1
|
The amniotic fluid proteome changes with term labor and informs biomarker discovery in maternal plasma. Sci Rep 2023; 13:3136. [PMID: 36823217 PMCID: PMC9950459 DOI: 10.1038/s41598-023-28157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/13/2023] [Indexed: 02/25/2023] Open
Abstract
The intra-uterine components of labor, namely, myometrial contractility, cervical ripening, and decidua/membrane activation, have been extensively characterized and involve a local pro-inflammatory milieu of cellular and soluble immune mediators. Targeted profiling has demonstrated that such processes extend to the intra-amniotic space, yet unbiased analyses of the proteome of human amniotic fluid during labor are lacking. Herein, we utilized an aptamer-based platform to characterize 1,310 amniotic fluid proteins and found that the proteome undergoes substantial changes with term labor (251 proteins with differential abundance, q < 0.1, and fold change > 1.25). Proteins with increased abundance in labor are enriched for immune and inflammatory processes, consistent with prior reports of labor-associated changes in the intra-uterine space. By integrating the amniotic fluid proteome with previously generated placental-derived single-cell RNA-seq data, we demonstrated the labor-driven upregulation of signatures corresponding to stromal-3 and decidual cells. We also determined that changes in amniotic fluid protein abundance are reflected in the maternal plasma proteome. Collectively, these findings provide novel insights into the amniotic fluid proteome in term labor and support its potential use as a source of biomarkers to distinguish between true and false labor by using maternal blood samples.
Collapse
|
2
|
Bhatti G, Romero R, Gomez-Lopez N, Chaiworapongsa T, Jung E, Gotsch F, Pique-Regi R, Pacora P, Hsu CD, Kavdia M, Tarca AL. The amniotic fluid proteome changes with gestational age in normal pregnancy: a cross-sectional study. Sci Rep 2022; 12:601. [PMID: 35022423 PMCID: PMC8755742 DOI: 10.1038/s41598-021-04050-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/02/2021] [Indexed: 11/28/2022] Open
Abstract
The cell-free transcriptome in amniotic fluid (AF) has been shown to be informative of physiologic and pathologic processes in pregnancy; however, the change in AF proteome with gestational age has mostly been studied by targeted approaches. The objective of this study was to describe the gestational age-dependent changes in the AF proteome during normal pregnancy by using an omics platform. The abundance of 1310 proteins was measured on a high-throughput aptamer-based proteomics platform in AF samples collected from women during midtrimester (16-24 weeks of gestation, n = 15) and at term without labor (37-42 weeks of gestation, n = 13). Only pregnancies without obstetrical complications were included in the study. Almost 25% (320) of AF proteins significantly changed in abundance between the midtrimester and term gestation. Of these, 154 (48.1%) proteins increased, and 166 (51.9%) decreased in abundance at term compared to midtrimester. Tissue-specific signatures of the trachea, salivary glands, brain regions, and immune system were increased while those of the gestational tissues (uterus, placenta, and ovary), cardiac myocytes, and fetal liver were decreased at term compared to midtrimester. The changes in AF protein abundance were correlated with those previously reported in the cell-free AF transcriptome. Intersecting gestational age-modulated AF proteins and their corresponding mRNAs previously reported in the maternal blood identified neutrophil-related protein/mRNA pairs that were modulated in the same direction. The first study to utilize an aptamer-based assay to profile the AF proteome modulation with gestational age, it reveals that almost one-quarter of the proteins are modulated as gestation advances, which is more than twice the fraction of altered plasma proteins (~ 10%). The results reported herein have implications for future studies focused on discovering biomarkers to predict, monitor, and diagnose obstetrical diseases.
Collapse
Affiliation(s)
- Gaurav Bhatti
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
- Detroit Medical Center, Detroit, MI, USA.
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Office of Women's Health, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Roger Pique-Regi
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics & Gynecology, University of Arizona College of Medicine -Tucson, Tucson, AZ, USA
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA.
| |
Collapse
|
3
|
Becktell L, Matuska AM, Hon S, Delco ML, Cole BJ, Begum L, Zhang S, Fortier LA. Proteomic Analysis and Cell Viability of Nine Amnion, Chorion, Umbilical Cord, and Amniotic Fluid-Derived Products. Cartilage 2021; 13:495S-507S. [PMID: 33356465 PMCID: PMC8804846 DOI: 10.1177/1947603520976767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Amnion products are used in various musculoskeletal surgeries and as injections for joint pain with conflicting reports of cell viability and protein contents. The objective of this study was to determine the full proteome and examine cell viability in 9 commercial amnion products using an unbiased bottom-up shotgun proteomics approach and confocal microscopy. DESIGN Products were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and searched against a UniProt Homo sapiens database. Relative protein abundance was determined for each sample. Based on proteomics results, lumican was measured by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis was performed for interleukin-1 receptor antagonist (IL-1Ra) and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2). Cell viability was determined by calcein AM (live) and ethidium homodimer (dead) staining and confocal microscopy. RESULTS Proteomic analysis revealed 919 proteins in the nine products. Proteins were primarily collagens, keratin, and albumin. Lumican, a small leucine-rich proteoglycan (SLRP) was found in all samples. Western blot analysis for IL-1Ra and TIMP-2 indicated presence of both proteins, with nonspecific antibody binding also present in all samples. No live cells were identified in any product. CONCLUSIONS Several novel proteins were identified through proteomics that might impart the beneficial effects of amnion products, including SLRPs, collagens, and regulators of fibroblast activity. IL-1Ra and TIMP-2 were identified, but concentrations measured by ELISA may be falsely increased due to nonspecific antibody binding. The concept that the amnion tissues provide live cells to aid in tissue regeneration cannot be supported by the findings of this study.
