1
|
Ambreen S, Umar M, Noor A, Jain H, Ali R. Advanced AI and ML frameworks for transforming drug discovery and optimization: With innovative insights in polypharmacology, drug repurposing, combination therapy and nanomedicine. Eur J Med Chem 2025; 284:117164. [PMID: 39721292 DOI: 10.1016/j.ejmech.2024.117164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
Artificial Intelligence (AI) and Machine Learning (ML) are transforming drug discovery by overcoming traditional challenges like high costs, time-consuming, and frequent failures. AI-driven approaches streamline key phases, including target identification, lead optimization, de novo drug design, and drug repurposing. Frameworks such as deep neural networks (DNNs), convolutional neural networks (CNNs), and deep reinforcement learning (DRL) models have shown promise in identifying drug targets, optimizing delivery systems, and accelerating drug repurposing. Generative adversarial networks (GANs) and variational autoencoders (VAEs) aid de novo drug design by creating novel drug-like compounds with desired properties. Case studies, such as DDR1 kinase inhibitors designed using generative models and CDK20 inhibitors developed via structure-based methods, highlight AI's ability to produce highly specific therapeutics. Models like SNF-CVAE and DeepDR further advance drug repurposing by uncovering new therapeutic applications for existing drugs. Advanced ML algorithms enhance precision in predicting drug efficacy, toxicity, and ADME-Tox properties, reducing development costs and improving drug-target interactions. AI also supports polypharmacology by optimizing multi-target drug interactions and enhances combination therapy through predictions of drug synergies and antagonisms. In nanomedicine, AI models like CURATE.AI and the Hartung algorithm optimize personalized treatments by predicting toxicological risks and real-time dosing adjustments with high accuracy. Despite its potential, challenges like data quality, model interpretability, and ethical concerns must be addressed. High-quality datasets, transparent models, and unbiased algorithms are essential for reliable AI applications. As AI continues to evolve, it is poised to revolutionize drug discovery and personalized medicine, advancing therapeutic development and patient care.
Collapse
Affiliation(s)
- Subiya Ambreen
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Mohammad Umar
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Aaisha Noor
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Himangini Jain
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Ruhi Ali
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India.
| |
Collapse
|
2
|
Zhou L, Song J, Li Z, Hu Y, Guo W. THGB: predicting ligand-receptor interactions by combining tree boosting and histogram-based gradient boosting. Sci Rep 2024; 14:29604. [PMID: 39609487 PMCID: PMC11604971 DOI: 10.1038/s41598-024-78954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Ligand-receptor interaction (LRI) prediction has great significance in biological and medical research and facilitates to infer and analyze cell-to-cell communication. However, wet experiments for new LRI discovery are costly and time-consuming. Here, we propose a computational model called THGB to uncover new LRIs. THGB first extracts feature information of Ligand-Receptor (LR) pairs using iFeature. Next, it adopts a tree boosting model to obtain representative LR features. Finally, it devises the histogram-based gradient boosting model to capture high-quality LRIs. To assess the THGB performance, we compared it with three new LRI prediction models (i.e., CellEnBoost, CellGiQ, and CellComNet) and one classical protein-protein interaction inference model PIPR. The results demonstrated that THGB achieved the best overall predictions in terms of six evaluation indictors (i.e., precision, recall, accuracy, F1-score, AUC, and AUPR). To measure the effect of LR feature selection on the prediction, THGB was compared with four feature selection methods (i.e., PCA, NMF, LLE, and TSVD). The results showed that the tree boosting model was more appropriate to select representative LR features and improve LRI prediction. We also conducted ablation study and found that THGB with feature selection outperformed THGB without feature selection. We hope that THGB is a useful tool to find new LRIs and further infer cell-to-cell communication.
