1
|
Ryczkowska M, Trocka A, Hromova A, Makowiec S. Meldrum's acid assisted formation of tetrahydroquinolin-2-one derivatives a short synthetic pathway to the biologically useful scaffold. Sci Rep 2024; 14:487. [PMID: 38177152 PMCID: PMC10766601 DOI: 10.1038/s41598-023-50535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
A new method for the preparation of tetrahydroquinolin-2-one derivatives is presented. This approach involves a two-step reaction between enaminones and acylating agents, immediately followed by electrophilic cyclization, all within a single synthesis procedure, eliminating the need to isolate intermediates. The entire process is facilitated by the use of acyl Meldrum's acids which not only shortens the preparation time of the substrates but also easily extends the range of substituents That can be used. The method's scope and limitations were evaluated with various reagent combinations thus demonstrating its general applicability to the synthesis of tetrahydroquinolin-2-one core. Interestingly, some exceptions to the regular reaction pathway were observed when a strong EDG (electron donating group) was introduced via acyl Meldrum's acids. The underlying mechanism of this phenomenon was elucidated during the investigation.
Collapse
Affiliation(s)
- Małgorzata Ryczkowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Alicja Trocka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Anna Hromova
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Sławomir Makowiec
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
2
|
Bien-Möller S, Chen F, Xiao Y, Köppe H, Jedlitschky G, Meyer U, Tolksdorf C, Grube M, Marx S, Tzvetkov MV, Schroeder HWS, Rauch BH. The Putative S1PR1 Modulator ACT-209905 Impairs Growth and Migration of Glioblastoma Cells In Vitro. Cancers (Basel) 2023; 15:4273. [PMID: 37686550 PMCID: PMC10486705 DOI: 10.3390/cancers15174273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Glioblastoma (GBM) is still a deadly tumor due to its highly infiltrative growth behavior and its resistance to therapy. Evidence is accumulating that sphingosine-1-phosphate (S1P) acts as an important tumor-promoting molecule that is involved in the activation of the S1P receptor subtype 1 (S1PR1). Therefore, we investigated the effect of ACT-209905 (a putative S1PR1 modulator) on the growth of human (primary cells, LN-18) and murine (GL261) GBM cells. The viability and migration of GBM cells were both reduced by ACT-209905. Furthermore, co-culture with monocytic THP-1 cells or conditioned medium enhanced the viability and migration of GBM cells, suggesting that THP-1 cells secrete factors which stimulate GBM cell growth. ACT-209905 inhibited the THP-1-induced enhancement of GBM cell growth and migration. Immunoblot analyses showed that ACT-209905 reduced the activation of growth-promoting kinases (p38, AKT1 and ERK1/2), whereas THP-1 cells and conditioned medium caused an activation of these kinases. In addition, ACT-209905 diminished the surface expression of pro-migratory molecules and reduced CD62P-positive GBM cells. In contrast, THP-1 cells increased the ICAM-1 and P-Selectin content of GBM cells which was reversed by ACT-209905. In conclusion, our study suggests the role of S1PR1 signaling in the growth of GBM cells and gives a partial explanation for the pro-tumorigenic effects that macrophages might have on GBM cells.
Collapse
Affiliation(s)
- Sandra Bien-Möller
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Fan Chen
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Yong Xiao
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Hanjo Köppe
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Gabriele Jedlitschky
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
| | - Ulrike Meyer
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky, Universität Oldenburg, 26129 Oldenburg, Germany
| | - Céline Tolksdorf
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky, Universität Oldenburg, 26129 Oldenburg, Germany
| | - Markus Grube
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
| | - Sascha Marx
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Mladen V. Tzvetkov
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
| | - Henry W. S. Schroeder
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Bernhard H. Rauch
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky, Universität Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
3
|
Yang Q, Zhao Y, Ma D. Cu-Mediated Ullmann-Type Cross-Coupling and Industrial Applications in Route Design, Process Development, and Scale-up of Pharmaceutical and Agrochemical Processes. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00050] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qiang Yang
- Synthetic Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Yinsong Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dawei Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
Abstract
This review concentrates on success stories from the synthesis of approved medicines and drug candidates using epoxide chemistry in the development of robust and efficient syntheses at large scale. The focus is on those parts of each synthesis related to the substrate-controlled/diastereoselective and catalytic asymmetric synthesis of epoxide intermediates and their subsequent ring-opening reactions with various nucleophiles. These are described in the form of case studies of high profile pharmaceuticals spanning a diverse range of indications and molecular scaffolds such as heterocycles, terpenes, steroids, peptidomimetics, alkaloids and main stream small molecules. Representative examples include, but are not limited to the antihypertensive diltiazem, the antidepressant reboxetine, the HIV protease inhibitors atazanavir and indinavir, efinaconazole and related triazole antifungals, tasimelteon for sleep disorders, the anticancer agent carfilzomib, the anticoagulant rivaroxaban the antibiotic linezolid and the antiviral oseltamivir. Emphasis is given on aspects of catalytic asymmetric epoxidation employing metals with chiral ligands particularly with the Sharpless and Jacobsen–Katsuki methods as well as organocatalysts such as the chiral ketones of Shi and Yang, Pages’s chiral iminium salts and typical chiral phase transfer agents.
