1
|
François JM. Progress advances in the production of bio-sourced methionine and its hydroxyl analogues. Biotechnol Adv 2023; 69:108259. [PMID: 37734648 DOI: 10.1016/j.biotechadv.2023.108259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/11/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
The essential sulphur-containing amino acid, methionine, is becoming a mass-commodity product with an annual production that exceeded 1,500,000 tons in 2018. This amino acid is today almost exclusively produced by chemical process from fossil resources. The environmental problems caused by this industrial process, and the expected scarcity of oil resources in the coming years, have recently accelerated the development of bioprocesses for producing methionine from renewable carbon feedstock. After a brief description of the chemical process and the techno-economic context that still justify the production of methionine by petrochemical processes, this review will present the current state of the art of biobased alternatives aiming at a sustainable production of this amino acid and its hydroxyl analogues from renewable carbon feedstock. In particular, this review will focus on three bio-based processes, namely a purely fermentative process based on the metabolic engineering of the natural methionine pathway, a mixed process combining the production of the O-acetyl/O-succinyl homoserine intermediate of this pathway by fermentation followed by an enzyme-based conversion of this intermediate into L-methionine and lately, a hybrid process in which the non-natural chemical synthon, 2,4-dihydroxybutyric acid, obtained by fermentation of sugars is converted by chemo-catalysis into hydroxyl methionine analogues. The industrial potential of these three bioprocesses, as well as the major technical and economic obstacles that remain to be overcome to reach industrial maturity are discussed. This review concludes by bringing up the assets of these bioprocesses to meet the challenge of the "green transition", with the accomplishment of the objective "zero carbon" by 2050 and how they can be part of a model of Bioeconomy enhancing local resources.
Collapse
Affiliation(s)
- Jean Marie François
- Toulouse Biotechnology Institute, UMR INSA -CNRS5504 and UMR INSA-INRAE 792, 135 avenue de Rangueil, 31077 Toulouse, France; Toulouse White Biotechnology, UMS INRAE-INSA-CNRS, 135 Avenue de Rangueil, 31077 Toulouse, France.
| |
Collapse
|
2
|
Tork SD, Nagy EZA, Tomoiagă RB, Bencze LC. Engineered, Scalable Production of Optically Pure l-Phenylalanines Using Phenylalanine Ammonia-Lyase from Arabidopsis thaliana. J Org Chem 2023; 88:852-862. [PMID: 36583610 DOI: 10.1021/acs.joc.2c02106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An efficient preparative-scale synthetic procedure of l-phenylalanine derivatives has been developed using mutant variants of phenylalanine ammonia-lyase from Arabidopsis thaliana (AtPAL). After rigorous reaction engineering, the AtPAL-catalyzed hydroamination reaction of cinnamic acids provided several unnatural amino acids of high synthetic value, such as (S)-m- and (S)-p-methoxyphenylalanine; (S)-o- and (S)-m-methylphenylalanine; and (S)-o- and (S)-p-bromophenylalanine at preparative scale, significantly surpassing the catalytic efficiency in terms of conversions and yields of the previously reported PcPAL-based biotransformations. The AtPAL variants tolerated high substrate and product concentrations, representing an important extension of the PAL-toolbox, while the engineered biocatalytic procedures of improved E-factor and space-time yields fulfill the requirements of sustainable and green chemistry, providing facile access to valuable amino acid building blocks.
Collapse
Affiliation(s)
- Souad Diana Tork
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes̨-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| | - Emma Zsófia Aletta Nagy
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes̨-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| | - Raluca Bianca Tomoiagă
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes̨-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| | - László Csaba Bencze
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes̨-Bolyai University, Arany János Street 11, RO-400028 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Jung DY, Li X, Li Z. Engineering of Hydroxymandelate Oxidase and Cascade Reactions for High-Yielding Conversion of Racemic Mandelic Acids to Phenylglyoxylic Acids and ( R)- and ( S)-Phenylglycines. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Do-Yun Jung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xirui Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
4
|
Zetzsche LE, Chakrabarty S, Narayan ARH. The Transformative Power of Biocatalysis in Convergent Synthesis. J Am Chem Soc 2022; 144:5214-5225. [PMID: 35290055 PMCID: PMC10082969 DOI: 10.1021/jacs.2c00224] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Achieving convergent synthetic strategies has long been a gold standard in constructing complex molecular skeletons, allowing for the rapid generation of complexity in comparatively streamlined synthetic routes. Traditionally, biocatalysis has not played a prominent role in convergent laboratory synthesis, with the application of biocatalysts in convergent strategies primarily limited to the synthesis of chiral fragments. Although the use of enzymes to enable convergent synthetic approaches is relatively new and emerging, combining the efficiency of convergent transformations with the selectivity achievable through biocatalysis creates new opportunities for efficient synthetic strategies. This Perspective provides an overview of recent developments in biocatalytic strategies for convergent transformations and offers insights into the advantages of these methods compared to their small molecule-based counterparts.