Collapse
Affiliation(s)
- Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, Hunan, China
| | - Jiao Song
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, Hunan, China
| | - Zejun Li
- School of Computer Science and Engineering, Hunan Institute of Technology, Hengyang, 421002, Hunan, China.
| | - Yingxi Hu
- School of Science, Hunan University of Technology, Zhuzhou, 412007, Hunan, China
| | - Wenyan Guo
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China
| |
Collapse
|
3
|
Gao Q, Zhang C, Li M, Yu T. Protein-Protein Interaction Prediction Model Based on ProtBert-BiGRU-Attention. J Comput Biol 2024; 31:797-814. [PMID: 39069885 DOI: 10.1089/cmb.2023.0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
The physiological activities within cells are mainly regulated through protein-protein interactions (PPI). Therefore, studying protein interactions has become an essential part of researching protein function and mechanisms. Traditional biological experiments required for PPI prediction are expensive and time consuming. For this reason, many methods based on predicting PPI from protein sequences have been proposed in recent years. However, existing computational methods usually require the combination of evolutionary feature information of proteins to predict PPI docking situations. Because different relevant features of selected proteins are chosen, there may be differences in the predicted results for PPI. This article proposes a PPI prediction method based on the pretrained protein sequence model ProtBert, combined with the Bidirectional Gated Recurrent Unit (BiGRU) and attention mechanism. Only using protein sequence information and leveraging ProtBert's powerful ability to capture amino acid feature information, BiGRU is used for further feature extraction of the amino acid vectors output by ProtBert. The attention mechanism is then applied to enhance the focus on different amino acid features and improve the expression ability of protein sequence features, ultimately obtaining binary classification results for protein interactions. Experimental results show that our proposed ProtBert-BiGRU-Attention model has good predictive performance for PPI. Through relevant comparative experiments, it has been proven that our model performs well in protein binary prediction. Furthermore, through the ablation experiment of the model, different deep learning modules' contributions to the prediction have been demonstrated.
Collapse
Affiliation(s)
- Qian Gao
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, China
| | - Chi Zhang
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, China
| | - Ming Li
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, China
| | - Tianfei Yu
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, China
| |
Collapse
|
4
|
Tan Y, Li M, Zhou Z, Tan P, Yu H, Fan G, Hong L. PETA: evaluating the impact of protein transfer learning with sub-word tokenization on downstream applications. J Cheminform 2024; 16:92. [PMID: 39095917 PMCID: PMC11297785 DOI: 10.1186/s13321-024-00884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024] Open
Abstract
Protein language models (PLMs) play a dominant role in protein representation learning. Most existing PLMs regard proteins as sequences of 20 natural amino acids. The problem with this representation method is that it simply divides the protein sequence into sequences of individual amino acids, ignoring the fact that certain residues often occur together. Therefore, it is inappropriate to view amino acids as isolated tokens. Instead, the PLMs should recognize the frequently occurring combinations of amino acids as a single token. In this study, we use the byte-pair-encoding algorithm and unigram to construct advanced residue vocabularies for protein sequence tokenization, and we have shown that PLMs pre-trained using these advanced vocabularies exhibit superior performance on downstream tasks when compared to those trained with simple vocabularies. Furthermore, we introduce PETA, a comprehensive benchmark for systematically evaluating PLMs. We find that vocabularies comprising 50 and 200 elements achieve optimal performance. Our code, model weights, and datasets are available at https://github.com/ginnm/ProteinPretraining . SCIENTIFIC CONTRIBUTION: This study introduces advanced protein sequence tokenization analysis, leveraging the byte-pair-encoding algorithm and unigram. By recognizing frequently occurring combinations of amino acids as single tokens, our proposed method enhances the performance of PLMs on downstream tasks. Additionally, we present PETA, a new comprehensive benchmark for the systematic evaluation of PLMs, demonstrating that vocabularies of 50 and 200 elements offer optimal performance.
Collapse
Affiliation(s)
- Yang Tan
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Science, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200240, China
- Chongqing Artificial Intelligence Research Institute of Shanghai Jiao Tong University, Chongqing, 200240, China
| | - Mingchen Li
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Science, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200240, China
- Chongqing Artificial Intelligence Research Institute of Shanghai Jiao Tong University, Chongqing, 200240, China
| | - Ziyi Zhou
- Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pan Tan
- Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Science, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200240, China
| | - Huiqun Yu
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Guisheng Fan
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Liang Hong
- Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Science, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200240, China.