Collapse
Affiliation(s)
- Liliya Becktell
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA
| | | | - Stephanie Hon
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA
| | | | - Brian J. Cole
- Midwest Orthopedics at Rush, Rush
University Medical Center, Chicago, IL, USA
| | - Laila Begum
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility,
Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Lisa A. Fortier
- College of Veterinary Medicine, Cornell
University, Ithaca, NY, USA,Lisa A. Fortier, Department of Clinical
Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road,
Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Huang L, Shao D, Wang Y, Cui X, Li Y, Chen Q, Cui J. Human body-fluid proteome: quantitative profiling and computational prediction. Brief Bioinform 2021; 22:315-333. [PMID: 32020158 PMCID: PMC7820883 DOI: 10.1093/bib/bbz160] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/22/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Empowered by the advancement of high-throughput bio technologies, recent research on body-fluid proteomes has led to the discoveries of numerous novel disease biomarkers and therapeutic drugs. In the meantime, a tremendous progress in disclosing the body-fluid proteomes was made, resulting in a collection of over 15 000 different proteins detected in major human body fluids. However, common challenges remain with current proteomics technologies about how to effectively handle the large variety of protein modifications in those fluids. To this end, computational effort utilizing statistical and machine-learning approaches has shown early successes in identifying biomarker proteins in specific human diseases. In this article, we first summarized the experimental progresses using a combination of conventional and high-throughput technologies, along with the major discoveries, and focused on current research status of 16 types of body-fluid proteins. Next, the emerging computational work on protein prediction based on support vector machine, ranking algorithm, and protein-protein interaction network were also surveyed, followed by algorithm and application discussion. At last, we discuss additional critical concerns about these topics and close the review by providing future perspectives especially toward the realization of clinical disease biomarker discovery.
Collapse
Affiliation(s)
- Lan Huang
- College of Computer Science and Technology in the Jilin University
| | - Dan Shao
- College of Computer Science and Technology in the Jilin University
- College of Computer Science and Technology in Changchun University
| | - Yan Wang
- College of Computer Science and Technology in the Jilin University
| | - Xueteng Cui
- College of Computer Science and Technology in the Changchun University
| | - Yufei Li
- College of Computer Science and Technology in the Changchun University
| | - Qian Chen
- College of Computer Science and Technology in the Jilin University
| | - Juan Cui
- Department of Computer Science and Engineering in the University of Nebraska-Lincoln
| |
Collapse
|
5
|
A comprehensive profile and inter-individual variations analysis of the human normal amniotic fluid proteome. J Proteomics 2018; 192:1-9. [PMID: 29684686 DOI: 10.1016/j.jprot.2018.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/23/2018] [Accepted: 04/14/2018] [Indexed: 11/21/2022]
Abstract
Amniotic fluid contains large amounts of proteins produced by amnion epithelial cells, fetal tissues, fetal excretions and placental tissues; thus, it is an important potential source of biomarkers for identifying fetal pathologies. In this study, a pooled AF sample from 7 healthy volunteers was used to provide a comprehensive profile of normal human AF proteome using immunoaffinity depletion of 14 high-abundance proteins. Each individual AF sample was used to analyze inter-individual variations with iTRAQ method. As a result, a total of 2881 non-redundant proteins were identified, and 1624 proteins were quantified based on the peak intensity-based semi-quantification (iBAQ) method. Gene Ontology (GO) analysis showed that the AF proteome was enriched in extracellular region and extracellular matrix. Further function annotation showed that the top canonical pathway was axonal guidance signaling. The inter-individual variation analysis of 7 individual AF samples showed that the median inter-individual CV (Coefficient of variation) was 0.22. iBAQ quantification analysis revealed that the inter-individual variations were not correlated with protein abundance. GO analysis indicated that intracellular proteins tended to have higher CVs, and extracellular proteins tended to have lower CVs. These data will contribute to a better understanding of amniotic fluid proteomic analysis and biomarker discovery. SIGNIFICANCE: Amniotic fluid is an important potential source of biomarkers for identifying fetal pathologies. This study provided a large database for the normal human amniotic fluid proteome and analysis of inter-individual variations in amniotic fluid proteomes, which will offer a baseline reference for further AF proteomic analysis and pregnancy-related disease biomarker discovery.
Collapse
|
6
|
Kaihola H, Yaldir FG, Hreinsson J, Hörnaeus K, Bergquist J, Olivier JDA, Åkerud H, Sundström-Poromaa I. Effects of Fluoxetine on Human Embryo Development. Front Cell Neurosci 2016; 10:160. [PMID: 27378857 PMCID: PMC4909759 DOI: 10.3389/fncel.2016.00160] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/01/2016] [Indexed: 02/05/2023] Open
Abstract
The use of antidepressant treatment during pregnancy is increasing, and selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed antidepressants in pregnant women. Serotonin plays a role in embryogenesis, and serotonin transporters are expressed in two-cell mouse embryos. Thus, the aim of the present study was to evaluate whether fluoxetine, one of the most prescribed SSRI antidepressant world-wide, exposure influences the timing of different embryo developmental stages, and furthermore, to analyze what protein, and protein networks, are affected by fluoxetine in the early embryo development. Human embryos (n = 48) were randomly assigned to treatment with 0.25 or 0.5 μM fluoxetine in culture medium. Embryo development was evaluated by time-lapse monitoring. The fluoxetine-induced human embryo proteome was analyzed by shotgun mass spectrometry. Protein secretion from fluoxetine-exposed human embryos was analyzed by use of high-multiplex immunoassay. The lower dose of fluoxetine had no influence on embryo development. A trend toward reduced time between thawing and start of cavitation was noted in embryos treated with 0.5 μM fluoxetine (p = 0.065). Protein analysis by shotgun mass spectrometry detected 45 proteins that were uniquely expressed in fluoxetine-treated embryos. These proteins are involved in cell growth, survival, proliferation, and inflammatory response. Culturing with 0.5 μM, but not 0.25 μM fluoxetine, caused a significant increase in urokinase-type plasminogen activator (uPA) in the culture medium. In conclusion, fluoxetine has marginal effects on the timing of developmental stages in embryos, but induces expression and secretion of several proteins in a manner that depends on dose. For these reasons, and in line with current guidelines, the lowest possible dose of SSRI should be used in pregnant women who need to continue treatment.