Collapse
Affiliation(s)
- Lara E. Zetzsche
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Suman Chakrabarty
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alison R. H. Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Nie Y, Li J, Yuan Q, Zhang W. Synthesis of Chiral Hydantoins and Thiazolidinediones via
Iridium‐Catalyzed
Asymmetric Hydrogenation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yu Nie
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Jing Li
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Qianjia Yuan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
- College of Chemistry, Zhengzhou University 75 Daxue Road Zhengzhou 450052 P. R. China
| |
Collapse
|
6
|
Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021; 122:1052-1126. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.
Collapse
Affiliation(s)
- Stefan Simić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Erna Zukić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Kurt Faber
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Christoph K Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria.,Field of Excellence BioHealth─University of Graz, 8010 Graz, Austria.,BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
7
|
Allen KN, Whitman CP. The Birth of Genomic Enzymology: Discovery of the Mechanistically Diverse Enolase Superfamily. Biochemistry 2021; 60:3515-3528. [PMID: 34664940 DOI: 10.1021/acs.biochem.1c00494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enzymes are categorized into superfamilies by sequence, structural, and mechanistic similarities. The evolutionary implications can be profound. Until the mid-1990s, the approach was fragmented largely due to limited sequence and structural data. However, in 1996, Babbitt et al. published a paper in Biochemistry that demonstrated the potential power of mechanistically diverse superfamilies to identify common ancestry, predict function, and, in some cases, predict specificity. This Perspective describes the findings of the original work and reviews the current understanding of structure and mechanism in the founding family members. The outcomes of the genomic enzymology approach have reached far beyond the functional assignment of members of the enolase superfamily, inspiring the study of superfamilies and the adoption of sequence similarity networks and genome context and yielding fundamental insights into enzyme evolution.
Collapse
Affiliation(s)
- Karen N Allen
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Christian P Whitman
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
De Cesare S, Campopiano DJ. The N-Acetyl Amino Acid Racemases (NAAARs); Native and evolved biocatalysts applied to the synthesis of canonical and non-canonical amino acids. Curr Opin Biotechnol 2021; 69:212-220. [PMID: 33556834 DOI: 10.1016/j.copbio.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/15/2020] [Accepted: 01/10/2021] [Indexed: 02/08/2023]
Abstract
Amino acids are one of the most important synthons employed in the biotechnology, pharmaceutical and agrochemical industries for the preparation of active agents. Recently, the emerging use of these compounds as tools for protein engineering, has also been reported. Numerous chemo- and biocatalytic strategies have been developed for the stereoselective synthesis of these compounds. One of the most efficient processes is the enzymatic dynamic kinetic resolution of N-acylated derivatives, where an N-acyl amino acid racemase (NAAAR) is coupled with an enantioselective, hydrolytic enzyme (aminoacylase), and used to convert a racemic mixture of starting materials to enantiopure products. Here we provide a brief overview of the structure and mechanism of NAAAR. We will also review the applications of this class of biocatalyst, as well as discussing the various strategies employed to obtain an efficient system for the synthesis of optically pure canonical and non-canonical amino acids.
Collapse
Affiliation(s)
- Silvia De Cesare
- EaStChem School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Dominic J Campopiano
- EaStChem School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
9
|
Liu Y, Xu G, Zhou J, Ni J, Zhang L, Hou X, Yin D, Rao Y, Zhao YL, Ni Y. Structure-Guided Engineering of d-Carbamoylase Reveals a Key Loop at Substrate Entrance Tunnel. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02942] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yafei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Jieyu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Jie Ni
- Warshel Institute for Computational Biology, School of Life and Health Science, Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Lu Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Dejing Yin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu China
| |
Collapse
|
10
|
Martínez-Rodríguez S, Torres JM, Sánchez P, Ortega E. Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Front Bioeng Biotechnol 2020; 8:887. [PMID: 32850740 PMCID: PMC7431475 DOI: 10.3389/fbioe.2020.00887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic AAs in the literature due to their appearance in ribosome-synthetized polypeptides. Beyond the borders of this key set of compounds, the rest of AAs are generally named imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide chains as a result of post-transductional machinery. Besides their importance as metabolites in life, many of D-α- and L-α-"non-canonical" amino acids (NcAAs) are of interest in the biotechnological and biomedical fields. They have found numerous applications in the discovery of new medicines and antibiotics, drug synthesis, cosmetic, and nutritional compounds, or in the improvement of protein and peptide pharmaceuticals. In addition to the numerous studies dealing with the asymmetric synthesis of NcAAs, many different enzymatic pathways have been reported in the literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of this group of molecules, this review is devoted to provide an overview on different established multienzymatic cascades for the production of non-canonical D-α- and L-α-AAs, supplying neophyte and experienced professionals in this field with different illustrative examples in the literature. Whereas the discovery of new or newly designed enzymes is of great interest, dusting off previous enzymatic methodologies by a "back and to the future" strategy might accelerate the implementation of new or improved multienzymatic cascades.
