1
|
Diaz-Rodriguez RM, Gálico DA, Chartrand D, Murugesu M. Ligand Effects on the Emission Characteristics of Molecular Eu(II) Luminescence Thermometers. J Am Chem Soc 2024; 146:34118-34129. [PMID: 39610301 DOI: 10.1021/jacs.4c13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Discrete molecular organometallic europium(II) complexes are promising functional materials due to their ability to behave as highly sensitive band-shift luminescence thermometers. Furthering our understanding of the design principles salient to the emission behavior of such systems is important for developing them in this emerging application. To this end, a series of pseudo-C4v-symmetric organometallic europium(II) complexes bearing systematically varying ligand sets were synthesized and characterized to probe the influence of subtle structural modification on their optical properties. Opto-structural correlation analyses via variable-temperature single-crystal X-ray diffraction and photoluminescence spectroscopy reveal a remarkable variability in properties among structurally similar complexes and a convoluted dependence of the emission characteristics on the stereoelectronic properties of the ligands. A few factors of particular influence are nevertheless identified, including the distance between the europium(II) ion and the basal plane of the square-pyramidal coordination polyhedron, the presence of pendant electron density that might further interact with the excited-state 5d orbitals, and, qualitatively, the metal-ligand flexibility of the construct. These results help to elucidate principles that govern the luminescence properties of organometallic europium(II) complexes with an eye to enabling the rational design of high-performance luminescence thermometers of this genre.
Collapse
Affiliation(s)
- Roberto M Diaz-Rodriguez
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Diogo A Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Daniel Chartrand
- Department of Chemistry, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
2
|
Du J, Dollberg K, Seed JA, Wooles AJ, von Hänisch C, Liddle ST. f-Element Zintl Chemistry: Actinide-Mediated Dehydrocoupling of H 2Sb 1- Affords the Trithorium and Triuranium Undeca-Antimontriide Zintl Clusters [{An(Tren TIPS)} 3(μ 3-Sb 11)] (An = Th, U; Tren TIPS = {N(CH 2CH 2NSi iPr 3) 3} 3-). Inorg Chem 2024; 63:20153-20160. [PMID: 38767623 PMCID: PMC11523227 DOI: 10.1021/acs.inorgchem.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Reaction of the cesium antimonide complex [Cs(18C6)2][SbH2] (1, 18C6 = 18-crown-6 ether) with the triamidoamine actinide separated ion pairs [An(TrenTIPS)(L)][BPh4] (TrenTIPS = {N(CH2CH2NSiiPr3)3}3-; An/L = Th/DME (2Th); U/THF (2U)) affords the triactinide undeca-antimontriide Zintl clusters [{An(TrenTIPS)}3(μ3-Sb11)] (An = Th (3Th), U (3U)) by dehydrocoupling. Clusters 3Th and 3U provide two new examples of the Sb113- Zintl trianion and are unprecedented examples of molecular Sb113- being coordinated to anything since all previous reports featured isolated Sb113- Zintl trianions in separated ion quadruple formulations with noncoordinating cations. Quantum chemical calculations describe dominant ionic An-Sb interactions in 3Th and 3U, though the data suggest that the latter exhibits slightly more covalent An-Sb linkages than the former. Complexes 3Th and 3U have been characterized by single crystal X-ray diffraction, NMR, IR, and UV/vis/NIR spectroscopies, elemental analysis, and quantum chemical calculations.
Collapse
Affiliation(s)
- Jingzhen Du
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Kevin Dollberg
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - John A. Seed
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Ashley J. Wooles
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Carsten von Hänisch
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Stephen T. Liddle
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| |
Collapse
|
3
|
Seed JA, Cleaves PA, Hatton GR, King DM, Tuna F, Wooles AJ, Chilton NF, Liddle ST. Reactivity of a triamidoamine terminal uranium(VI)-nitride with 3d-transition metal metallocenes. Chem Commun (Camb) 2024; 60:9990-9993. [PMID: 39176420 PMCID: PMC11342066 DOI: 10.1039/d4cc03846k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Reactions between [(TrenTIPS)UVIN] (1, TrenTIPS = {N(CH2CH2NSiPri3)3}3-) and [MII(η5-C5R5)2] (M/R = Cr/H, Mn/H, Fe/H, Ni/H) were intractable, but M/R = Co/H or Co/Me afforded [(TrenTIPS)UVN-(η1:η4-C5H5)CoI(η5-C5H5)] (2) and [(TrenTIPS)UIV-NH2] (3), respectively. For M/R = V/H [(TrenTIPS)UIV-NVIV(η5-C5H5)2] (4), was isolated. Complexes 2-4 evidence one-/two-electron uranium reductions, nucleophilic nitrides, and partial N-atom transfer.
Collapse
Affiliation(s)
- John A Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Peter A Cleaves
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Georgina R Hatton
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - David M King
- School of Chemistry, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Floriana Tuna
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Research School of Chemistry, The Australian National University, Sullivans Creek Road, Canberra, ACT, 2601, Australia.
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
4
|
Burrow TG, Alcock NM, Huzan MS, Dunstan MA, Seed JA, Detlefs B, Glatzel P, Hunault MOJY, Bendix J, Pedersen KS, Baker ML. Determination of Uranium Central-Field Covalency with 3 d4 f Resonant Inelastic X-ray Scattering. J Am Chem Soc 2024; 146:22570-22582. [PMID: 39083620 PMCID: PMC11328134 DOI: 10.1021/jacs.4c06869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Understanding the nature of metal-ligand bonding is a major challenge in actinide chemistry. We present a new experimental strategy for addressing this challenge using actinide 3d4f resonant inelastic X-ray scattering (RIXS). Through a systematic study of uranium(IV) halide complexes, [UX6]2-, where X = F, Cl, or Br, we identify RIXS spectral satellites with relative energies and intensities that relate to the extent of uranium-ligand bond covalency. By analyzing the spectra in combination with ligand field density functional theory we find that the sensitivity of the satellites to the nature of metal-ligand bonding is due to the reduction of 5f interelectron repulsion and 4f-5f spin-exchange, caused by metal-ligand orbital mixing and the degree of 5f radial expansion, known as central-field covalency. Thus, this study furthers electronic structure quantification that can be obtained from 3d4f RIXS, demonstrating it as a technique for estimating actinide-ligand covalency.