Collapse
Affiliation(s)
- Helena Kaihola
- Department of Women's and Children's Health, Uppsala University Uppsala, Sweden
| | - Fatma G Yaldir
- Centre of Reproduction, Uppsala University Hospital Uppsala, Sweden
| | | | - Katarina Hörnaeus
- Analytical Chemistry, Department of Chemistry - BMC and Science for Life Laboratory, Uppsala University Uppsala, Sweden
| | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry - BMC and Science for Life Laboratory, Uppsala University Uppsala, Sweden
| | - Jocelien D A Olivier
- Unit Behavioural Neuroscience, Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Helena Åkerud
- Department of Women's and Children's Health, Uppsala University Uppsala, Sweden
| | | |
Collapse
|
7
|
Heng YJ, Liong S, Permezel M, Rice GE, Di Quinzio MKW, Georgiou HM. Human cervicovaginal fluid biomarkers to predict term and preterm labor. Front Physiol 2015; 6:151. [PMID: 26029118 PMCID: PMC4429550 DOI: 10.3389/fphys.2015.00151] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/27/2015] [Indexed: 01/06/2023] Open
Abstract
Preterm birth (PTB; birth before 37 completed weeks of gestation) remains the major cause of neonatal morbidity and mortality. The current generation of biomarkers predictive of PTB have limited utility. In pregnancy, the human cervicovaginal fluid (CVF) proteome is a reflection of the local biochemical milieu and is influenced by the physical changes occurring in the vagina, cervix and adjacent overlying fetal membranes. Term and preterm labor (PTL) share common pathways of cervical ripening, myometrial activation and fetal membranes rupture leading to birth. We therefore hypothesize that CVF biomarkers predictive of labor may be similar in both the term and preterm labor setting. In this review, we summarize some of the existing published literature as well as our team's breadth of work utilizing the CVF for the discovery and validation of putative CVF biomarkers predictive of human labor. Our team established an efficient method for collecting serial CVF samples for optimal 2-dimensional gel electrophoresis resolution and analysis. We first embarked on CVF biomarker discovery for the prediction of spontaneous onset of term labor using 2D-electrophoresis and solution array multiple analyte profiling. 2D-electrophoretic analyses were subsequently performed on CVF samples associated with PTB. Several proteins have been successfully validated and demonstrate that these biomarkers are associated with term and PTL and may be predictive of both term and PTL. In addition, the measurement of these putative biomarkers was found to be robust to the influences of vaginal microflora and/or semen. The future development of a multiple biomarker bed-side test would help improve the prediction of PTB and the clinical management of patients.
Collapse
Affiliation(s)
- Yujing J Heng
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center Boston, MA, USA
| | - Stella Liong
- Department of Obstetrics and Gynaecology, University of Melbourne Melbourne, VIC, Australia ; Mercy Perinatal Research Centre, Mercy Hospital for Women Heidelberg, VIC, Australia
| | - Michael Permezel
- Department of Obstetrics and Gynaecology, University of Melbourne Melbourne, VIC, Australia ; Mercy Perinatal Research Centre, Mercy Hospital for Women Heidelberg, VIC, Australia
| | - Gregory E Rice
- University of Queensland Centre for Clinical Research Herston, QLD, Australia
| | - Megan K W Di Quinzio
- Department of Obstetrics and Gynaecology, University of Melbourne Melbourne, VIC, Australia ; Mercy Perinatal Research Centre, Mercy Hospital for Women Heidelberg, VIC, Australia
| | - Harry M Georgiou
- Department of Obstetrics and Gynaecology, University of Melbourne Melbourne, VIC, Australia ; Mercy Perinatal Research Centre, Mercy Hospital for Women Heidelberg, VIC, Australia
| |
Collapse
|
8
|
Bazrafshan A, Owji M, Yazdani M, Varedi M. Activation of mitosis and angiogenesis in diabetes-impaired wound healing by processed human amniotic fluid. J Surg Res 2014; 188:545-52. [DOI: 10.1016/j.jss.2014.01.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/12/2013] [Accepted: 01/24/2014] [Indexed: 01/13/2023]
|
9
|
Online Microreactor Titanium Dioxide RPLC-LTQ-Orbitrap MS Automated Platform for Shotgun Analysis of (Phospho) Proteins in Human Amniotic Fluid. Chromatographia 2013. [DOI: 10.1007/s10337-013-2567-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Kolialexi A, Tounta G, Mavrou A, Tsangaris GT. Proteomic analysis of amniotic fluid for the diagnosis of fetal aneuploidies. Expert Rev Proteomics 2011; 8:175-85. [PMID: 21501011 DOI: 10.1586/epr.10.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Advances in technologies associated with mass spectrometry-based proteomic techniques have added a new dimension to the field of biomedical research. Most of the existing research on human gestation has focused on the application of these high-throughput methodologies in the study of amniotic fluid. In cases of fetal aneuploidies, the use of proteomic platforms has contributed to the identification of relevant protein biomarkers that could potentially change early diagnosis and treatment. The current article focuses on studies of normal amniotic fluid using proteomic technologies and describes alterations noted in the amniotic fluid proteome in the presence of fetal aneuploidies.