Collapse
|
11
|
Mao Y, Wang Z, Wang G, Zhao R, Kan L, Pan X, Liu L. Redox Deracemization of Tertiary Stereocenters Adjacent to an Electron-Withdrawing Group. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02486] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ying Mao
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zehua Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ran Zhao
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Linglong Kan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaoguang Pan
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Lei Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
12
|
Meghwanshi GK, Kaur N, Verma S, Dabi NK, Vashishtha A, Charan PD, Purohit P, Bhandari HS, Bhojak N, Kumar R. Enzymes for pharmaceutical and therapeutic applications. Biotechnol Appl Biochem 2020; 67:586-601. [PMID: 32248597 DOI: 10.1002/bab.1919] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Indexed: 01/03/2023]
Abstract
Enzymes are highly efficient and selective biocatalysts, present in the living beings. They exist in enormous varieties in terms of the types of reactions catalyzed by them for instance oxidation-reduction, group transfers within the molecules or between the molecules, hydrolysis, isomerization, ligation, bond cleavage, and bond formation. Besides, enzyme based catalyses are performed with much higher fidelity, under mild reaction conditions and are highly efficient in terms of number of steps, giving them an edge over their chemical counter parts. The unique characteristics of enzymes makes them highly applicable fora number of chemical transformation reactions in pharmaceutical industries, such as group protection and deprotection, selective acylation and deacylation, selective hydrolysis, deracemization, kinetic resolution of racemic mixtures, esterification, transesterification, and many others. In this review, an overview of the enzymes, their production and their applications in pharmaceutical syntheses and enzyme therapies are presented with diagrams, reaction schemes and table for easy understanding of the readers.
Collapse
Affiliation(s)
| | - Navpreet Kaur
- Department of Microbiology, M.G.S. University, Bikaner, India
| | - Swati Verma
- Department of Microbiology, M.G.S. University, Bikaner, India
| | | | | | - P D Charan
- Department of Environmental Science, M.G.S. University, Bikaner, India
| | - Praveen Purohit
- Department of Chemistry, Engineering College, Bikaner, India
| | - H S Bhandari
- Department of Chemistry, GCRC Govt. Dungar College, Bikaner, India
| | - N Bhojak
- Department of Chemistry, GCRC Govt. Dungar College, Bikaner, India
| | - Rajender Kumar
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
14
|
Femmer C, Bechtold M, Held M, Panke S. In vivo directed enzyme evolution in nanoliter reactors with antimetabolite selection. Metab Eng 2020; 59:15-23. [DOI: 10.1016/j.ymben.2020.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 11/16/2022]
|
15
|
Neerbye Berntsen L, Nova A, Wragg DS, Sandtorv AH. Cu-catalyzed N-3-Arylation of Hydantoins Using Diaryliodonium Salts. Org Lett 2020; 22:2687-2691. [PMID: 32202123 PMCID: PMC7309330 DOI: 10.1021/acs.orglett.0c00642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A general Cu-catalyzed,
regioselective method for the N-3-arylation of hydantoins
is described. The protocol utilizes aryl(trimethoxyphenyl)iodonium
tosylate as the arylating agent in the presence of triethylamine and
a catalytic amount of a simple Cu-salt. The method is compatible with
structurally diverse hydantoins and operates well with neutral aryl
groups or aryl groups bearing weakly donating/withdrawing elements.
It is also applicable for the rapid diversification of pharmaceutically
relevant hydantoins.