Collapse
Affiliation(s)
- Timothy G Burrow
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Nathan M Alcock
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Myron S Huzan
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Maja A Dunstan
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - John A Seed
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Blanka Detlefs
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Pieter Glatzel
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | | | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Michael L Baker
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, U.K
- Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
5
|
Réant BL, Mackintosh FJ, Gransbury GK, Mattei CA, Alnami B, Atkinson BE, Bonham KL, Baldwin J, Wooles AJ, Vitorica-Yrezabal IJ, Lee D, Chilton NF, Liddle ST, Mills DP. Tris-Silanide f-Block Complexes: Insights into Paramagnetic Influence on NMR Chemical Shifts. JACS AU 2024; 4:2695-2711. [PMID: 39055148 PMCID: PMC11267535 DOI: 10.1021/jacsau.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
The paramagnetism of f-block ions has been exploited in chiral shift reagents and magnetic resonance imaging, but these applications tend to focus on 1H NMR shifts as paramagnetic broadening makes less sensitive nuclei more difficult to study. Here we report a solution and solid-state (ss) 29Si NMR study of an isostructural series of locally D 3h -symmetric early f-block metal(III) tris-hypersilanide complexes, [M{Si(SiMe3)3}3(THF)2] (1-M; M = La, Ce, Pr, Nd, U); 1-M were also characterized by single crystal and powder X-ray diffraction, EPR, ATR-IR, and UV-vis-NIR spectroscopies, SQUID magnetometry, and elemental analysis. Only one SiMe3 signal was observed in the 29Si ssNMR spectra of 1-M, while two SiMe3 signals were seen in solution 29Si NMR spectra of 1-La and 1-Ce. This is attributed to dynamic averaging of the SiMe3 groups in 1-M in the solid state due to free rotation of the M-Si bonds and dissociation of THF from 1-M in solution to give the locally C 3v -symmetric complexes [M{Si(SiMe3)3}3(THF) n ] (n = 0 or 1), which show restricted rotation of M-Si bonds on the NMR time scale. Density functional theory and complete active space self-consistent field spin-orbit calculations were performed on 1-M and desolvated solution species to model paramagnetic NMR shifts. We find excellent agreement of experimental 29Si NMR data for diamagnetic 1-La, suggesting n = 1 in solution and reasonable agreement of calculated paramagnetic shifts of SiMe3 groups for 1-M (M = Pr and Nd); the NMR shifts for metal-bound 29Si nuclei could only be reproduced for diamagnetic 1-La, showing the current limitations of pNMR calculations for larger nuclei.
Collapse
Affiliation(s)
- Benjamin
L. L. Réant
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Fraser J. Mackintosh
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Gemma K. Gransbury
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Carlo Andrea Mattei
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Barak Alnami
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Benjamin E. Atkinson
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Katherine L. Bonham
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
| | - Jack Baldwin
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ashley J. Wooles
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - Daniel Lee
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
| | - Nicholas F. Chilton
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Research
School of Chemistry, The Australian National
University, Sullivans
Creek Road, Canberra 2601, Australian Capital Territory, Australia
| | - Stephen T. Liddle
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David P. Mills
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
6
|
MacGregor F, Tarula-Marin JL, Metta-Magaña A, Fortier S. A Metallocene Bis(phosphoranocarbene) of Uranium and a Probe of Its Reactivity with Alcohols. Inorg Chem 2024; 63:9648-9658. [PMID: 38506446 DOI: 10.1021/acs.inorgchem.3c04565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The addition of 2 equiv of the phosphaylide H2C═PPh3 to the dimethyl uranium metallocene Cp*2UMe2 (Cp* = η5-C5Me5) in toluene with gentle heating at 40 °C generates the phosphorano-stabilized bis(carbene) Cp*2U[C(H)PPh3]2 (1) in good yield. Characterization of 1 by X-ray crystallographic analysis reveals two short uranium-carbon bonds, ranging from 2.301(5) to 2.322(5) Å, consistent with the presence of U═C carbene-type bonds. Monitoring the reaction by NMR spectroscopy suggests that it proceeds through the intermediate formation of the methyl carbene complex Cp*2U[C(H)PPh3](Me) (1Int); however, prolonged heating of these solutions leads to the ortho-cyclometalated carbene species Cp*2U{κ2-[C(H)PPh2(C6H4)]} (2) via intramolecular C-H activation. Rapid conversion from 1 to 2 occurs within hours upon heating its toluene solutions to 100 °C. Preliminary reactivity studies of 1 show that it readily reacts with alcohols, such as HODipp (Dipp = 2,6-diisopropylphenyl) and HOC(CF3)3, to give the mixed carbene alkoxide compounds Cp*2U[C(H)PPh3](OR) (R = Dipp (4Dipp), C(CF3)3 (5CF3)). In one case, the reaction of 1 with HODipp in the presence of adventitious water led to the formation of a few crystals of the terminal U(IV) oxo complex, [Ph3PCH3][Cp*2U(O)(ODipp)] (3oxo). The isolation of 1 marks the first instance of an unchelated, heteroatom-stabilized bis(carbene) complex of uranium that also provides an entryway to the synthesis of its monocarbene derivatives through protonolysis.
Collapse
Affiliation(s)
- Frank MacGregor
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - José L Tarula-Marin
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Alejandro Metta-Magaña
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
7
|
Lin NJ, Zeller M, Bart SC. Solution and solid-state characterization of rare silyluranium(III) complexes. Chem Commun (Camb) 2024; 60:3954-3957. [PMID: 38498352 DOI: 10.1039/d4cc00655k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A uranium(III) silylate complex [K(DME)4][UI2{(Si(SiMe3)2SiMe2)2O}] (1) was stabilized by the addition of 18-crown-6, forming [K(18-crown-6)][UI2{(Si(SiMe3)2SiMe2)2O}] (1-crown). Crystallization under multiple conditions resulted in three distinct molecular structures. Compound 1-crown was further characterized in the solution state via1H, 13C, and 29Si NMR spectroscopy, and electronic absorption spectroscopy.
Collapse
Affiliation(s)
- Nathan J Lin
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Suzanne C Bart
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
8
|
Nguyen TH, Pauly C, Kent GT, Wu G, Hayton TW. Dimerization and ring-opening in bis(diisopropylamino)cyclopropenylidene (BAC) mediated by [U(NR 2) 3(CCPh)] (R = SiMe 3). Dalton Trans 2023; 52:13868-13871. [PMID: 37751280 DOI: 10.1039/d3dt02741d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Addition of 2 equiv. of bis(diisopropylamino)cyclopropenylidene (BAC) to [U(NR2)3(CCPh)] (1, R = SiMe3), in Et2O, results in formation of [cyclo-N(iPr)C(Me)2CH(NiPr2)C{CHC3(NiPr2)2}][U(NR2)2(N(SiMe3)SiMe2CH2)(CCPh)] (2) in moderate isolated yield. Complex 2 is the result of coupling and protonation of two BAC molecules, where complex 1 contributes the required proton. It was characterized by NMR spectroscopy and X-ray crystallography and represents a new mode of reactivity of the cyclopropenylidene fragment.