Collapse
Affiliation(s)
- Aggeliki Kolialexi
- Department of Medical Genetics, School of Medicine, University of Athens, 115 27 Athens, Greece
| | | | | | | |
Collapse
|
11
|
Tsangaris GT, Anagnostopoulos AK, Tounta G, Antsaklis A, Mavrou A, Kolialexi A. Application of proteomics for the identification of biomarkers in amniotic fluid: are we ready to provide a reliable prediction? EPMA J 2011. [PMID: 23199144 PMCID: PMC3405381 DOI: 10.1007/s13167-011-0083-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteomics-based identification of biomarkers for fetal abnormalities and pregnancy complications in amniotic fluid (AF) has made significant progress in the past 5 years. This is attributed mainly to advances in mass spectrometry-based proteomic technologies that enable new strategies for discovering biomarkers from complex biological fluids in a high-throughput and sensitive manner. These markers, although they still need to be verified, are diagnostic and may in the future provide targets for therapeutic intervention. In the current review we focus on the emergence of proteomics as a major platform technology in studying AF and developing biomarkers for fetal aneuploidies and pregnancy-related disorders.
Collapse
Affiliation(s)
- George Th Tsangaris
- Proteomics Research Unit, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | | | | | | | | | | |
Collapse
|
12
|
Cho CKJ, Diamandis EP. Application of proteomics to prenatal screening and diagnosis for aneuploidies. Clin Chem Lab Med 2011; 49:33-41. [DOI: 10.1515/cclm.2011.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Alam M, Selladurai M, Nagpal S, Tomar AK, Saraswat M, Raziuddin M, Mittal S, Singh TP, Yadav S. Sample complexity reduction aids efficient detection of low-abundant proteins from human amniotic fluid. J Sep Sci 2010; 33:1723-9. [PMID: 20491054 DOI: 10.1002/jssc.200900756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Working with biological fluids poses a challenge of visualizing proteins present in lower concentrations. This study describes a batch-mode chromatographic method for the fractionation of human amniotic fluid (AF). This method is easy to use with minimal sample quantity, resin volume and sample processing time. For albumin depletion, two methods were evaluated. The results demonstrated that specific depletion of albumin, using affinity-ligand-based resin, is more efficient than the conventional dye-based method. The albumin-depleted human AF was fractionated by strong anion-exchange resin in spin devices, for sample, complexity reduction and enrichment of low-abundant proteins. Analysis of four eluate fractions generated after this step shows enrichment of few low-abundant proteins. Two novel low-abundant proteins, Rab GDP dissociation inhibitor beta and peptide methionine sulfoxide reductase, were identified from human AF. Alpha-1-B glycoprotein was successfully identified by this strategy, whereas the published literature reports that it was not identified by strong anion-exchange FPLC followed by SDS-PAGE. Therefore, the current method has distinct advantages over the conventional column-based chromatography. This study also reports altered expression of some proteins in Rh-isoimmunized AF samples in comparison with normal AF.
Collapse
Affiliation(s)
- Mashkoor Alam
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
BACKGROUND For more than 100 years, group A Streptococcus has been identified as a cause of severe and, in many cases, fatal infections of the female urogenital tract. Due to advances in hospital hygiene and the advent of antibiotics, this type of infection has been virtually eradicated. However, within the last three decades there has been an increase in severe intra- and post-partum infections attributed to GAS. METHODOLOGY We hypothesized that GAS alters its transcriptome to survive in human amniotic fluid (AF) and cause disease. To identify genes that were up or down regulated in response to growth in AF, GAS was grown in human AF or standard laboratory media (THY) and samples for expression microarray analysis were collected during mid-logarithmic, late-logarithmic, and stationary growth phases. Microarray analysis was performed using a custom Affymetrix chip and normalized hybridization values derived from three biological replicates were collected at each growth point. Ratios of AF/THY above a 2-fold change and P-value <0.05 were considered significant. PRINCIPAL FINDINGS The majority of changes in the GAS transcriptome involved down regulation of multiple adhesins and virulence factors and activation of the stress response. We observed significant changes in genes involved in the arginine deiminase pathway and in the nucleotide de novo synthesis pathway. CONCLUSIONS/SIGNIFICANCE Our work provides new insight into how pathogenic bacteria respond to their environment to establish infection and cause disease.
Collapse
|
15
|
Sumner S, Snyder R, Burgess J, Myers C, Tyl R, Sloan C, Fennell T. Metabolomics in the assessment of chemical-induced reproductive and developmental outcomes using non-invasive biological fluids: application to the study of butylbenzyl phthalate. J Appl Toxicol 2010; 29:703-14. [PMID: 19731247 DOI: 10.1002/jat.1462] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study was conducted to evaluate the use of metabolomics for improving our ability to draw correlations between early life exposures and reproductive and/or developmental outcomes. Pregnant CD rats were exposed by gavage daily during gestation to vehicle or to butylbenzyl phthalate (BBP) in vehicle at a level known to induce effects in the offspring and at a level previously not shown to induce effects. Urine was collected for 24 h (on dry ice using all glass metabolism chambers) from dams on gestational day 18 (during exposure) and on post natal day (pnd) 21, and from pnd 25 pups. Traditional phenotypic anchors were measured in pups (between pnd 0 and pnd 26). Metabolomics of urine collected from dams exposed to vehicle or BBP exhibited different patterns for endogenous metabolites. Even three weeks after gestational exposure, metabolic profiles of endogenous compounds in urine could differentiate dams that received the vehicle, low dose or high dose of BBP. Metabolic profiles could differentiate male from female pups, pups born to dams receiving the vehicle, low or high BBP dose, and pups with observable adverse reproductive effects from pups with no observed effects. Metabolites significant to the separation of dose groups and their relationship with effects measured in the study were mapped to biochemical pathways for determining mechanistic relevance. The application of metabolomics to understanding the mechanistic link between low levels of environmental exposure and disease/dysfunction holds huge promise, because this technology is ideal for the analysis of biological fluids in human populations.