Collapse
Affiliation(s)
- Linn Neerbye Berntsen
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Ainara Nova
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - David S Wragg
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Alexander H Sandtorv
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
16
|
Fu R, So SM, Lough AJ, Chin J. Hydrogen Bond Assisted
l
to
d
Conversion of α‐Amino Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rui Fu
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Soon Mog So
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Alan J. Lough
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Jik Chin
- Department of ChemistryUniversity of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
17
|
Fu R, So SM, Lough AJ, Chin J. Hydrogen Bond Assisted l to d Conversion of α-Amino Acids. Angew Chem Int Ed Engl 2020; 59:4335-4339. [PMID: 31903655 DOI: 10.1002/anie.201914797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 12/15/2022]
Abstract
l to d conversion of unactivated α-amino acids was achieved by solubility-induced diastereomer transformation (SIDT). Ternary complexes of an α-amino acid with 3,5-dichlorosalicylaldehyde and a chiral guanidine (derived from corresponding chiral vicinal diamine) were obtained in good yield as diastereomerically pure imino acid salt complexes and were hydrolysed to obtain enantiopure α-amino acids. A combination of DFT computation, NMR spectroscopy, and crystal structure provide detailed insight into how two types of strong hydrogen bonds assist in rapid epimerization of the complexes that is essential for SIDT.
Collapse
Affiliation(s)
- Rui Fu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Soon Mog So
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Alan J Lough
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Jik Chin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
18
|
Martínez-Rodríguez S, Soriano-Maldonado P, Gavira JA. N-succinylamino acid racemases: Enzymatic properties and biotechnological applications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140377. [PMID: 31982578 DOI: 10.1016/j.bbapap.2020.140377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/28/2023]
Abstract
The N-succinylamino acid racemase/o-succinylbenzoate synthase (NSAR/OSBS) subfamily from the enolase superfamily contains different enzymes showing promiscuous N-substituted-amino acid racemase (NxAR) activity. These enzymes were originally named as N-acylamino acid racemases because of their industrial application. Nonetheless, they are pivotal in several enzymatic cascades due to their versatility to catalyze a wide substrate spectrum, allowing the production of optically pure d- or l-amino acids from cheap precursors. These compounds are of paramount economic interest, since they are used as food additives, in the pharmaceutical and cosmetics industries and/or as chiral synthons in organic synthesis. Despite its economic importance, the discovery of new N-succinylamino acid racemases has become elusive, since classical sequence-based annotation methods proved ineffective in their identification, due to a high sequence similarity among the members of the enolase superfamily. During the last decade, deeper investigations into different members of the NSAR/OSBS subfamily have shed light on the classification and identification of NSAR enzymes with NxAR activity of biotechnological potential. This review aims to gather the dispersed information on NSAR/OSBS members showing NxAR activity over recent decades, focusing on their biotechnological applications and providing practical advice to identify new enzymes.
Collapse
Affiliation(s)
- Sergio Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Facultad de Medicina, Granada 18071, Spain; Laboratorio de Estudios Cristalográficos, CSIC, 18100 Granada, Spain.
| | | | | |
Collapse
|
19
|
Musa MM. Enzymatic racemization of alcohols and amines: An approach for bi‐enzymatic dynamic kinetic resolution. Chirality 2019; 32:147-157. [DOI: 10.1002/chir.23138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Musa M. Musa
- Chemistry DepartmentKing Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| |
Collapse
|
20
|
Shu S, Zhao L, Zhou S, Wu C, Liu H, Wang J. Recyclable and Stable α-Methylproline-Derived Chiral Ligands for the Chemical Dynamic Kinetic Resolution of free C,N-Unprotected α-Amino Acids. Molecules 2019; 24:E2218. [PMID: 31200582 PMCID: PMC6630268 DOI: 10.3390/molecules24122218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022] Open
Abstract
A novel special designed, stable, and recyclable chiral ligand bearing a quaternary carbon was developed for chemical dynamic kinetic resolution (DKR) of free C,N-unprotected racemic α-amino acids via Schiff base intermediates. This method furnishes high yields with excellent enantioselectivity, has a broad substrate scope, and uses operationally simple and convenient conditions. The present chemical DKR is a practical and useful method for the preparation of enantiopure α-amino acids.
Collapse
Affiliation(s)
- Shuangjie Shu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Liang Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Shengbin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Chenglin Wu
- These authors contributed equally to this work..
| | - Hong Liu
- These authors contributed equally to this work..
| | - Jiang Wang
- These authors contributed equally to this work..
| |
Collapse
|
21
|
Song B, Chen MW, Zhou YG. Synthesis of chiral sultams with two adjacent stereocenters via palladium-catalyzed dynamic kinetic resolution. Org Chem Front 2018. [DOI: 10.1039/c7qo01098b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A palladium-catalyzed intramolecular asymmetric reductive amination of racemic α-branched ketones bearing the poorly nucleophilic sulfonamides has been successfully developed through dynamic kinetic resolution, providing chiral δ-sultams with two contiguous stereogenic centers.