Collapse
Affiliation(s)
- Thien H Nguyen
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Christophe Pauly
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Greggory T Kent
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
9
|
Gransbury GK, Réant BLL, Wooles AJ, Emerson-King J, Chilton NF, Liddle ST, Mills DP. Electronic structure comparisons of isostructural early d- and f-block metal(iii) bis(cyclopentadienyl) silanide complexes. Chem Sci 2023; 14:621-634. [PMID: 36741509 PMCID: PMC9847655 DOI: 10.1039/d2sc04526e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
We report the synthesis of the U(iii) bis(cyclopentadienyl) hypersilanide complex [U(Cp'')2{Si(SiMe3)3}] (Cp'' = {C5H3(SiMe3)2-1,3}), together with isostructural lanthanide and group 4 M(iii) homologues, in order to meaningfully compare metal-silicon bonding between early d- and f-block metals. All complexes were characterised by a combination of NMR, EPR, UV-vis-NIR and ATR-IR spectroscopies, single crystal X-ray diffraction, SQUID magnetometry, elemental analysis and ab initio calculations. We find that for the [M(Cp'')2{Si(SiMe3)3}] (M = Ti, Zr, La, Ce, Nd, U) series the unique anisotropy axis is conserved tangential to ; this is governed by the hypersilanide ligand for the d-block complexes to give easy plane anisotropy, whereas the easy axis is fixed by the two Cp'' ligands in f-block congeners. This divergence is attributed to hypersilanide acting as a strong σ-donor and weak π-acceptor with the d-block metals, whilst f-block metals show predominantly electrostatic bonding with weaker π-components. We make qualitative comparisons on the strength of covalency to derive the ordering Zr > Ti ≫ U > Nd ≈ Ce ≈ La in these complexes, using a combination of analytical techniques. The greater covalency of 5f3 U(iii) vs. 4f3 Nd(iii) is found by comparison of their EPR and electronic absorption spectra and magnetic measurements, with calculations indicating that uranium 5f orbitals have weak π-bonding interactions with both the silanide and Cp'' ligands, in addition to weak δ-antibonding with Cp''.
Collapse
Affiliation(s)
- Gemma K Gransbury
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Benjamin L L Réant
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Jack Emerson-King
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - David P Mills
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
10
|
Wedal JC, Murillo J, Ziller JW, Scott BL, Gaunt AJ, Evans WJ. Synthesis of Trimethyltriazacyclohexane (Me 3tach) Sandwich Complexes of Uranium, Neptunium, and Plutonium Triiodides: (Me 3tach) 2AnI 3. Inorg Chem 2022; 62:5897-5905. [PMID: 36576312 DOI: 10.1021/acs.inorgchem.2c03306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1,3,5-Trimethyl-1,3,5-triazacyclohexane (Me3tach) readily complexes uranium triiodide to form (Me3tach)2UI3. The complex is soluble in THF and arenes and can function as a source of UI3 to form organometallic U(III) complexes. When dissolved in pyridine (py), (Me3tach)2UI3 forms (Me3tach)UI3(py)2. A related complex with the larger 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3tacn) ligand, namely (Me3tacn)UI3(THF), was synthesized for comparison. Since X-ray quality crystals of (Me3tach)2UI3 can be synthesized in high yield even with small-scale reactions, the system is ideal for extension to transuranium elements. Accordingly, the neptunium and plutonium complexes (Me3tach)2NpI3 and (Me3tach)2PuI3 were synthesized in an analogous manner from NpI3(THF)4 and PuI3(THF)4, respectively.
Collapse
Affiliation(s)
- Justin C Wedal
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Jesse Murillo
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Brian L Scott
- Materials Physics & Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew J Gaunt
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - William J Evans
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
11
|
Tsoureas N, Rajeshkumar T, Townrow OPE, Maron L, Layfield RA. Thorium- and Uranium-Mediated C-H Activation of a Silyl-Substituted Cyclobutadienyl Ligand. Inorg Chem 2022; 61:20629-20635. [PMID: 36484644 PMCID: PMC9768750 DOI: 10.1021/acs.inorgchem.2c03534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclobutadienyl complexes of the f-elements are a relatively new yet poorly understood class of sandwich and half-sandwich organometallic compounds. We now describe cyclobutadienyl transfer reactions of the magnesium reagent [(η4-Cb'''')Mg(THF)3] (1), where Cb'''' is tetrakis(trimethylsilyl)cyclobutadienyl, toward thorium(IV) and uranium(IV) tetrachlorides. The 1:1 stoichiometric reactions between 1 and AnCl4 proceed with intact transfer of Cb'''' to give the half-sandwich complexes [(η4-Cb'''')AnCl(μ-Cl)3Mg(THF)3] (An = Th, 2; An = U, 3). Using a 2:1 reaction stoichiometry produces [Mg2Cl3(THF)6][(η4-Cb'''')An(η3-C4H(SiMe3)3-κ-(CH2SiMe2)(Cl)] (An = Th, [Mg2Cl3(THF)6][4]; An = U [Mg2Cl3(THF)6][5]), in which one Cb'''' ligand has undergone cyclometalation of a trimethylsilyl group, resulting in the formation of an An-C σ-bond, protonation of the four-membered ring, and an η3-allylic interaction with the actinide. Complex solution-phase dynamics are observed with multinuclear nuclear magnetic resonance spectroscopy for both sandwich complexes. A computational analysis of the reaction mechanism leading to the formation of 4 and 5 indicates that the cyclobutadienyl ligands undergo C-H activation across the actinide center.
Collapse
Affiliation(s)
- Nikolaos Tsoureas
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Thayalan Rajeshkumar
- Laboratoire
de Physique et Chimie des Nano-Objets, Institut
National des Sciences Appliquées, Toulouse Cedex 4 31077, France
| | - Oliver P. E. Townrow
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Laurent Maron
- Laboratoire
de Physique et Chimie des Nano-Objets, Institut
National des Sciences Appliquées, Toulouse Cedex 4 31077, France,
| | - Richard A. Layfield
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.,
| |
Collapse
|
12
|
Functionalized Tris(anilido)triazacyclononanes as Hexadentate Ligands for the Encapsulation of U(III), U(IV) and La(III) Cations. INORGANICS 2021. [DOI: 10.3390/inorganics9120086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tripodal multidentate ligands have become increasingly popular in f-element chemistry for stabilizing unusual bonding motifs and supporting small molecule activation processes. The steric and electronic effects of ligand donor atom substituents have proved crucial in both of these applications. In this study we functionalized the previously reported tris-anilide ligand {tacn(SiMe2NPh)3} (tacn = 1,3,7-triazacyclononane) to incorporate substituted aromatic rings, with the aim of modifying f-element complex solubility and ligand steric effects. We report the synthesis of two proligands, {tacn(SiMe2NHAr)3} (Ar = C6H3Me2-3,5 or C6H4Me-4), and their respective group 1 transfer agents—{tacn(SiMe2NKAr)3}, M(III) complexes [M{tacn(SiMe2NAr)3}] for M = La and U, and U(IV) complexes [M{tacn(SiMe2NAr)3}(Cl)]. These compounds were characterized by multinuclear NMR and FTIR spectroscopy and elemental analysis. The paramagnetic uranium complexes were also characterized by solid state magnetic measurements and UV/Vis/NIR spectroscopy. U(III) complexes were additionally studied by EPR spectroscopy. The solid state structures of all f-block complexes were authenticated by single-crystal X-ray diffraction (XRD), together with a minor byproduct [U{tacn(SiMe2NC6H4Me-4)3}(I)]. Comparisons of the characterization data of our f-element complexes with similar literature examples containing the {tacn(SiMe2NPh)3} ligand set showed minor changes in physicochemical properties resulting from the different aromatic ring substitution patterns we investigated.