Collapse
Affiliation(s)
- Susan Sumner
- Health Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Application of proteomics for diagnosis of fetal aneuploidies and pregnancy complications. J Proteomics 2009; 72:731-9. [PMID: 19332162 DOI: 10.1016/j.jprot.2009.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/11/2009] [Accepted: 03/16/2009] [Indexed: 11/22/2022]
Abstract
Proteomic technologies represent new strategies towards high-throughput, simultaneous analysis of thousands of biological molecules leading to the discovery of biomarkers for early diagnosis, prognosis and prediction of pregnancy outcome. Proteomics have additional relevance in understanding pathophysiology and the development of molecularly targeted therapeutics. Comparison of normal human amniotic fluid proteome with that coming from pregnancies carrying fetuses with chromosomal abnormalities facilitated the detection of panels of potential biomarkers for prenatal detection of fetal aneuploidies. Candidate biomarkers for the early prediction of preeclampsis are also available, while four biomarkers (defensins-2 and -1, calgranulin-C, and calgranulin-A), which were called the "MR score", can quickly and accurately detect potentially dangerous infections and predict premature birth. Researchers remain hopeful that proteomic studies will allow for the identification of either one protein marker or of a panel of markers for prenatal detection of fetal aneuploidies and pregnancy complications that could be usefully employed for diagnostic purposes or improvement of the current screening methods. For maximum predictive power however, biomarkers should be selected for further comparative analysis of expression and structural modifications in large numbers of samples from chromosomally normal and abnormal pregnancies obtained from different populations.
Collapse
|
18
|
Bujold E, Romero R, Kusanovic JP, Erez O, Gotsch F, Chaiworapongsa T, Gomez R, Espinoza J, Vaisbuch E, Mee Kim Y, Edwin S, Pisano M, Allen B, Podust VN, Dalmasso EA, Rutherford J, Rogers W, Moser A, Yoon BH, Barder T. Proteomic profiling of amniotic fluid in preterm labor using two-dimensional liquid separation and mass spectrometry. J Matern Fetal Neonatal Med 2009; 21:697-713. [PMID: 19012186 DOI: 10.1080/14767050802053289] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Simultaneous analysis of the protein composition of biological fluids is now possible. Such an approach can be used to identify biological markers of disease and to understand the pathophysiology of disorders that have eluded classification, diagnosis, and treatment. The purpose of this study was to analyze the differences in protein composition of the amniotic fluid of patients in preterm labor. STUDY DESIGN Amniotic fluid was obtained by amniocentesis from three groups of women with preterm labor and intact membranes: (1) women without intra-amniotic infection/inflammation (IAI) who delivered at term, (2) women without IAI who delivered a preterm neonate, and (3) women with IAI. Intra-amniotic infection was defined as a positive amniotic fluid culture for microorganisms. Intra-amniotic inflammation was defined as an elevated amniotic fluid interleukin (IL)-6 (> or =2.3 ng/mL). Two-dimensional (2D) chromatography was used for analysis. The first dimension separated proteins by isoelectric point, while the second, by the degree of hydrophobicity. 2D protein maps were generated using different experimental conditions (reducing agents as well as protein concentration). The maps were used to discern subsets of isoelectric point/hydrophobicity containing differentially expressed proteins. Protein identification of differentially expressed fractions was conducted with mass spectrometry. Enzyme-linked immunosorbent assays (ELISA) as well as surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS)-based on-chip antibody capture immunoassays were also used for confirmation of a specific protein that was differentially expressed. RESULTS (1) Amniotic fluid protein composition can be analyzed using a combination of 2D liquid chromatography and mass spectrometry for the identification of proteins differentially expressed in patients in preterm labor. (2) While total insulin-like growth factor-binding protein-1 (IGFBP-1) concentration did not change, IGFBP-1 fragments at about 13.5 kDa were present in patients with IAI. (3) Proteins that were over-expressed in group 1 included von Ebner gland protein precursor, IL-7 precursor, apolipoprotein A1, tropomyosin sk1 (TPMsk1) fragment, ribosomal protein S6 kinase alpha-3, and alpha-1-microglobulin/bikunin precursor (AMBP). (4) Proteins that were over-expressed in group 3 included fibrinopeptide B, transferrin, major histocompatibility complex (MHC) class 1 chain-related A antigen fragment, transcription elongation factor A, sex-determining region Y (SRY) box 5 protein, Down syndrome critical region 2 protein (DSCR2), and human peptide 8 (HP8). (5) One protein, retinol-binding protein, was over-expressed in women who delivered preterm, regardless of the presence of IAI. CONCLUSIONS A combination of techniques involving 2D chromatography, mass spectrometry, and immunoassays allows identification of proteins that are differentially regulated in the amniotic fluid of patients with preterm labor. Specifically, the amount of the IGFBP-1 fragments at approximately 13.5 kDa was found to be increased in patients with IAI, while the amount of the intact form of IGFBP-1 was decreased.