- Chongqing Artificial Intelligence Research Institute of Shanghai Jiao Tong University, Chongqing, 200240, China.
| |
Collapse
|
5
|
Hao T, Zhang M, Song Z, Gou Y, Wang B, Sun J. Reconstruction of Eriocheir sinensis Protein-Protein Interaction Network Based on DGO-SVM Method. Curr Issues Mol Biol 2024; 46:7353-7372. [PMID: 39057077 PMCID: PMC11276262 DOI: 10.3390/cimb46070436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Eriocheir sinensis is an economically important aquatic animal. Its regulatory mechanisms underlying many biological processes are still vague due to the lack of systematic analysis tools. The protein-protein interaction network (PIN) is an important tool for the systematic analysis of regulatory mechanisms. In this work, a novel machine learning method, DGO-SVM, was applied to predict the protein-protein interaction (PPI) in E. sinensis, and its PIN was reconstructed. With the domain, biological process, molecular functions and subcellular locations of proteins as the features, DGO-SVM showed excellent performance in Bombyx mori, humans and five aquatic crustaceans, with 92-96% accuracy. With DGO-SVM, the PIN of E. sinensis was reconstructed, containing 14,703 proteins and 7,243,597 interactions, in which 35,604 interactions were associated with 566 novel proteins mainly involved in the response to exogenous stimuli, cellular macromolecular metabolism and regulation. The DGO-SVM demonstrated that the biological process, molecular functions and subcellular locations of proteins are significant factors for the precise prediction of PPIs. We reconstructed the largest PIN for E. sinensis, which provides a systematic tool for the regulatory mechanism analysis. Furthermore, the novel-protein-related PPIs in the PIN may provide important clues for the mechanism analysis of the underlying specific physiological processes in E. sinensis.
Collapse
Affiliation(s)
| | | | | | | | - Bin Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (T.H.); (M.Z.); (Z.S.); (Y.G.)
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (T.H.); (M.Z.); (Z.S.); (Y.G.)
| |
Collapse
|
6
|
Lu C, Jiang J, Chen Q, Liu H, Ju X, Wang H. Analysis and prediction of interactions between transmembrane and non-transmembrane proteins. BMC Genomics 2024; 25:401. [PMID: 38658824 PMCID: PMC11040819 DOI: 10.1186/s12864-024-10251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Most of the important biological mechanisms and functions of transmembrane proteins (TMPs) are realized through their interactions with non-transmembrane proteins(nonTMPs). The interactions between TMPs and nonTMPs in cells play vital roles in intracellular signaling, energy metabolism, investigating membrane-crossing mechanisms, correlations between disease and drugs. RESULTS Despite the importance of TMP-nonTMP interactions, the study of them remains in the wet experimental stage, lacking specific and comprehensive studies in the field of bioinformatics. To fill this gap, we performed a comprehensive statistical analysis of known TMP-nonTMP interactions and constructed a deep learning-based predictor to identify potential interactions. The statistical analysis describes known TMP-nonTMP interactions from various perspectives, such as distributions of species and protein families, enrichment of GO and KEGG pathways, as well as hub proteins and subnetwork modules in the PPI network. The predictor implemented by an end-to-end deep learning model can identify potential interactions from protein primary sequence information. The experimental results over the independent validation demonstrated considerable prediction performance with an MCC of 0.541. CONCLUSIONS To our knowledge, we were the first to focus on TMP-nonTMP interactions. We comprehensively analyzed them using bioinformatics methods and predicted them via deep learning-based solely on their sequence. This research completes a key link in the protein network, benefits the understanding of protein functions, and helps in pathogenesis studies of diseases and associated drug development.
Collapse
Affiliation(s)
- Chang Lu
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China
| | - Jiuhong Jiang
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China
| | - Qiufen Chen
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China
| | - Huanhuan Liu
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China
| | - Xingda Ju
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China.
| | - Han Wang
- School of Psychology, School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, China.