Collapse
|
13
|
Du J, Seed JA, Berryman VEJ, Kaltsoyannis N, Adams RW, Lee D, Liddle ST. Exceptional uranium(VI)-nitride triple bond covalency from 15N nuclear magnetic resonance spectroscopy and quantum chemical analysis. Nat Commun 2021; 12:5649. [PMID: 34561448 PMCID: PMC8463702 DOI: 10.1038/s41467-021-25863-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
Determining the nature and extent of covalency of early actinide chemical bonding is a fundamentally important challenge. Recently, X-ray absorption, electron paramagnetic, and nuclear magnetic resonance spectroscopic studies have probed actinide-ligand covalency, largely confirming the paradigm of early actinide bonding varying from ionic to polarised-covalent, with this range sitting on the continuum between ionic lanthanide and more covalent d transition metal analogues. Here, we report measurement of the covalency of a terminal uranium(VI)-nitride by 15N nuclear magnetic resonance spectroscopy, and find an exceptional nitride chemical shift and chemical shift anisotropy. This redefines the 15N nuclear magnetic resonance spectroscopy parameter space, and experimentally confirms a prior computational prediction that the uranium(VI)-nitride triple bond is not only highly covalent, but, more so than d transition metal analogues. These results enable construction of general, predictive metal-ligand 15N chemical shift-bond order correlations, and reframe our understanding of actinide chemical bonding to guide future studies.
Collapse
Affiliation(s)
- Jingzhen Du
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - John A Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Victoria E J Berryman
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Nikolas Kaltsoyannis
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ralph W Adams
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Daniel Lee
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, UK.
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
14
|
Evidence for ligand- and solvent-induced disproportionation of uranium(IV). Nat Commun 2021; 12:4832. [PMID: 34376682 PMCID: PMC8355312 DOI: 10.1038/s41467-021-25151-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
Disproportionation, where a chemical element converts its oxidation state to two different ones, one higher and one lower, underpins the fundamental chemistry of metal ions. The overwhelming majority of uranium disproportionations involve uranium(III) and (V), with a singular example of uranium(IV) to uranium(V/III) disproportionation known, involving a nitride to imido/triflate transformation. Here, we report a conceptually opposite disproportionation of uranium(IV)-imido complexes to uranium(V)-nitride/uranium(III)-amide mixtures. This is facilitated by benzene, but not toluene, since benzene engages in a redox reaction with the uranium(III)-amide product to give uranium(IV)-amide and reduced arene. These disproportionations occur with potassium, rubidium, and cesium counter cations, but not lithium or sodium, reflecting the stability of the corresponding alkali metal-arene by-products. This reveals an exceptional level of ligand- and solvent-control over a key thermodynamic property of uranium, and is complementary to isolobal uranium(V)-oxo disproportionations, suggesting a potentially wider prevalence possibly with broad implications for the chemistry of uranium.
Collapse
|
15
|
Anomalous magnetism of uranium(IV)-oxo and -imido complexes reveals unusual doubly degenerate electronic ground states. Chem 2021. [DOI: 10.1016/j.chempr.2021.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Windorff CJ, Cross JN, Scott BL, Kozimor SA, Evans WJ. Crystallographic characterization of (C 5H 4SiMe 3) 3U(BH 4). Acta Crystallogr E Crystallogr Commun 2021; 77:383-389. [PMID: 33936762 PMCID: PMC8025856 DOI: 10.1107/s2056989021002425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/03/2021] [Indexed: 08/09/2024]
Abstract
New syntheses have been developed for the synthesis of (borohydrido-κ3 H)tris-[η5-(tri-methyl-sil-yl)cyclo-penta-dien-yl]uranium(IV), [U(BH4)(C8H13Si)3] or Cp'3U(BH4) (Cp' = C5H4SiMe3) and its structure has been determined by single-crystal X-ray crystallography. This compound crystallized in the space group P and the structure features three η 5-coordinated Cp' rings and a κ 3-coordinated (BH4)- ligand.
Collapse
Affiliation(s)
- Cory J. Windorff
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Justin N. Cross
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - Brian L. Scott
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - Stosh A. Kozimor
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - William J. Evans
- Department of Chemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
17
|
Liu K, Yu JP, Wu QY, Tao XB, Kong XH, Mei L, Hu KQ, Yuan LY, Chai ZF, Shi WQ. Rational Design of a Tripodal Ligand for U(IV): Synthesis and Characterization of a U–Cl Species and Insights into Its Reactivity. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s
Republic of China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xue-Bing Tao
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, People’s Republic of China
| | - Xiang-He Kong
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, People’s Republic of China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
18
|
Seed JA, Sharpe HR, Futcher HJ, Wooles AJ, Liddle ST. Nature of the Arsonium‐Ylide Ph
3
As=CH
2
and a Uranium(IV) Arsonium–Carbene Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- John A. Seed
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Helen R. Sharpe
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Harry J. Futcher
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T. Liddle
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
19
|
Boreen MA, Groß OA, Hohloch S, Arnold J. Isocyanide adducts of tri- and tetravalent uranium metallocenes supported by tetra(isopropyl)cyclopentadienyl ligands. Dalton Trans 2020; 49:11971-11977. [PMID: 32812574 DOI: 10.1039/d0dt02005b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of the uranium(iii) metallocenium salt [(CpiPr4)2U][B(C6F5)4] with tert-butyl isocyanide (tBuNC) yielded the dicationic uranium(iv) complex [(CpiPr4)2U(CNtBu)4][B(C6F5)4]2 (1), which displays a linear metallocene geometry. Use of crude mixtures of [(CpiPr4)2U][B(C6F5)4], which contain a soluble source of iodide, led instead to isolation of the monocationic uranium(iv) iodide complex [(CpiPr4)2U(I)(CNtBu)2][B(C6F5)4] (2). Adduct formation with no change in oxidation state was observed upon addition of tBuNC to the neutral uranium(iii) species (CpiPr4)2UI, resulting in isolation of (CpiPr4)2U(I)(CNtBu) (3). X-ray crystallographic and IR spectroscopic studies both showed effects ascribed to the presence of multiple strongly donating isocyanide ligands in 1.
Collapse
Affiliation(s)
- Michael A Boreen
- Department of Chemistry, University of California, Berkeley, California 94720, USA. and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Oliver A Groß
- Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Stephan Hohloch
- University of Innsbruck, Faculty of Chemistry and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, USA. and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
20
|
Seed JA, Sharpe HR, Futcher HJ, Wooles AJ, Liddle ST. Nature of the Arsonium-Ylide Ph 3 As=CH 2 and a Uranium(IV) Arsonium-Carbene Complex. Angew Chem Int Ed Engl 2020; 59:15870-15874. [PMID: 32484980 DOI: 10.1002/anie.202004983] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Indexed: 11/11/2022]
Abstract
Treatment of [Ph3 EMe][I] with [Na{N(SiMe3 )2 }] affords the ylides [Ph3 E=CH2 ] (E=As, 1As; P, 1P). For 1As this overcomes prior difficulties in the synthesis of this classical arsonium-ylide that have historically impeded its wider study. The structure of 1As has now been determined, 45 years after it was first convincingly isolated, and compared to 1P, confirming the long-proposed hypothesis of increasing pyramidalisation of the ylide-carbon, highlighting the increasing dominance of E+ -C- dipolar resonance form (sp3 -C) over the E=C ene π-bonded form (sp2 -C), as group 15 is descended. The uranium(IV)-cyclometallate complex [U{N(CH2 CH2 NSiPri 3 )2 (CH2 CH2 SiPri 2 CH(Me)CH2 )}] reacts with 1As and 1P by α-proton abstraction to give [U(TrenTIPS )(CHEPh3 )] (TrenTIPS =N(CH2 CH2 NSiPri 3 )3 ; E=As, 2As; P, 2P), where 2As is an unprecedented structurally characterised arsonium-carbene complex. The short U-C distances and obtuse U-C-E angles suggest significant U=C double bond character. A shorter U-C distance is found for 2As than 2P, consistent with increased uranium- and reduced pnictonium-stabilisation of the carbene as group 15 is descended, which is supported by quantum chemical calculations.
