurred via a stepwise mechanism, with activation barriers of 21.6-23.5 kcal mol-1. The C2-Cα bond formed followed by the carbanion SN2 substitution, constructing a three-membered ring in spiro-cyclopropyl oxindoles, accompanied by the release of dimethylsulfoxide. The electron-withdrawing N-protecting t-butyloxy carbonyl (Boc) and acetyl (Ac) groups in isatin enhanced the local electrophilicity of the C2 atom and the repulsion between the two COPh groups in the reactants, contributing to high reactivity as well as good diastereoselectivity results. The N-Boc-3-phenacylideneoxindole coordinated to the chiral ligand (L-PiPr2) in a bidentate fashion, forming a hexacoordinate-Mg(II) complex as the reactive species. The origin of enantioselectivity was from the shielding effect of 2,6-diisopropylphenyl groups in the ligand toward the si-face of oxindole. The repulsion between the SO(CH3)2 and COPh groups in 3-alkenyl-oxindole and the neighboring ortho-iPr group in the ligand directed the re-face of ylide to attack the re-face of oxindole preferably, contributing to the high diastereoselectivity of the product. A metal-ion-ligand matching relationship was important for a good asymmetric induction effect of the chiral N,N'-dioxide-metal catalyst. A large chiral cavity in the Zn(II) catalyst weakened the shielding effect of 2,6-diisopropylphenyl groups in the ligand toward the prochiral face of oxindole, leading to inferior enantioselectivity observed in the experiment.
Collapse
Affiliation(s)
- Cidan Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xiangxiang Meng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Min Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yan Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Chan Kyung Kim
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
4
|
Silva LDSD, Souza AAD, Sá É. Computational considerations on the mechanism and stereoselectivity in cyclopropanation reactions via iron-carbenes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Abstract
Chiral salen-metal complexes are among the most versatile asymmetric catalysts and have found utility in fields ranging from materials chemistry to organic synthesis. These complexes are capable of inducing chirality in products formed from a wide variety of chemical processes, often with close to perfect stereoinduction. Salen ligands are tunable for steric as well as electronic properties, and their ability to coordinate a large number of metals gives the derived chiral salen-metal complex very broad utility in asymmetric catalysis. This review primarily summarizes developments in chiral salen-metal catalysis over the last two decades with particular emphasis on those applications of importance in asymmetric synthesis.
Collapse
Affiliation(s)
- Subrata Shaw
- Center for the Development of Therapeutics , Broad Institute of MIT and Harvard , 415 Main Street , Cambridge , Massachusetts 02142 , United States
| | - James D White
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
6
|
|
7
|
Nakagawa Y, Nakayama N, Goto H, Fujisawa I, Chanthamath S, Shibatomi K, Iwasa S. Computational chemical analysis of Ru(II)-Pheox-catalyzed highly enantioselective intramolecular cyclopropanation reactions. Chirality 2018; 31:52-61. [DOI: 10.1002/chir.23033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Yoko Nakagawa
- Department of Environmental and Life Sciences; Toyohashi University of Technology; Toyohashi Japan
| | | | - Hitoshi Goto
- Department of Computer Science and Engineering; Toyohashi University of Technology; Toyohashi Japan
| | - Ikuhide Fujisawa
- Department of Environmental and Life Sciences; Toyohashi University of Technology; Toyohashi Japan
| | - Soda Chanthamath
- Department of Environmental and Life Sciences; Toyohashi University of Technology; Toyohashi Japan
| | - Kazutaka Shibatomi
- Department of Environmental and Life Sciences; Toyohashi University of Technology; Toyohashi Japan
| | - Seiji Iwasa
- Department of Environmental and Life Sciences; Toyohashi University of Technology; Toyohashi Japan
| |
Collapse
|
8
|
Torrent-Sucarrat M, Arrastia I, Arrieta A, Cossío FP. Stereoselectivity, Different Oxidation States, and Multiple Spin States in the Cyclopropanation of Olefins Catalyzed by Fe–Porphyrin Complexes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01492] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Miquel Torrent-Sucarrat
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Manuel Lardizabal Ibilbidea 3, 20018 San Sebastián/Donostia, Spain
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 San Sebastián/Donostia, Spain
- Ikerbasque, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain
| | - Iosune Arrastia