Collapse
Affiliation(s)
- Bo Song
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Mu-Wang Chen
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| |
Collapse
|
22
|
de Souza ROMA, Miranda LSM, Bornscheuer UT. A Retrosynthesis Approach for Biocatalysis in Organic Synthesis. Chemistry 2017; 23:12040-12063. [DOI: 10.1002/chem.201702235] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group; Federal University of Rio de Janeiro, Chemistry Institute; 21941909 Rio de Janeiro Brazil
| | - Leandro S. M. Miranda
- Biocatalysis and Organic Synthesis Group; Federal University of Rio de Janeiro, Chemistry Institute; 21941909 Rio de Janeiro Brazil
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
23
|
l-Amino Acid Production by a Immobilized Double-Racemase Hydantoinase Process: Improvement and Comparison with a Free Protein System. Catalysts 2017. [DOI: 10.3390/catal7060192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Ma BD, Du SH, Wang Y, Ou XM, Huang MZ, Wang LX, Wang XG. Synthesis of chiral hydantoin derivatives by homogeneous Pd-catalyzed asymmetric hydrogenation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2016.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Huang JF, Liu ZQ, Jin LQ, Tang XL, Shen ZY, Yin HH, Zheng YG. Metabolic engineering of Escherichia coli for microbial production of L-methionine. Biotechnol Bioeng 2016; 114:843-851. [PMID: 27723097 DOI: 10.1002/bit.26198] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 11/08/2022]
Abstract
L-methionine has attracted a great deal of attention for its nutritional, pharmaceutical, and clinical applications. In this study, Escherichia coli W3110 was engineered via deletion of a negative transcriptional regulator MetJ and over-expression of homoserine O-succinyltransferase MetA together with efflux transporter YjeH, resulting in L-methionine overproduction which is up to 413.16 mg/L. The partial inactivation of the L-methionine import system MetD via disruption of metI made the engineered E. coli ΔmetJ ΔmetI/pTrcA*H more tolerant to high L-ethionine concentration and accumulated L-methionine to a level 43.65% higher than that of E. coli W3110 ΔmetJ/pTrcA*H. Furthermore, deletion of lysA, which blocks the lysine biosynthesis pathway, led to a further 8.5-fold increase in L-methionine titer of E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H. Finally, addition of Na2 S2 O3 to the media led to an increase of fermentation titer of 11.45%. After optimization, constructed E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H was able to produce 9.75 g/L L-methionine with productivity of 0.20 g/L/h in a 5 L bioreactor. This novel metabolically tailored strain of E. coli provides an efficient platform for microbial production of L-methionine. Biotechnol. Bioeng. 2017;114: 843-851. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jian-Feng Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhen-Yang Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Huan-Huan Yin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
26
|
Femmer C, Bechtold M, Roberts TM, Panke S. Exploiting racemases. Appl Microbiol Biotechnol 2016; 100:7423-36. [DOI: 10.1007/s00253-016-7729-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/03/2016] [Accepted: 07/04/2016] [Indexed: 01/11/2023]
|
27
|
Nian Y, Wang J, Zhou S, Dai W, Wang S, Moriwaki H, Kawashima A, Soloshonok VA, Liu H. Purely Chemical Approach for Preparation of d-α-Amino Acids via (S)-to-(R)-Interconversion of Unprotected Tailor-Made α-Amino Acids. J Org Chem 2016; 81:3501-8. [DOI: 10.1021/acs.joc.5b02707] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yong Nian
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jiang Wang
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Shengbin Zhou
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Wenhao Dai
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Shuni Wang
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hiroki Moriwaki
- Hamari Chemicals
Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Aki Kawashima
- Hamari Chemicals
Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU and IKERBASQUE, Basque Foundation for Science, Alameda
Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Hong Liu
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
28
|
Enoki J, Meisborn J, Müller AC, Kourist R. A Multi-Enzymatic Cascade Reaction for the Stereoselective Production of γ-Oxyfunctionalyzed Amino Acids. Front Microbiol 2016; 7:425. [PMID: 27092111 PMCID: PMC4823265 DOI: 10.3389/fmicb.2016.00425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/16/2016] [Indexed: 11/26/2022] Open
Abstract
A stereoselective three-enzyme cascade for synthesis of diasteromerically pure γ-oxyfunctionalized α-amino acids was developed. By coupling a dynamic kinetic resolution (DKR) using an N-acylamino acid racemase (NAAAR) and an L-selective aminoacylase from Geobacillus thermoglucosidasius with a stereoselective isoleucine dioxygenase from Bacillus thuringiensis, diastereomerically pure oxidized amino acids were produced from racemic N-acetylamino acids. The three enzymes differed in their optimal temperature and pH-spectra. Their different metal cofactor dependencies led to inhibitory effects. Under optimized conditions, racemic N-acetylmethionine was quantitatively converted into L-methionine-(S)-sulfoxide with 97% yield and 95% de. The combination of these three different biocatalysts allowed the direct synthesis of diastereopure oxyfunctionalized amino acids from inexpensive racemic starting material.