Collapse
Affiliation(s)
- John A Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Helen R Sharpe
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Harry J Futcher
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
21
|
Brackbill IJ, Douair I, Lussier DJ, Boreen MA, Maron L, Arnold J. Synthesis and Structure of Uranium-Silylene Complexes. Chemistry 2020; 26:2360-2364. [PMID: 31950554 DOI: 10.1002/chem.202000214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 12/15/2022]
Abstract
While carbene complexes of uranium have been known for over a decade, there are no reported examples of complexes between an actinide and a "heavy carbene." Herein, we report the syntheses and structures of the first uranium-heavy tetrylene complexes: (CpSiMe3 )3 U-Si[PhC(NR)2 ]R' (R=tBu, R'=NMe2 1; R=iPr, R'=PhC(NiPr)2 2). Complex 1 features a kinetically robust uranium-silicon bonding interaction, while the uranium-silicon bond in 2 is easily disrupted thermally or by competing ligands in solution. Calculations reveal polarized σ bonds, but depending on the substituents at silicon a substantial π-bonding interaction is also present. The complexes possess relatively high bond orders which suggests primarily covalent bonding between uranium and silicon. These results comprise a new frontier in actinide-heavy main-group bonding.
Collapse
Affiliation(s)
- I Joseph Brackbill
- Department of Chemistry, University of California, Berkeley, and the Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720-1460, USA
| | - Iskander Douair
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Daniel J Lussier
- Department of Chemistry, University of California, Berkeley, and the Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720-1460, USA
| | - Michael A Boreen
- Department of Chemistry, University of California, Berkeley, and the Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720-1460, USA
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, and the Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720-1460, USA
| |
Collapse
|
22
|
Réant BLL, Berryman VEJ, Seed JA, Basford AR, Formanuik A, Wooles AJ, Kaltsoyannis N, Liddle ST, Mills DP. Polarised covalent thorium(iv)– and uranium(iv)–silicon bonds. Chem Commun (Camb) 2020; 56:12620-12623. [DOI: 10.1039/d0cc06044e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report thorium- and uranium–silicon bonds in structurally analogous complexes with surprisingly similar actinide–silicon bonding regimes.
Collapse
Affiliation(s)
- Benjamin L. L. Réant
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | | | - John A. Seed
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - Annabel R. Basford
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - Alasdair Formanuik
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - Ashley J. Wooles
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - Nikolas Kaltsoyannis
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - Stephen T. Liddle
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| | - David P. Mills
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| |
Collapse
|
23
|
Boreen MA, Arnold J. The synthesis and versatile reducing power of low-valent uranium complexes. Dalton Trans 2020; 49:15124-15138. [DOI: 10.1039/d0dt03151h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This synthesis and diverse reactivity of uranium(iii) and uranium(ii) complexes is discussed.
Collapse
Affiliation(s)
- Michael A. Boreen
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - John Arnold
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
24
|
Huh DN, Ziller JW, Evans WJ. Chelate-Free Synthesis of the U(II) Complex, [(C 5H 3(SiMe 3) 2) 3U] 1-, Using Li and Cs Reductants and Comparative Studies of La(II) and Ce(II) Analogs. Inorg Chem 2018; 57:11809-11814. [PMID: 30182717 DOI: 10.1021/acs.inorgchem.8b01966] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To expand the range of synthetic options for generating complexes of the actinide metals in the +2 oxidation state, reduction of Cp″3U (Cp″ = C5H3(SiMe3)2) and the lanthanide analogs, Cp″3La and Cp″3Ce with lithium in the absence of crown ether and cryptand chelates was explored. In each case, crystallographically characterizable [Li(THF)4][Cp″3M] complexes were obtainable in yields of 70-75% for M = La and Ce and 45-50% for M = U, that is, chelating agents are not necessary to sequester the lithium countercation to form isolable crystalline M(II) products. Reductions using Cs were also explored and X-ray crystallography revealed the formation of an oligomeric structure, [Cp″U(μ-Cp")2Cs(THF)2] n, involving Cp″ ligands that bridge "(Cp″UII)1+" moieties to "[Cp″2Cs(THF)2]1-" units.
Collapse
Affiliation(s)
- Daniel N Huh
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| | - Joseph W Ziller
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| | - William J Evans
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| |
Collapse
|
25
|
Reta D, Ortu F, Randall S, Mills DP, Chilton NF, Winpenny RE, Natrajan L, Edwards B, Kaltsoyannis N. The performance of density functional theory for the description of ground and excited state properties of inorganic and organometallic uranium compounds. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Mixed sandwich imido complexes of Uranium(V) and Uranium(IV): Synthesis, structure and redox behaviour. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Rungthanaphatsophon P, Barnes CL, Kelley SP, Walensky JR. Four-electron reduction chemistry using a uranium(iii) phosphido complex. Dalton Trans 2018; 47:8189-8192. [DOI: 10.1039/c8dt01406j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first uranium(iii) phosphido complex is reported.
Collapse
|
28
|
Tsoureas N, Cloke FGN. Activation of carbon suboxide (C3O2) by U(iii) to form a cyclobutane-1,3-dione ring. Chem Commun (Camb) 2018; 54:8830-8833. [DOI: 10.1039/c8cc04391d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[U(η5-C5H4SiMe3)3] reductively couples three C3O2 molecules to form a tetranuclear complex with a central cyclobutane-1,3-dione ring, via an intermediate bridging ketene complex.