Collapse
Affiliation(s)
- Emmanuel Bujold
- Perinatology Research Branch, NICHD/NIH/DHSS, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Danell RM, Ouvry-Patat SA, Scarlett CO, Speir JP, Borchers CH. Data Self-Recalibration and Mixture Mass Fingerprint Searching (DASER-MMF) to enhance protein identification within complex mixtures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1914-1925. [PMID: 18708289 DOI: 10.1016/j.jasms.2008.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 07/02/2008] [Accepted: 07/15/2008] [Indexed: 05/26/2023]
Abstract
A novel algorithm based on Data Self-Recalibration and a subsequent Mixture Mass Fingerprint search (DASER-MMF) has been developed to improve the performance of protein identification from online 1D and 2D-LC-MS/MS experiments conducted on high-resolution mass spectrometers. Recalibration of 40% to 75% of the MS spectra in a human serum dataset is demonstrated with average errors of 0.3 +/- 0.3 ppm, regardless of the original calibration quality. With simple protein mixtures, the MMF search identifies new proteins not found in the MS/MS based search and increases the sequence coverage for identified proteins by six times. The high mass accuracy allows proteins to be identified with as little as three peptide mass hits. When applied to very complex samples, the MMF search shows less dramatic performance improvements. However, refinements such as additional discriminating factors utilized within the search space provide significant gains in protein identification ability and indicate that further enhancements are possible in this realm.
Collapse
|
20
|
Kolialexi A, Mavrou A, Spyrou G, Tsangaris GT. Mass spectrometry-based proteomics in reproductive medicine. MASS SPECTROMETRY REVIEWS 2008; 27:624-634. [PMID: 18618655 DOI: 10.1002/mas.20181] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The emergence of powerful mass spectrometry-based proteomic techniques has added a new dimension to the field of biomedical research. Application of these high throughput methodologies in pregnancy-related pathology has contributed to the comprehension of the underlying pathophysiologies and the successful identification of relevant protein biomarkers that can potentially change early diagnosis and treatment of several medical conditions related to human pregnancy. Most of the existing research on human reproduction and gestation has focused on follicular fluid, cervical/vaginal fluid, and amniotic fluid. Although proteome technologies in reproductive medicine research are not as yet widely applied, characterization of the proteome of reproductive fluids can be expected to significantly improve maternal healthcare. This article aims to summarize the applications of mass spectrometry based technology on the most important and specific biological fluids related to reproduction and gestation.
Collapse
Affiliation(s)
- Aggeliki Kolialexi
- Department of Medical Genetics, Athens University School of Medicine, Athens, Greece
| | | | | | | |
Collapse
|
21
|
Li SJ, Peng M, Li H, Liu BS, Wang C, Wu JR, Li YX, Zeng R. Sys-BodyFluid: a systematical database for human body fluid proteome research. Nucleic Acids Res 2008; 37:D907-12. [PMID: 18978022 PMCID: PMC2686600 DOI: 10.1093/nar/gkn849] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recently, body fluids have widely become an important target for proteomic research and proteomic study has produced more and more body fluid related protein data. A database is needed to collect and analyze these proteome data. Thus, we developed this web-based body fluid proteome database Sys-BodyFluid. It contains eleven kinds of body fluid proteomes, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, seminal fluid, human milk and amniotic fluid. Over 10,000 proteins are presented in the Sys-BodyFluid. Sys-BodyFluid provides the detailed protein annotations, including protein description, Gene Ontology, domain information, protein sequence and involved pathways. These proteome data can be retrieved by using protein name, protein accession number and sequence similarity. In addition, users can query between these different body fluids to get the different proteins identification information. Sys-BodyFluid database can facilitate the body fluid proteomics and disease proteomics research as a reference database. It is available at http://www.biosino.org/bodyfluid/.
Collapse
Affiliation(s)
- Su-Jun Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hassan MI, Kumar V, Singh TP, Yadav S. Proteomic analysis of human amniotic fluid from Rh− pregnancy. Prenat Diagn 2008; 28:102-8. [DOI: 10.1002/pd.1941] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Kolialexi A, Mavrou A, Tsangaris GT. Proteomic analysis of human reproductive fluids. Proteomics Clin Appl 2007; 1:853-60. [DOI: 10.1002/prca.200700040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Indexed: 11/06/2022]
|
24
|
Vascotto C, Salzano AM, D'Ambrosio C, Fruscalzo A, Marchesoni D, di Loreto C, Scaloni A, Tell G, Quadrifoglio F. Oxidized transthyretin in amniotic fluid as an early marker of preeclampsia. J Proteome Res 2007; 6:160-70. [PMID: 17203960 DOI: 10.1021/pr060315z] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Preeclampsia is a pregnancy-specific hypertensive syndrome and a major cause of maternal and fetal morbidity and mortality. At the present time, no reliable screening tests to identify women at risk are available. We have compared the amniotic fluids (AF) proteomic maps of five preeclamptic patients with those of five controls. The analysis was carried out by two-dimensional electrophoresis followed by peptide mapping and tandem mass spectrometric analysis. Besides the implementation of the previously published AF proteomic maps, our results show that transthyretin (TTR), the protein responsible for transporting both the thyroid hormone tyroxine and the retinol binding protein, is present in the AF of both preeclamptic and control women as a mixture of dimeric and post-translationally modified monomeric forms. Although the nature of these forms is similar in both groups, the preeclamptic women showed a significant increase in the amount of monomeric proteins with respect to the control group. Since the TTR monomeric forms are the results of different oxidizing reactions, we hypothesize that the higher oxidative stress in preeclampsia is the major destabilizing factor of the TTR functional dimeric form in the preeclamptic women.