Collapse
Affiliation(s)
- Junichi Enoki
- Faculty of Biology and Biotechnology, Junior Research Group for Microbial Biotechnology, Ruhr-University Bochum Bochum, Germany
| | - Jaqueline Meisborn
- Faculty of Biology and Biotechnology, Junior Research Group for Microbial Biotechnology, Ruhr-University Bochum Bochum, Germany
| | - Ann-Christin Müller
- Faculty of Biology and Biotechnology, Junior Research Group for Microbial Biotechnology, Ruhr-University Bochum Bochum, Germany
| | - Robert Kourist
- Faculty of Biology and Biotechnology, Junior Research Group for Microbial Biotechnology, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
29
|
Nian Y, Wang J, Zhou S, Wang S, Moriwaki H, Kawashima A, Soloshonok VA, Liu H. Recyclable Ligands for the Non‐Enzymatic Dynamic Kinetic Resolution of Challenging α‐Amino Acids. Angew Chem Int Ed Engl 2015; 54:12918-22. [DOI: 10.1002/anie.201507273] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Yong Nian
- School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing 210009 (China)
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (China)
| | - Jiang Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (China)
| | - Shengbin Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (China)
| | - Shuni Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (China)
| | - Hiroki Moriwaki
- Hamari Chemicals Ltd., 1‐4‐29 Kunijima, Higashi‐Yodogawa‐ku, Osaka 533‐0024 (Japan)
| | - Aki Kawashima
- Hamari Chemicals Ltd., 1‐4‐29 Kunijima, Higashi‐Yodogawa‐ku, Osaka 533‐0024 (Japan)
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián (Spain)
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36‐5, Plaza Bizkaia, 48013 Bilbao (Spain)
| | - Hong Liu
- School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing 210009 (China)
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (China)
| |
Collapse
|
30
|
Nian Y, Wang J, Zhou S, Wang S, Moriwaki H, Kawashima A, Soloshonok VA, Liu H. Recyclable Ligands for the Non-Enzymatic Dynamic Kinetic Resolution of Challenging α-Amino Acids. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507273] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Rodríguez-Alonso MJ, Clemente-Jiménez JM, Rodríguez-Vico F, Las Heras- Vázquez FJ. Rational re-design of the “double-racemase hydantoinase process” for optically pure production of natural and non-natural l-amino acids. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Ji Y, Shi L, Chen MW, Feng GS, Zhou YG. Concise Redox Deracemization of Secondary and Tertiary Amines with a Tetrahydroisoquinoline Core via a Nonenzymatic Process. J Am Chem Soc 2015; 137:10496-9. [PMID: 26274896 DOI: 10.1021/jacs.5b06659] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A concise deracemization of racemic secondary and tertiary amines with a tetrahydroisoquinoline core has been successfully realized by orchestrating a redox process consisted of N-bromosuccinimide oxidation and iridum-catalyzed asymmetric hydrogenation. This compatible redox combination enables one-pot, single-operation deracemization to generate chiral 1-substituted 1,2,3,4-tetrahydroisoquinolines with up to 98% ee in 93% yield, offering a simple and scalable synthetic technique for chiral amines directly from racemic starting materials.