Collapse
Affiliation(s)
- Nikolaos Tsoureas
- School of Life Sciences
- Division of Chemistry
- University of Sussex
- Brighton
- UK
| | | |
Collapse
|
29
|
Windorff CJ, MacDonald MR, Ziller JW, Evans WJ. Trimethylsilylcyclopentadienyl (Cp
′
) Uranium Chemistry: Synthetic and Structural Studies of Cp
′
4
U and Cp
′
3
U
X
(
X
= Cl, I, Me). Z Anorg Allg Chem 2017. [DOI: 10.1002/zaac.201700323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cory J. Windorff
- Department of Chemistry University of California‐Irvine 92697 Irvine CA USA
| | | | - Joseph W. Ziller
- Department of Chemistry University of California‐Irvine 92697 Irvine CA USA
| | - William J. Evans
- Department of Chemistry University of California‐Irvine 92697 Irvine CA USA
| |
Collapse
|
30
|
Seed JA, Gregson M, Tuna F, Chilton NF, Wooles AJ, McInnes EJL, Liddle ST. Rare-Earth- and Uranium-Mesoionic Carbenes: A New Class of f-Block Carbene Complex Derived from an N-Heterocyclic Olefin. Angew Chem Int Ed Engl 2017; 56:11534-11538. [PMID: 28719735 PMCID: PMC5601227 DOI: 10.1002/anie.201706546] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 11/16/2022]
Abstract
Neutral mesoionic carbenes (MICs) have emerged as an important class of carbene, however they are found in the free form or ligated to only a few d-block ions. Unprecedented f-block MIC complexes [M(N'')3 {CN(Me)C(Me)N(Me)CH}] (M=U, Y, La, Nd; N''=N(SiMe3 )2 ) are reported. These complexes were prepared by a formal 1,4-proton migration reaction when the metal triamides [M(N'')3 ] were treated with the N-heterocyclic olefin H2 C=C(NMeCH)2 , which constitutes a new, general way to prepare MIC complexes. Quantum chemical calculations on the 5f3 uranium(III) complex suggest the presence of a U=C donor-acceptor bond, composed of a MIC→U σ-component and a U(5f)→MIC(2p) π-back-bond, but for the d0 f0 Y and La and 4f3 Nd congeners only MIC→M σ-bonding is found. Considering the generally negligible π-acidity of MICs, this is surprising and highlights that greater consideration should possibly be given to recognizing MICs as potential π-acid ligands when coordinated to strongly reducing metals.
Collapse
Affiliation(s)
- John A. Seed
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Matthew Gregson
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Floriana Tuna
- School of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Nicholas F. Chilton
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Ashley J. Wooles
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Eric J. L. McInnes
- School of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Stephen T. Liddle
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
31
|
Rookes TM, Gardner BM, Balázs G, Gregson M, Tuna F, Wooles AJ, Scheer M, Liddle ST. Crystalline Diuranium Phosphinidiide and μ-Phosphido Complexes with Symmetric and Asymmetric UPU Cores. Angew Chem Int Ed Engl 2017; 56:10495-10500. [PMID: 28677144 PMCID: PMC5577518 DOI: 10.1002/anie.201706002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 11/11/2022]
Abstract
Reaction of [U(TrenTIPS )(PH2 )] (1, TrenTIPS =N(CH2 CH2 NSiPri3 )3 ) with C6 H5 CH2 K and [U(TrenTIPS )(THF)][BPh4 ] (2) afforded a rare diuranium parent phosphinidiide complex [{U(TrenTIPS )}2 (μ-PH)] (3). Treatment of 3 with C6 H5 CH2 K and two equivalents of benzo-15-crown-5 ether (B15C5) gave the diuranium μ-phosphido complex [{U(TrenTIPS )}2 (μ-P)][K(B15C5)2 ] (4). Alternatively, reaction of [U(TrenTIPS )(PH)][Na(12C4)2 ] (5, 12C4=12-crown-4 ether) with [U{N(CH2 CH2 NSiMe2 But )2 CH2 CH2 NSi(Me)(CH2 )(But )}] (6) produced the diuranium μ-phosphido complex [{U(TrenTIPS )}(μ-P){U(TrenDMBS )}][Na(12C4)2 ] [7, TrenDMBS =N(CH2 CH2 NSiMe2 But )3 ]. Compounds 4 and 7 are unprecedented examples of uranium phosphido complexes outside of matrix isolation studies, and they rapidly decompose in solution underscoring the paucity of uranium phosphido complexes. Interestingly, 4 and 7 feature symmetric and asymmetric UPU cores, respectively, reflecting their differing steric profiles.
Collapse
Affiliation(s)
- Thomas M. Rookes
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Benedict M. Gardner
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of RegensburgUniversitätsstrasse 3193053RegensburgGermany
| | - Matthew Gregson
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Floriana Tuna
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Ashley J. Wooles
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of RegensburgUniversitätsstrasse 3193053RegensburgGermany
| | - Stephen T. Liddle
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
32
|
Seed JA, Gregson M, Tuna F, Chilton NF, Wooles AJ, McInnes EJL, Liddle ST. Rare-Earth- and Uranium-Mesoionic Carbenes: A New Class of f-Block Carbene Complex Derived from an N-Heterocyclic Olefin. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- John A. Seed
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Matthew Gregson
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Floriana Tuna
- School of Chemistry and Photon Science Institute; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Nicholas F. Chilton
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Eric J. L. McInnes
- School of Chemistry and Photon Science Institute; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Stephen T. Liddle
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
33
|
Rookes TM, Gardner BM, Balázs G, Gregson M, Tuna F, Wooles AJ, Scheer M, Liddle ST. Crystalline Diuranium Phosphinidiide and μ-Phosphido Complexes with Symmetric and Asymmetric UPU Cores. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thomas M. Rookes
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Benedict M. Gardner
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Gábor Balázs
- Institute of Inorganic Chemistry; University of Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| | - Matthew Gregson
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Floriana Tuna
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Manfred Scheer
- Institute of Inorganic Chemistry; University of Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| | - Stephen T. Liddle
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
34
|
Windorff CJ, Chen GP, Cross JN, Evans WJ, Furche F, Gaunt AJ, Janicke MT, Kozimor SA, Scott BL. Identification of the Formal +2 Oxidation State of Plutonium: Synthesis and Characterization of {Pu II[C 5H 3(SiMe 3) 2] 3}<sup/>. J Am Chem Soc 2017; 139:3970-3973. [PMID: 28235179 DOI: 10.1021/jacs.7b00706] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Over 70 years of chemical investigations have shown that plutonium exhibits some of the most complicated chemistry in the periodic table. Six Pu oxidation states have been unambiguously confirmed (0 and +3 to +7), and four different oxidation states can exist simultaneously in solution. We report a new formal oxidation state for plutonium, namely Pu2+ in [K(2.2.2-cryptand)][PuIICp″3], Cp″ = C5H3(SiMe3)2. The synthetic precursor PuIIICp″3 is also reported, comprising the first structural characterization of a Pu-C bond. Absorption spectroscopy and DFT calculations indicate that the Pu2+ ion has predominantly a 5f6 electron configuration with some 6d mixing.