Collapse
Affiliation(s)
- Carlo Vascotto
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Falk R, Ramström M, Ståhl S, Hober S. Approaches for systematic proteome exploration. ACTA ACUST UNITED AC 2007; 24:155-68. [PMID: 17376740 DOI: 10.1016/j.bioeng.2007.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/24/2007] [Accepted: 01/25/2007] [Indexed: 10/23/2022]
Abstract
With the completion of the human genome project (HUGO) during recent years, gene function, protein abundance and expression patterns in tissues and cell types have emerged as central areas for the scientific community. A mapped human proteome will extend the value of the genome sequence and large-scale efforts aiming at elucidating protein localization, abundance and function are invaluable for biomarker and drug discovery. This research area, termed proteomics, is more demanding than any genome sequencing effort and to perform this on a wide scale is a highly diverse task. Therefore, the proteomics field employs a range of methods to examine different aspects of proteomics including protein localization, protein-protein interactions, posttranslational modifications and alteration of protein composition (e.g. differential expression) in tissues and body fluids. Here, some of the most commonly used methods, including chromatographic separations together with mass spectrometry and a number of affinity proteomics concepts are discussed and exemplified.
Collapse
Affiliation(s)
- Ronny Falk
- Royal Institute of Technology, Albanova University Center, School of Biotechnology, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
26
|
Cho CKJ, Shan SJ, Winsor EJ, Diamandis EP. Proteomics analysis of human amniotic fluid. Mol Cell Proteomics 2007; 6:1406-15. [PMID: 17495049 DOI: 10.1074/mcp.m700090-mcp200] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amniotic fluid is a dynamic and complex mixture that reflects the physiological status of the developing fetus. In this study, the human amniotic fluid (AF) proteome of a 16-18-week normal pregnancy was profiled and analyzed to investigate the composition and functions of this fluid. Due to the complexity of AF, we utilized three different fractionation strategies to provide greater coverage. Two types of two-dimensional LC/MS/MS as well as an LC-SDS-PAGE-LC-MS/MS platform were used. A total of 16 AF samples between gestational ages of 16 and 18 weeks from women carrying chromosomally normal fetuses were analyzed by one of the three fractionation methods followed by a common reverse phase LC-MS/MS step. Mascot and The Global Proteome Machine engines were used to search the International Protein Index human database for peptide sequence identification. The list of proteins was generated by combining the results of both engines through the PeptideProphet of Scaffold software. All identified proteins were combined to generate the AF proteome comprising 1,026 unique gene matches or 842 non-redundant proteins. This list includes most of the currently used biomarkers for pregnancy-associated pathologic conditions such as preterm delivery, intra-amniotic infection, and chromosomal anomalies of the fetus. The subcellular localization, tissue expression, functions, and networks of the AF proteome were analyzed by various bioinformatic tools. These data will contribute to the better understanding of amniotic fluid function and to the discovery of novel biomarkers for prenatal diagnosis of fetal abnormalities.
Collapse
Affiliation(s)
- Chan-Kyung J Cho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada
| | | | | | | |
Collapse
|
27
|
Michaels JEA, Dasari S, Pereira L, Reddy AP, Lapidus JA, Lu X, Jacob T, Thomas A, Rodland M, Roberts CT, Gravett MG, Nagalla SR. Comprehensive Proteomic Analysis of the Human Amniotic Fluid Proteome: Gestational Age-Dependent Changes. J Proteome Res 2007; 6:1277-85. [PMID: 17373841 DOI: 10.1021/pr060543t] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amniotic fluid (AF) is a significant contributor to fetal health and constitutes a potential rich source of biomarkers for diagnosis of maternal and fetal disorders. In this study, we performed a comprehensive survey of the proteins expressed in AF, combining gel and liquid-based fractionation approaches coupled with LC-MS/MS analysis. Two-dimensional Liquid Chromatography (2D-LC) analysis identified 118 nonredundant proteins with high confidence. One- and two-dimensional gel electrophoresis and in-gel digestion identified 101 proteins. Combining both sets resulted in 219 proteins, of which 96 are unique to AF; 70, 18, and 35 proteins are present in serum, cervico-vaginal fluid, and all three fluids, respectively. Fluorescence two-dimensional differential in-gel electrophoresis (2D-DIGE) comparison of first-, second-, and third-trimester AF samples revealed that maximal differences in the relative abundance of AF proteins occur between the first and second trimesters. A systematic analysis of proteins present both in AF and maternal serum could lead to the development of new noninvasive diagnostic procedures to monitor fetal status.
Collapse
|
28
|
Gianazza E, Wait R, Begum S, Eberini I, Campagnoli M, Labò S, Galliano M. Mapping the 5–50-kDa fraction of human amniotic fluid proteins by 2-DE and ESI-MS. Proteomics Clin Appl 2007; 1:167-75. [DOI: 10.1002/prca.200600543] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Abstract
The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future.
Collapse
Affiliation(s)
- Shen Hu
- School of Dentistry, Division of Oral Biology and Medicine, Dental Research Institute, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
30
|
Park SJ, Yoon WG, Song JS, Jung HS, Kim CJ, Oh SY, Yoon BH, Jung G, Kim HJ, Nirasawa T. Proteome analysis of human amnion and amniotic fluid by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proteomics 2006; 6:349-63. [PMID: 16294308 DOI: 10.1002/pmic.200500084] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proteome analysis by 2-DE and PMF by MALDI-TOF MS was performed on human amnion and amniotic fluid at term. Ninety-two soluble and nineteen membrane proteins were identified from amnion. Thirty-five proteins were identified from amniotic fluid. Calgranulin A and B were found in all patients infected with Ureaplasma urealyticum, but not in any of the patients without infection, indicating that they are potential markers of intrauterine infection. Identity of calgranulin A and B was confirmed by MALDI-TOF/TOF MS. This study represents the first extensive analysis of the human amnion and amniotic fluid proteome at term and demonstrates that 2-DE and MALDI-TOF MS is a useful tool for identifying clinically significant biomarkers of problematic pregnancies.