Collapse
Affiliation(s)
- Yue Ji
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, P. R. China
| | - Lei Shi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, P. R. China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, P. R. China
| | - Mu-Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, P. R. China
| | - Guang-Shou Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, P. R. China
| |
Collapse
|
33
|
Mikleušević A, Hameršak Z, Salopek-Sondi B, Tang L, Janssen DB, Majerić Elenkov M. Oxazolidinone Synthesis through Halohydrin Dehalogenase- Catalyzed Dynamic Kinetic Resolution. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Sánchez-Carrón G, Fleming T, Holt-Tiffin KE, Campopiano DJ. Continuous Colorimetric Assay That Enables High-Throughput Screening of N-Acetylamino Acid Racemases. Anal Chem 2015; 87:3923-8. [DOI: 10.1021/ac5047328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Guiomar Sánchez-Carrón
- The EastChem School of Chemistry, Joseph
Black Building, The University of Edinburgh, Edinburgh, EH9 3FJ, U.K
| | - Toni Fleming
- Dr. Reddy’s Laboratories Ltd., Chirotech Technology
Centre, Milton Road, 410 Cambridge
Science Park, Cambridge CB4 0PE, U.K
| | - Karen E. Holt-Tiffin
- Dr. Reddy’s Laboratories Ltd., Chirotech Technology
Centre, Milton Road, 410 Cambridge
Science Park, Cambridge CB4 0PE, U.K
| | - Dominic J. Campopiano
- The EastChem School of Chemistry, Joseph
Black Building, The University of Edinburgh, Edinburgh, EH9 3FJ, U.K
| |
Collapse
|
35
|
Soriano-Maldonado P, Andújar-Sánchez M, Clemente-Jiménez JM, Rodríguez-Vico F, Las Heras-Vázquez FJ, Martínez-Rodríguez S. Biochemical and Mutational Characterization of N-Succinyl-Amino Acid Racemase from Geobacillus stearothermophilus CECT49. Mol Biotechnol 2015; 57:454-65. [DOI: 10.1007/s12033-015-9839-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Methionine production—a critical review. Appl Microbiol Biotechnol 2014; 98:9893-914. [DOI: 10.1007/s00253-014-6156-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 12/31/2022]
|
37
|
Takeda R, Kawamura A, Kawashima A, Sato T, Moriwaki H, Izawa K, Akaji K, Wang S, Liu H, Aceña JL, Soloshonok VA. Chemical Dynamic Kinetic Resolution andS/R Interconversion of Unprotected α-Amino Acids. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407944] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Takeda R, Kawamura A, Kawashima A, Sato T, Moriwaki H, Izawa K, Akaji K, Wang S, Liu H, Aceña JL, Soloshonok VA. Chemical dynamic kinetic resolution and S/R interconversion of unprotected α-amino acids. Angew Chem Int Ed Engl 2014; 53:12214-7. [PMID: 25244328 DOI: 10.1002/anie.201407944] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Indexed: 12/17/2022]
Abstract
Reported herein is the first purely chemical method for the dynamic kinetic resolution (DKR) of unprotected racemic α-amino acids (α-AAs), a method which can rival the economic efficiency of the enzymatic reactions. The DKR reaction principle can be readily applied for S/R interconversions of α-AAs, the methodological versatility of which is unmatched by biocatalytic approaches. The presented process features a virtually complete stereochemical outcome, fully recyclable source of chirality, and operationally simple and convenient reaction conditions, thus allowing its ready scalability. A quite unique and novel mode of the thermodynamic control over the stereochemical outcome, including an exciting interplay between axial, helical, and central elements of chirality is proposed.
Collapse
Affiliation(s)
- Ryosuke Takeda
- Hamari Chemicals Ltd. 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024 (Japan)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Karau A, Grayson I. Amino acids in human and animal nutrition. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 143:189-228. [PMID: 24676880 DOI: 10.1007/10_2014_269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Amino acids are key components of human and animal nutrition, both as part of a protein-containing diet, and as supplemented individual products. In the last 10 years there has been a marked move away from the extraction of amino acids from natural products, which has been replaced by efficient fermentation processes using nonanimal carbon sources. Today several amino acids are produced in fermentation plants with capacities of more than 100,000 tonnes to serve the requirements of animal feed and human nutrition. The main fermentative amino acids for animal nutrition are L-lysine, L-threonine, and L-tryptophan. DL-Methionine continues to be manufactured for animal feed use principally by chemical synthesis, and a pharmaceutical grade is manufactured by enzymatic resolution. Amino acids play an important role in medical nutrition, particularly in parenteral nutrition, where there are high purity requirements for infusion grade products. Amino acids are also appearing more often in dietary supplements, initially for performance athletes, but increasingly for the general population. As the understanding of the effects of the individual amino acids on the human metabolism is deepened, more specialized product mixtures are being offered to improve athletic performance and for body-building.