Collapse
Affiliation(s)
- Cory J Windorff
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | - Guo P Chen
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | | | - William J Evans
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | - Filipp Furche
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | | | | | | | | |
Collapse
|
35
|
Wildman EP, Ostrowski JP, King DM, Lewis W, Liddle ST. Uranium–halide and –azide derivatives of the sterically demanding triamidoamine ligand TrenTPS [TrenTPS= {N(CH2CH2NSiPh3)3}3−]. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Zhang L, Fang B, Hou G, Zi G, Ding W, Walter MD. Experimental and Computational Studies of a Uranium Metallacyclocumulene. Organometallics 2017. [DOI: 10.1021/acs.organomet.6b00936] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lei Zhang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Bo Fang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
37
|
Zhang L, Hou G, Zi G, Ding W, Walter MD. Preparation of a uranium metallacyclocumulene and its reactivity towards unsaturated organic molecules. Dalton Trans 2017; 46:3716-3728. [DOI: 10.1039/c7dt00396j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Steric and electronic properties of the coordinated ligands exert a pronounced influence on the reactivity of the uranium metallacyclocumulene complexes.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guohua Hou
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Wanjian Ding
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| |
Collapse
|
38
|
Kiernicki JJ, Higgins RF, Kraft SJ, Zeller M, Shores MP, Bart SC. Elucidating the Mechanism of Uranium Mediated Diazene N═N Bond Cleavage. Inorg Chem 2016; 55:11854-11866. [PMID: 27805393 DOI: 10.1021/acs.inorgchem.6b01922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Investigation into the reactivity of reduced uranium species toward diazenes has revealed key intermediates in the four-electron cleavage of azobenzene. Trivalent Tp*2U(CH2Ph) (1a) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate) and Tp*2U(2,2'-bpy) (1b) both perform the two-electron reduction of diazenes affording η2-hydrazido complexes Tp*2U(AzBz) (2-AzBz) (AzBz = azobenzene) and Tp*2U(BCC) (2-BCC) (BCC = benzo[c]cinnoline) in contrast to precursors of the bis(Cp*) (Cp* = 1,2,3,4,5-pentamethylcyclopentadienide) ligand framework. The four-electron cleavage of diazenes to give trans-bis(imido) species was possible by using Cp*U(MesPDIMe)(THF) (3) (MesPDIMe = 2,6-((Mes)N═CMe)2-C5H3N, Mes = 2,4,6-trimethylphenyl), which is supported by a highly reduced trianionic chelate that undergoes electron transfer. This proceeds via concerted addition at a single uranium center supported by both a crossover experiment and through addition of an asymmetrically substituted diazene, Ph-N═N-Tol. Further investigation of 3 and its substituted analogue, Cp*U(tBu-MesPDIMe)(THF) (3-tBu) (tBu-MesPDIMe = 2,6-((Mes)N═CMe)2-p-C(CH3)3-C5H2N), with benzo[c]cinnoline, revealed that the four-electron cleavage occurs first by a single electron reduction of the diazene with the redox chemistry performed solely at the redox-active pyridine(diimine) to form dimeric [Cp*U(BCC)(MesHPDIMe)]2 (5) and Cp*U(BCC)(tBu-MesPDIMe) (6). While a transient pyridine(diimine) triplet diradical in the formation of 5 results in H atom abstraction and p-pyridine coupling, the tert-butyl moiety in 6 allows for electronic rearrangement to occur, precluding deleterious pyridine-radical coupling. The monomeric analogue of 5, Cp*U(BCC)(MesPDIMe) (7), was synthesized via salt metathesis from Cp*UI(MesPDIMe) (3-I). All complexes have been characterized by 1H NMR and electronic absorption spectroscopies, X-ray diffraction, and, where pertinent, EPR spectroscopy. Further, the electronic structures of 3-I, 5, and 7 have been investigated by SQUID magnetometry.
Collapse
Affiliation(s)
- John J Kiernicki
- H.C. Brown Laboratory, Department of Chemistry, Purdue University , West Lafayette, Indiana 47906, United States
| | - Robert F Higgins
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Steven J Kraft
- H.C. Brown Laboratory, Department of Chemistry, Purdue University , West Lafayette, Indiana 47906, United States
| | - Matthias Zeller
- H.C. Brown Laboratory, Department of Chemistry, Purdue University , West Lafayette, Indiana 47906, United States
| | - Matthew P Shores
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Suzanne C Bart
- H.C. Brown Laboratory, Department of Chemistry, Purdue University , West Lafayette, Indiana 47906, United States
| |
Collapse
|
39
|
Tsoureas N, Kilpatrick AFR, Inman CJ, Cloke FGN. Steric control of redox events in organo-uranium chemistry: synthesis and characterisation of U(v) oxo and nitrido complexes. Chem Sci 2016; 7:4624-4632. [PMID: 30155110 PMCID: PMC6013772 DOI: 10.1039/c6sc00632a] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/08/2016] [Indexed: 12/16/2022] Open
Abstract
Controlling the steric environment in U(η8-C8H6(1,4-SiR3)2)(η5-Cp*)] enables selective formation of either mononuclear U(v) or dinuclear U(iv) oxo and nitrido complexes.
The synthesis and molecular structures of a U(v) neutral terminal oxo complex and a U(v) sodium uranium nitride contact ion pair are described. The synthesis of the former is achieved by the use of tBuNCO as a mild oxygen transfer reagent, whilst that of the latter is via the reduction of NaN3. Both mono-uranium complexes are stabilised by the presence of bulky silyl substituents on the ligand framework that facilitate a 2e– oxidation of a single U(iii) centre. In contrast, when steric hindrance around the metal centre is reduced by the use of less bulky silyl groups, the products are di-uranium, U(iv) bridging oxo and (anionic) nitride complexes, resulting from 1e– oxidations of two U(iii) centres. SQUID magnetometry supports the formal oxidation states of the reported complexes. Electrochemical studies show that the U(v) terminal oxo complex can be reduced and the [U(iv)O]– anion was accessed via reduction with K/Hg, and structurally characterised. Both the nitride complexes display complex electrochemical behaviour but each exhibits a quasi-reversible oxidation at ca. –1.6 V vs. Fc+/0.
Collapse
Affiliation(s)
- Nikolaos Tsoureas
- School of Life Sciences , Division of Chemistry , University of Sussex , Falmer , Brighton , BN1 9QJ , UK .
| | - Alexander F R Kilpatrick
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , 12 Mansfield Road , OX1 3TA , Oxford , UK
| | - Christopher J Inman
- School of Life Sciences , Division of Chemistry , University of Sussex , Falmer , Brighton , BN1 9QJ , UK .
| | - F Geoffrey N Cloke
- School of Life Sciences , Division of Chemistry , University of Sussex , Falmer , Brighton , BN1 9QJ , UK .
| |
Collapse
|
40
|
Kiernicki JJ, Harwood JS, Fanwick PE, Bart SC. Reductive silylation of Cp*UO2((Mes)PDI(Me)) promoted by Lewis bases. Dalton Trans 2016; 45:3111-9. [PMID: 26778243 DOI: 10.1039/c5dt04776e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Functionalization of the uranyl moiety (UO2(2+)) in Cp*UO2((Mes)PDI(Me)) (1-PDI) ((Mes)PDI(Me) = 2,6-((Mes)N=CMe)2C5H3N; Mes = 2,4,6-triphenylmethyl), which bears a reduced, monoanionic pyridine(diimine) ligand, is reported. Silylating reagents, R3Si-X (R = Me, X = Cl, I, OTf, SPh; R = Ph, X = Cl), effectively add across the strong O=U=O bonds in the presence of the Lewis base, OPPh3, generating products of the form (R3SiO)2UX2(OPPh3)2 (R = Me, X = I (2-OPPh3), Cl (3-OPPh3), SPh (5-OPPh3), OTf (6-OPPh3); R = Ph, X = Cl (4-OPPh3)). During this transformation, reduction to uranium(iv) occurs with loss of (Cp*)2 and (Mes)PDI(Me), each of which acts as a one-electron source. In the reaction, the Lewis base serves to activate the silyl halide, generating a more electrophilic silyl group, as determined by (29)Si NMR spectroscopy, that undergoes facile transfer to the oxo groups. Complete U-O bond scission was accomplished by treating the uranium(iv) disiloxide compounds with additional silylating reagent, forming the family (Ph3PO)2UX4. All compounds were characterized by (1)H NMR, infrared, and electronic absorption spectroscopies. X-ray crystallographic characterization was used to elucidate the structures of 2-OPPh3, 4-OPPh3, 5-OPPh3, and 6-OPPh3.