| |
Collapse
|
7
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
8
|
Jia P, Zhang F, Wu C, Li M. A comprehensive review of protein-centric predictors for biomolecular interactions: from proteins to nucleic acids and beyond. Brief Bioinform 2024; 25:bbae162. [PMID: 38739759 PMCID: PMC11089422 DOI: 10.1093/bib/bbae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/17/2024] [Accepted: 03/31/2024] [Indexed: 05/16/2024] Open
Abstract
Proteins interact with diverse ligands to perform a large number of biological functions, such as gene expression and signal transduction. Accurate identification of these protein-ligand interactions is crucial to the understanding of molecular mechanisms and the development of new drugs. However, traditional biological experiments are time-consuming and expensive. With the development of high-throughput technologies, an increasing amount of protein data is available. In the past decades, many computational methods have been developed to predict protein-ligand interactions. Here, we review a comprehensive set of over 160 protein-ligand interaction predictors, which cover protein-protein, protein-nucleic acid, protein-peptide and protein-other ligands (nucleotide, heme, ion) interactions. We have carried out a comprehensive analysis of the above four types of predictors from several significant perspectives, including their inputs, feature profiles, models, availability, etc. The current methods primarily rely on protein sequences, especially utilizing evolutionary information. The significant improvement in predictions is attributed to deep learning methods. Additionally, sequence-based pretrained models and structure-based approaches are emerging as new trends.
Collapse
Affiliation(s)
- Pengzhen Jia
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Fuhao Zhang
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
- College of Information Engineering, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Chaojin Wu
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| |
Collapse
|
9
|
Xian L, Wang Y. Advances in Computational Methods for Protein–Protein Interaction Prediction. ELECTRONICS 2024; 13:1059. [DOI: 10.3390/electronics13061059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Protein–protein interactions (PPIs) are pivotal in various physiological processes inside biological entities. Accurate identification of PPIs holds paramount significance for comprehending biological processes, deciphering disease mechanisms, and advancing medical research. Given the costly and labor-intensive nature of experimental approaches, a multitude of computational methods have been devised to enable swift and large-scale PPI prediction. This review offers a thorough examination of recent strides in computational methodologies for PPI prediction, with a particular focus on the utilization of deep learning techniques within this domain. Alongside a systematic classification and discussion of relevant databases, feature extraction strategies, and prominent computational approaches, we conclude with a thorough analysis of current challenges and prospects for the future of this field.
Collapse
Affiliation(s)
- Lei Xian
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
10
|
Dang TH, Vu TA. xCAPT5: protein-protein interaction prediction using deep and wide multi-kernel pooling convolutional neural networks with protein language model. BMC Bioinformatics 2024; 25:106. [PMID: 38461247 PMCID: PMC10924985 DOI: 10.1186/s12859-024-05725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Predicting protein-protein interactions (PPIs) from sequence data is a key challenge in computational biology. While various computational methods have been proposed, the utilization of sequence embeddings from protein language models, which contain diverse information, including structural, evolutionary, and functional aspects, has not been fully exploited. Additionally, there is a significant need for a comprehensive neural network capable of efficiently extracting these multifaceted representations. RESULTS Addressing this gap, we propose xCAPT5, a novel hybrid classifier that uniquely leverages the T5-XL-UniRef50 protein large language model for generating rich amino acid embeddings from protein sequences. The core of xCAPT5 is a multi-kernel deep convolutional siamese neural network, which effectively captures intricate interaction features at both micro and macro levels, integrated with the XGBoost algorithm, enhancing PPIs classification performance. By concatenating max and average pooling features in a depth-wise manner, xCAPT5 effectively learns crucial features with low computational cost. CONCLUSION This study represents one of the initial efforts to extract informative amino acid embeddings from a large protein language model using a deep and wide convolutional network. Experimental results show that xCAPT5 outperforms recent state-of-the-art methods in binary PPI prediction, excelling in cross-validation on several benchmark datasets and demonstrating robust generalization across intra-species, cross-species, inter-species, and stringent similarity contexts.
Collapse
Affiliation(s)
- Thanh Hai Dang
- Faculty of Information Technology, VNU University of Engineering and Technology, 144 Xuan Thuy, Hanoi, 10000, Vietnam.
| | - Tien Anh Vu
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai, Hanoi, 10000, Vietnam
| |
Collapse
|
11
|
Bernett J, Blumenthal DB, List M. Cracking the black box of deep sequence-based protein-protein interaction prediction. Brief Bioinform 2024; 25:bbae076. [PMID: 38446741 PMCID: PMC10939362 DOI: 10.1093/bib/bbae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Indexed: 03/08/2024] Open
Abstract
Identifying protein-protein interactions (PPIs) is crucial for deciphering biological pathways. Numerous prediction methods have been developed as cheap alternatives to biological experiments, reporting surprisingly high accuracy estimates. We systematically investigated how much reproducible deep learning models depend on data leakage, sequence similarities and node degree information, and compared them with basic machine learning models. We found that overlaps between training and test sets resulting from random splitting lead to strongly overestimated performances. In this setting, models learn solely from sequence similarities and node degrees. When data leakage is avoided by minimizing sequence similarities between training and test set, performances become random. Moreover, baseline models directly leveraging sequence similarity and network topology show good performances at a fraction of the computational cost. Thus, we advocate that any improvements should be reported relative to baseline methods in the future. Our findings suggest that predicting PPIs remains an unsolved task for proteins showing little sequence similarity to previously studied proteins, highlighting that further experimental research into the 'dark' protein interactome and better computational methods are needed.