Collapse
Affiliation(s)
- Andreas Karau
- Evonik Industries AG, Business Line Health Care, Rodenbacher Chaussee 4, 63457, Hanau-Wolfgang, Germany,
| | | |
Collapse
|
40
|
Large α-aminonitrilase activity screening of nitrilase superfamily members: Access to conversion and enantiospecificity by LC–MS. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Soriano-Maldonado P, Rodríguez-Alonso MJ, Hernández-Cervantes C, Rodríguez-García I, Clemente-Jiménez JM, Rodríguez-Vico F, Martínez-Rodríguez S, Las Heras-Vázquez FJ. Amidohydrolase Process: Expanding the use of l-N-carbamoylase/N-succinyl-amino acid racemase tandem for the production of different optically pure l-amino acids. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Soriano-Maldonado P, Las Heras-Vazquez FJ, Clemente-Jimenez JM, Rodriguez-Vico F, Martínez-Rodríguez S. Enzymatic dynamic kinetic resolution of racemic N-formyl- and N-carbamoyl-amino acids using immobilized l-N-carbamoylase and N-succinyl-amino acid racemase. Appl Microbiol Biotechnol 2014; 99:283-91. [DOI: 10.1007/s00253-014-5880-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/27/2014] [Accepted: 06/04/2014] [Indexed: 11/28/2022]
|
43
|
Fuereder M, Majeed IN, Panke S, Bechtold M. Model-based identification of optimal operating conditions for amino acid simulated moving bed enantioseparation using a macrocyclic glycopeptide stationary phase. J Chromatogr A 2014; 1346:34-42. [DOI: 10.1016/j.chroma.2014.03.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/17/2014] [Accepted: 03/21/2014] [Indexed: 11/28/2022]
|
44
|
Cloning, overexpression, and characterization of a high enantioselective nitrilase from Sphingomonas wittichii RW1 for asymmetric synthesis of (R)-phenylglycine. Appl Biochem Biotechnol 2014; 173:365-77. [PMID: 24664232 DOI: 10.1007/s12010-014-0845-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
Abstract
In this study, a high (R)-enantioselective nitrilase gene from Sphingomonas wittichii RW1 was cloned and overexpressed in Escherichia coli BL21 (DE3). The recombinant nitrilase was purified to homogeneity with a molecular weight of 40 kDa. The pH and temperature optima were shown to be pH 8.0 and 40 °C, respectively. The purified nitrilase was most active toward succinonitrile, approximately 30-fold higher than that for phenylglycinonitrile. Using the E. coli BL21/ReSWRW1 whole cells as biocatalysts, the kinetic resolution for asymmetric synthesis of (R)-phenylglycine was investigated at pH 6.0. A yield of 46 % was obtained with 95 % enantiomeric excess (ee), which made it a promising biocatalyst for synthesis of (R)-phenylglycine.
Collapse
|
45
|
High yield synthesis of d-phenylglycine and its derivatives by nitrilase mediated dynamic kinetic resolution in aqueous-1-octanol biphasic system. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Lorenz H, Seidel-Morgenstern A. Processes To Separate Enantiomers. Angew Chem Int Ed Engl 2014; 53:1218-50. [DOI: 10.1002/anie.201302823] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Indexed: 11/11/2022]
|
47
|
|
48
|
Affiliation(s)
- Jan-Karl Guterl
- Lehrstuhl für Chemie Biogener Rohstoffe; Technische Universität München; Straubing; Germany
| | - Volker Sieber
- Lehrstuhl für Chemie Biogener Rohstoffe; Technische Universität München; Straubing; Germany
| |
Collapse
|
49
|
Gröger H, Asano Y, Bornscheuer UT, Ogawa J. Development of biocatalytic processes in Japan and Germany: from research synergies to industrial applications. Chem Asian J 2012; 7:1138-53. [PMID: 22550022 DOI: 10.1002/asia.201200105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Harald Gröger
- Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany.
| | | | | | | |
Collapse
|
50
|
Yuryev R, Strompen S, Liese A. Coupled chemo(enzymatic) reactions in continuous flow. Beilstein J Org Chem 2011; 7:1449-67. [PMID: 22238518 PMCID: PMC3252844 DOI: 10.3762/bjoc.7.169] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/22/2011] [Indexed: 11/23/2022] Open
Abstract
This review highlights the state of the art in the field of coupled chemo(enzymatic) reactions in continuous flow. Three different approaches to such reaction systems are presented herein and discussed in view of their advantages and disadvantages as well as trends for their future development.
Collapse
Affiliation(s)
- Ruslan Yuryev
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073, Hamburg, Germany
| | - Simon Strompen
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073, Hamburg, Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073, Hamburg, Germany
| |
Collapse
|