Collapse
Affiliation(s)
- J J Kiernicki
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
41
|
Edelmann FT. Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2014. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Windorff CJ, MacDonald MR, Meihaus KR, Ziller JW, Long JR, Evans WJ. Expanding the Chemistry of Molecular U(2+) Complexes: Synthesis, Characterization, and Reactivity of the {[C5 H3 (SiMe3 )2 ]3 U}(-) Anion. Chemistry 2015; 22:772-82. [PMID: 26636775 DOI: 10.1002/chem.201503583] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 11/09/2022]
Abstract
The synthesis of new molecular complexes of U(2+) has been pursued to make comparisons in structure, physical properties, and reactivity with the first U(2+) complex, [K(2.2.2-cryptand)][Cp'3 U], 1 (Cp'=C5 H4 SiMe3 ). Reduction of Cp''3 U [Cp''=C5 H3 (SiMe3 )2 ] with KC8 in the presence of 2.2.2-cryptand or 18-crown-6 generates [K(2.2.2-cryptand)][Cp''3 U], 2-K(crypt), or [K(18-crown-6)(THF)2 ][Cp''3 U], 2-K(18c6), respectively. The UV/Vis spectra of 2-K and 1 are similar, and they are much more intense than those of U(3+) analogues. Variable temperature magnetic susceptibility data for 1 and 2-K(crypt) reveal lower room temperature χM T values relative to the experimental values for the 5f(3) U(3+) precursors. Stability studies monitored by UV/Vis spectroscopy show that 2-K(crypt) and 2-K(18c6) have t1/2 values of 20 and 15 h at room temperature, respectively, vs. 1.5 h for 1. Complex 2-K(18c6) reacts with H2 or PhSiH3 to form the uranium hydride, [K(18-crown-6)(THF)2 ][Cp''3 UH], 3. Complexes 1 and 2-K(18c6) both reduce cyclooctatetraene to form uranocene, (C8 H8 )2 U, as well as the U(3+) byproducts [K(2.2.2-cryptand)][Cp'4 U], 4, and Cp''3 U, respectively.
Collapse
Affiliation(s)
- Cory J Windorff
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697 (USA)
| | - Matthew R MacDonald
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697 (USA)
| | - Katie R Meihaus
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720 (USA)
| | - Joseph W Ziller
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697 (USA)
| | - Jeffrey R Long
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720 (USA).
| | - William J Evans
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697 (USA).
| |
Collapse
|
43
|
Goodwin CAP, Joslin KC, Lockyer SJ, Formanuik A, Morris GA, Ortu F, Vitorica-Yrezabal IJ, Mills DP. Homoleptic Trigonal Planar Lanthanide Complexes Stabilized by Superbulky Silylamide Ligands. Organometallics 2015. [DOI: 10.1021/om501123e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Conrad A. P. Goodwin
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Kristian C. Joslin
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Selena J. Lockyer
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Alasdair Formanuik
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Gareth A. Morris
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Fabrizio Ortu
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | | | - David P. Mills
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
44
|
Karmel ISR, Fridman N, Tamm M, Eisen MS. Mono(imidazolin-2-iminato) Actinide Complexes: Synthesis and Application in the Catalytic Dimerization of Aldehydes. J Am Chem Soc 2014; 136:17180-92. [DOI: 10.1021/ja5091436] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Isabell S. R. Karmel
- Schulich
Faculty of Chemistry, Institute of Catalysis Science and Technology, Technion − Israel Institute of Technology, Technion City, 32000 Israel
| | - Natalia Fridman
- Schulich
Faculty of Chemistry, Institute of Catalysis Science and Technology, Technion − Israel Institute of Technology, Technion City, 32000 Israel
| | - Matthias Tamm
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Moris S. Eisen
- Schulich
Faculty of Chemistry, Institute of Catalysis Science and Technology, Technion − Israel Institute of Technology, Technion City, 32000 Israel
| |
Collapse
|
45
|
Pedrick EA, Wu G, Hayton TW. Reductive silylation of the uranyl ion with Ph3SiOTf. Inorg Chem 2014; 53:12237-9. [PMID: 25434504 DOI: 10.1021/ic502267t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The reaction of 2 equiv of Ph3SiOTf with UO2(dbm)2(THF) (dbm = OC(Ph)CHC(Ph)O) and UO2((Ar)acnac)2 ((Ar)acnac = ArNC(Ph)CHC(Ph)O; Ar = 3,5-(t)Bu2C6H3) results in the formation of U(OSiPh3)2(dbm)2(OTf) (1) and [U(OSiPh3)2((Ar)acnac)2][OTf] (2), respectively, in good yield.
Collapse
Affiliation(s)
- Elizabeth A Pedrick
- Department of Chemistry and Biochemistry, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | | | | |
Collapse
|
46
|
Goodwin CAP, Tuna F, McInnes EJL, Liddle ST, McMaster J, Vitorica-Yrezabal IJ, Mills DP. [U(III) {N(SiMe2 tBu)2 }3 ]: a structurally authenticated trigonal planar actinide complex. Chemistry 2014; 20:14579-83. [PMID: 25241882 PMCID: PMC4260841 DOI: 10.1002/chem.201404864] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Indexed: 11/11/2022]
Abstract
We report the synthesis and characterization of the uranium(III) triamide complex [U(III) (N**)3 ] [1, N**=N(SiMe2 tBu)2 (-) ]. Surprisingly, complex 1 exhibits a trigonal planar geometry in the solid state, which is unprecedented for three-coordinate actinide complexes that have exclusively adopted trigonal pyramidal geometries to date. The characterization data for [U(III) (N**)3 ] were compared with the prototypical trigonal pyramidal uranium(III) triamide complex [U(III) (N")3 ] (N"=N(SiMe3 )2 (-) ), and taken together with theoretical calculations it was concluded that pyramidalization results in net stabilization for [U(III) (N")3 ], but this can be overcome with very sterically demanding ligands, such as N**. The planarity of 1 leads to favorable magnetic dynamics, which may be considered in the future design of U(III) single-molecule magnets.
Collapse
Affiliation(s)
- Conrad A P Goodwin
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL (UK)
| | | | | | | | | | | | | |
Collapse
|