Collapse
|
5
|
Richard M, Specklin S, Roche M, Hinnen F, Kuhnast B. Original synthesis of radiolabeling precursors for batch and on resin one-step/late-stage radiofluorination of peptides. Chem Commun (Camb) 2020; 56:2507-2510. [PMID: 32003763 DOI: 10.1039/c9cc09434b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Radiolabeling of peptides with fluorine-18 is hurdled by their chemical sensitivity and complicated processes. Original triflyl-pyridine intermediates afforded ammonium precursors that were radiolabeled at low temperature. From that study, a generic tag has been designed to allow a simple one-step/late-stage radiolabelling of peptides. The strategy has been transposed to an automated "on-resin" radiolabelling.
Collapse
Affiliation(s)
- Mylène Richard
- Université Paris Saclay, CEA, INSERM, CNRS, BioMaps, Service Hospitalier Frédéric Joliot, Bertrand KUHNAST, 4 place du général Leclerc, 91401 Orsay, France.
| | | | | | | | | |
Collapse
|
6
|
Schäfer G, Fleischer T, Ahmetovic M, Abele S. Development of a Scalable Route for a Key Thiadiazole Building Block via Sequential Sandmeyer Bromination and Room-Temperature Suzuki–Miyaura Coupling. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriel Schäfer
- Chemistry Process R&D, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Tony Fleischer
- Chemistry Process R&D, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Muhamed Ahmetovic
- Chemistry Process R&D, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Stefan Abele
- Chemistry Process R&D, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| |
Collapse
|
7
|
Hirose D, Gazvoda M, Košmrlj J, Taniguchi T. Systematic Evaluation of 2-Arylazocarboxylates and 2-Arylazocarboxamides as Mitsunobu Reagents. J Org Chem 2018; 83:4712-4729. [PMID: 29570289 DOI: 10.1021/acs.joc.8b00486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2-Arylazocarboxylate and 2-arylazocarboxamide derivatives can serve as replacements of typical Mitsunobu reagents such as diethyl azodicarboxylate. A systematic investigation of the reactivity and physical properties of those azo compounds has revealed that they have an excellent ability as Mitsunobu reagents. These reagents show similar or superior reactivity as compared to the known azo reagents and are applicable to the broad scope of substrates. p Ka and steric effects of substrates have been investigated, and the limitation of the Mitsunobu reaction can be overcome by choosing suitable reagents from the library of 2-arylazocarboxylate and 2-aryl azocarboxamide derivatives. Convenient recovery of azo reagents is available by one-pot iron-catalyzed aerobic oxidation, for example. SC-DSC analysis of representative 2-arylazocarboxylate and 2-arylazocarboxamide derivatives has shown high thermal stability, indicating that these azo reagents possess lower chemical hazard compared with typical azo reagents.
Collapse
Affiliation(s)
| | - Martin Gazvoda
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Janez Košmrlj
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | | |
Collapse
|
8
|
Dyckman AJ. Modulators of Sphingosine-1-phosphate Pathway Biology: Recent Advances of Sphingosine-1-phosphate Receptor 1 (S1P 1) Agonists and Future Perspectives. J Med Chem 2017; 60:5267-5289. [PMID: 28291340 DOI: 10.1021/acs.jmedchem.6b01575] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sphingoid base derived class of lipids (sphingolipids) is a family of interconverting molecules that play key roles in numerous structural and signaling processes. The biosynthetic pathway of the sphingolipids affords many opportunities for therapeutic intervention: targeting the ligands directly, targeting the various proteins involved in the interconversion of the ligands, or targeting the receptors that respond to the ligands. The focus of this article is on the most advanced of the sphingosine-related therapeutics, agonists of sphingosine-1-phosphate receptor 1 (S1P1). The diverse structural classes of S1P1 agonists will be discussed and the status of compounds of clinical relevance will be detailed. An examination of how potential safety concerns are being navigated with compounds currently under clinical evaluation is followed by a discussion of the novel methods being explored to identify next-generation S1P1 agonists with improved safety profiles. Finally, therapeutic opportunities for sphingosine-related targets outside of S1P1 are touched upon.