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Manuel Lardizabal Ibilbidea 3, 20018 San Sebastián/Donostia, Spain
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 San Sebastián/Donostia, Spain
| | - Ana Arrieta
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Manuel Lardizabal Ibilbidea 3, 20018 San Sebastián/Donostia, Spain
| | - Fernando P. Cossío
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Manuel Lardizabal Ibilbidea 3, 20018 San Sebastián/Donostia, Spain
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 San Sebastián/Donostia, Spain
| |
Collapse
|
9
|
Wei Y, Tinoco A, Steck V, Fasan R, Zhang Y. Cyclopropanations via Heme Carbenes: Basic Mechanism and Effects of Carbene Substituent, Protein Axial Ligand, and Porphyrin Substitution. J Am Chem Soc 2018; 140:1649-1662. [PMID: 29268614 PMCID: PMC5875692 DOI: 10.1021/jacs.7b09171] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Catalytic carbene
transfer to olefins is a useful approach to synthesize
cyclopropanes, which are key structural motifs in many drugs and biologically
active natural products. While catalytic methods for olefin cyclopropanation
have largely relied on rare transition-metal-based catalysts, recent
studies have demonstrated the promise and synthetic value of iron-based
heme-containing proteins for promoting these reactions with excellent
catalytic activity and selectivity. Despite this progress, the mechanism
of iron-porphyrin and hemoprotein-catalyzed olefin cyclopropanation
has remained largely unknown. Using a combination of quantum chemical
calculations and experimental mechanistic analyses, the present study
shows for the first time that the increasingly useful C=C functionalizations
mediated by heme carbenes feature an FeII-based, nonradical,
concerted nonsynchronous mechanism, with early transition state character.
This mechanism differs from the FeIV-based, radical, stepwise
mechanism of heme-dependent monooxygenases. Furthermore, the effects
of the carbene substituent, metal coordinating axial ligand, and porphyrin
substituent on the reactivity of the heme carbenes was systematically
investigated, providing a basis for explaining experimental reactivity
results and defining strategies for future catalyst development. Our
results especially suggest the potential value of electron-deficient
porphyrin ligands for increasing the electrophilicity and thus the
reactivity of the heme carbene. Metal-free reactions were also studied
to reveal temperature and carbene substituent effects on catalytic
vs noncatalytic reactions. This study sheds new light into the mechanism
of iron-porphyrin and hemoprotein-catalyzed cyclopropanation reactions
and it is expected to facilitate future efforts toward sustainable
carbene transfer catalysis using these systems.
Collapse
Affiliation(s)
- Yang Wei
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology , 1 Castle Point on Hudson, Hoboken, New Jersey 07030, United States of America
| | - Antonio Tinoco
- Department of Chemistry, University of Rochester , 120 Trustee Road, Rochester, New York 14627, United States of America
| | - Viktoria Steck
- Department of Chemistry, University of Rochester , 120 Trustee Road, Rochester, New York 14627, United States of America
| | - Rudi Fasan
- Department of Chemistry, University of Rochester , 120 Trustee Road, Rochester, New York 14627, United States of America
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology , 1 Castle Point on Hudson, Hoboken, New Jersey 07030, United States of America
| |
Collapse
|
10
|
Zinc and aluminum complexes of chiral ligands: Synthesis, characterization and application to rac-lactide polymerization. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2016.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2014. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Santiago-Rodríguez Y, Curet-Arana MC. Quantum mechanical study of the reaction of CO2 and ethylene oxide catalyzed by metal–salen complexes: effect of the metal center and the axial ligand. REACTION KINETICS MECHANISMS AND CATALYSIS 2015. [DOI: 10.1007/s11144-015-0904-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Xue YS, Cai YP, Chen ZX. Mechanism and stereoselectivity of the Rh(ii)-catalyzed cyclopropanation of diazooxindole: a density functional theory study. RSC Adv 2015. [DOI: 10.1039/c5ra07981k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A density functional theory study was performed to understand the detailed mechanisms and stereoselectivity of the rhodium(ii)-catalyzed cyclopropanation reactions with diazooxindole and styrene.
Collapse
Affiliation(s)
- Yun-Sheng Xue
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Yu-Ping Cai
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Zhao-Xu Chen
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|