Collapse
Affiliation(s)
- Soo-Jin Park
- Department of Chemistry, Seoul National University, Gwanak-gu, Seoul, Korea 151-747
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Michel PE, Crettaz D, Morier P, Heller M, Gallot D, Tissot JD, Reymond F, Rossier JS. Proteome analysis of human plasma and amniotic fluid by Off-Gel™ isoelectric focusing followed by nano-LC-MS/MS. Electrophoresis 2006; 27:1169-81. [PMID: 16470776 DOI: 10.1002/elps.200500680] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This paper presents a comparative proteomic analysis of human maternal plasma and amniotic fluid (AF) samples from the same patient at term of pregnancy in order to find specific AF proteins as markers of premature rupture of membranes, a complication frequently observed during pregnancy. Maternal plasma and the corresponding AF were immunodepleted in order to remove the six most abundant proteins before the systematic analysis of their protein composition. The protein samples were then fractionated by IEF Off-Gel electrophoresis (OGE), digested and analyzed with nano-LC-MS/MS separation, revealing a total of 73 and 69 proteins identified in maternal plasma and AF samples, respectively. The proteins identified in AF have been compared to those identified in the mother plasma as well as to the reference human plasma protein list reported by Anderson et al. (Mol. Cell. Proteomics 2004, 3, 311-326). This comparison showed that 26 proteins were exclusively present in AF and not in plasma among which 10 have already been described to be placenta or pregnancy specific. As a further validation of the method, plasma proteins fractionated by OGE and analysed by nano-LC-MS/MS have been compared to the Swiss 2-D PAGE reference map by reconstructing a map that matches 2-D gel and OGE experimental data. This representation shows that 36 of 49 reference proteins could be identified in both data sets, and that isoform shifts in pI are well conserved in the OGE data sets.
Collapse
|
32
|
Palmblad M, Bindschedler LV, Gibson TM, Cramer R. Automatic internal calibration in liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry of protein digests. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:3076-80. [PMID: 16988928 DOI: 10.1002/rcm.2707] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Accurately measured peptide masses can be used for large-scale protein identification from bacterial whole-cell digests as an alternative to tandem mass spectrometry (MS/MS) provided mass measurement errors of a few parts-per-million (ppm) are obtained. Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) routinely achieves such mass accuracy either with internal calibration or by regulating the charge in the analyzer cell. We have developed a novel and automated method for internal calibration of liquid chromatography (LC)/FTICR data from whole-cell digests using peptides in the sample identified by concurrent MS/MS together with ambient polydimethylcyclosiloxanes as internal calibrants in the mass spectra. The method reduced mass measurement error from 4.3 +/- 3.7 ppm to 0.3 +/- 2.3 ppm in an E. coli LC/FTICR dataset of 1000 MS and MS/MS spectra and is applicable to all analyses of complex protein digests by FTICRMS.
Collapse
|
33
|
Ramström M, Hagman C, Mitchell JK, Derrick PJ, Håkansson P, Bergquist J. Depletion of high-abundant proteins in body fluids prior to liquid chromatography fourier transform ion cyclotron resonance mass spectrometry. J Proteome Res 2005; 4:410-6. [PMID: 15822917 DOI: 10.1021/pr049812a] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Today, proteomics is an exciting approach to discover potential biomarkers of different disorders. One challenge with proteomics experiments is the wide concentration range of proteins in various tissues and body fluids. The most abundant component in human body fluids, human serum albumin (HSA), is present at concentrations corresponding to approximately 50% of the total protein content in, e.g., plasma and cerebrospinal fluid (CSF). If this component could be selectively removed, then the chances of observing lower-abundance component of clinical interest would be greatly improved. There are today several approaches of varying specificity available for depletion. In this study, the properties of two commercially available kits, for the removal of HSA and HSA and immunoglobulin G (IgG), respectively, were compared, and the benefits of using depletion steps prior to on-line LC-FTICR MS were evaluated. Both methods were applied on plasma and CSF. To our knowledge, these are the first results reported for CSF. Also, the combination with electrospray LC-FTICR MS is novel. The proportion of depleted HSA and IgG was estimated using global labeling markers for peptide quantification. Both depletion-methods provided a significant reduction of HSA, and the identification of lower abundant components was clearly facilitated. A higher proportion of HSA was removed using the affinity-based removal kit, and consequently more proteins could be identified using this approach.
Collapse
Affiliation(s)
- Margareta Ramström
- Department of Chemistry, Analytical Chemistry, Uppsala University, P.O. Box 599, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
34
|
Hagman C, Ramström M, Jansson M, James P, Håkansson P, Bergquist J. Reproducibility of Tryptic Digestion Investigated by Quantitative Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J Proteome Res 2005; 4:394-9. [PMID: 15822915 DOI: 10.1021/pr049809r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, the reproducibility of tryptic digestion of complex solutions was investigated using liquid chromatography Fourier transform ion cyclotron resonance (LC FT-ICR) mass spectrometry. Tryptic peptides, from human cerebrospinal fluid, (CSF) were labeled with Quantification-Using-Enhanced-Signal-Tags (QUEST)-markers, or 1-([H4]nicotinoyloxy)- and 1-([D4]nicotinoyloxy)-succinimide ester markers. The analysis was performed on abundant proteins with respect-to-intensity ratios and sequence coverage and obtained by comparing differently labeled components from one or different pools. To interpret the dynamics in the proteome, one must be able to estimate the error introduced in each experimental steps. The intra sample variation due to derivatization was approximately 10%. The inter sample variation depending on derivatization and tryptic digestion was not more than approximately 30%. These experimental observations provide a range for the up- and down-regulations that are possible to study with electrospray ionization LC FT-ICR mass spectrometry.
Collapse
Affiliation(s)
- Charlotte Hagman
- Division of Ion Physics, The Angström Laboratory, Uppsala University, Box 534, SE-75121 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
35
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2448604 DOI: 10.1002/cfg.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|