Collapse
Affiliation(s)
- Alaric J Dyckman
- Research and Development, Bristol-Myers Squibb Company , P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
9
|
Schmidt G, Bolli MH, Lescop C, Abele S. Practical Synthesis of a S1P Receptor 1 Agonist via a Guareschi–Thorpe Reaction. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gunther Schmidt
- Chemistry Process R&D, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Martin H. Bolli
- Chemistry Process R&D, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Cyrille Lescop
- Chemistry Process R&D, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Stefan Abele
- Chemistry Process R&D, Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| |
Collapse
|
10
|
Bolli MH, Lescop C, Birker M, de Kanter R, Hess P, Kohl C, Nayler O, Rey M, Sieber P, Velker J, Weller T, Steiner B. Novel S1P1 receptor agonists – Part 5: From amino-to alkoxy-pyridines. Eur J Med Chem 2016; 115:326-41. [DOI: 10.1016/j.ejmech.2016.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/15/2022]
|
11
|
Hirose D, Gazvoda M, Košmrlj J, Taniguchi T. Advances and mechanistic insight on the catalytic Mitsunobu reaction using recyclable azo reagents. Chem Sci 2016; 7:5148-5159. [PMID: 30155165 PMCID: PMC6020523 DOI: 10.1039/c6sc00308g] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/12/2016] [Indexed: 02/03/2023] Open
Abstract
Ethyl 2-arylhydrazinecarboxylates can work as organocatalysts for Mitsunobu reactions because they provide ethyl 2-arylazocarboxylates through aerobic oxidation with a catalytic amount of iron phthalocyanine. First, ethyl 2-(3,4-dichlorophenyl)hydrazinecarboxylate has been identified as a potent catalyst, and the reactivity of the catalytic Mitsunobu reaction was improved through strict optimization of the reaction conditions. Investigation of the catalytic properties of ethyl 2-arylhydrazinecarboxylates and the corresponding azo forms led us to the discovery of a new catalyst, ethyl 2-(4-cyanophenyl)hydrazinecarboxylates, which expanded the scope of substrates. The mechanistic study of the Mitsunobu reaction with these new reagents strongly suggested the formation of betaine intermediates as in typical Mitsunobu reactions. The use of atmospheric oxygen as a sacrificial oxidative agent along with the iron catalyst is convenient and safe from the viewpoint of green chemistry. In addition, thermal analysis of the developed Mitsunobu reagents supports sufficient thermal stability compared with typical azo reagents such as diethyl azodicarboxylate (DEAD). The catalytic system realizes a substantial improvement of the Mitsunobu reaction and will be applicable to practical synthesis.
Collapse
Affiliation(s)
- Daisuke Hirose
- Graduate School of Natural Science and Technology , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Martin Gazvoda
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113, SI-1000 , Ljubljana , Slovenia .
| | - Janez Košmrlj
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113, SI-1000 , Ljubljana , Slovenia .
| | - Tsuyoshi Taniguchi
- School of Pharmaceutical Sciences , Institute of Medical , Pharmaceutical and Health Sciences , Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan .
| |
Collapse
|
12
|
Eftekhari-Sis B, Zirak M. Chemistry of α-oxoesters: a powerful tool for the synthesis of heterocycles. Chem Rev 2014; 115:151-264. [PMID: 25423283 DOI: 10.1021/cr5004216] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Bolli MH, Abele S, Birker M, Bravo R, Bur D, de Kanter R, Kohl C, Grimont J, Hess P, Lescop C, Mathys B, Müller C, Nayler O, Rey M, Scherz M, Schmidt G, Seifert J, Steiner B, Velker J, Weller T. Novel S1P(1) receptor agonists--part 3: from thiophenes to pyridines. J Med Chem 2013; 57:110-30. [PMID: 24367923 DOI: 10.1021/jm4014696] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In preceding communications we summarized our medicinal chemistry efforts leading to the identification of potent, selective, and orally active S1P1 agonists such as the thiophene derivative 1. As a continuation of these efforts, we replaced the thiophene in 1 by a 2-, 3-, or 4-pyridine and obtained less lipophilic, potent, and selective S1P1 agonists (e.g., 2) efficiently reducing blood lymphocyte count in the rat. Structural features influencing the compounds' receptor affinity profile and pharmacokinetics are discussed. In addition, the ability to penetrate brain tissue has been studied for several compounds. As a typical example for these pyridine based S1P1 agonists, compound 53 showed EC50 values of 0.6 and 352 nM for the S1P1 and S1P3 receptor, respectively, displayed favorable PK properties, and penetrated well into brain tissue. In the rat, compound 53 maximally reduced the blood lymphocyte count for at least 24 h after oral dosing of 3 mg/kg.
Collapse
Affiliation(s)
- Martin H Bolli
- Drug Discovery Chemistry, Actelion Pharmaceuticals Ltd. , Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Role of sphingosine 1-phosphate in trafficking and mobilization of hematopoietic stem cells. Curr Opin Hematol 2013; 20:281-8. [DOI: 10.1097/moh.0b013e3283606090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Kjell DP, Watson IA, Wolfe CN, Spitler JT. Complexity-Based Metric for Process Mass Intensity in the Pharmaceutical Industry. Org Process Res Dev 2013. [DOI: 10.1021/op3002917] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Douglas P. Kjell
- Lilly Research
Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana, 46285, United States
| | - Ian A. Watson
- Lilly Research
Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana, 46285, United States
| | - Chad N. Wolfe
- Lilly Research
Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana, 46285, United States
| | - Jeremy T. Spitler
- Lilly Research
Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis,
Indiana, 46285, United States
| |
Collapse
|
16
|
Recent Advances in the Discovery and Development of Sphingosine-1-Phosphate-1 Receptor Agonists. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2012. [DOI: 10.1016/b978-0-12-396492-2.00013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|