Collapse
Affiliation(s)
- Judith Bernett
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 3, 85354, Freising, Germany
| | - David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Werner-von-Siemens-Str. 61, 91052, Erlangen, Germany
| | - Markus List
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 3, 85354, Freising, Germany
| |
Collapse
|
12
|
Zandi F, Mansouri P, Goodarzi M. Global protein-protein interaction networks in yeast saccharomyces cerevisiae and helicobacter pylori. Talanta 2023; 265:124836. [PMID: 37393709 DOI: 10.1016/j.talanta.2023.124836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Understanding many biological processes relies heavily on accurately predicting protein-protein interactions (PPIs). In this study, we propose a novel method for predicting PPIs that is based on LogitBoost with a binary bat feature selection algorithm. Our approach involves the extraction of an initial feature vector by combining pseudo amino acid composition (PseAAC), pseudo-position-specific scoring matrix (PsePSSM), reduced sequence and index-vectors (RSIV), and autocorrelation descriptor (AD). Subsequently, a binary bat algorithm is applied to eliminate redundant features, and the resulting optimal features are fed into the LogitBoost classifier for the identification of PPIs. To evaluate the proposed method, we test it on two databases, Saccharomyces cerevisiae and Helicobacter pylori, using 10-fold cross-validation, and achieve accuracies of 94.39% and 97.89%, respectively. Our results showcase the significant potential of our pipeline in accurately predicting protein-protein interactions (PPIs), thereby offering a valuable resource to the scientific research community.
Collapse
Affiliation(s)
- Farzad Zandi
- Faculty of Sciences, Islamic Azad University, Arak Branch, Arak, Markazi, Iran
| | | | - Mohammad Goodarzi
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
13
|
Chen J, Gu Z, Lai L, Pei J. In silico protein function prediction: the rise of machine learning-based approaches. MEDICAL REVIEW (2021) 2023; 3:487-510. [PMID: 38282798 PMCID: PMC10808870 DOI: 10.1515/mr-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/11/2023] [Indexed: 01/30/2024]
Abstract
Proteins function as integral actors in essential life processes, rendering the realm of protein research a fundamental domain that possesses the potential to propel advancements in pharmaceuticals and disease investigation. Within the context of protein research, an imperious demand arises to uncover protein functionalities and untangle intricate mechanistic underpinnings. Due to the exorbitant costs and limited throughput inherent in experimental investigations, computational models offer a promising alternative to accelerate protein function annotation. In recent years, protein pre-training models have exhibited noteworthy advancement across multiple prediction tasks. This advancement highlights a notable prospect for effectively tackling the intricate downstream task associated with protein function prediction. In this review, we elucidate the historical evolution and research paradigms of computational methods for predicting protein function. Subsequently, we summarize the progress in protein and molecule representation as well as feature extraction techniques. Furthermore, we assess the performance of machine learning-based algorithms across various objectives in protein function prediction, thereby offering a comprehensive perspective on the progress within this field.
Collapse
Affiliation(s)
- Jiaxiao Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhonghui Gu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing, China
| | - Jianfeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing, China
| |
Collapse
|
14
|
Kewalramani N, Emili A, Crovella M. State-of-the-art computational methods to predict protein-protein interactions with high accuracy and coverage. Proteomics 2023; 23:e2200292. [PMID: 37401192 DOI: 10.1002/pmic.202200292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
Prediction of protein-protein interactions (PPIs) commonly involves a significant computational component. Rapid recent advances in the power of computational methods for protein interaction prediction motivate a review of the state-of-the-art. We review the major approaches, organized according to the primary source of data utilized: protein sequence, protein structure, and protein co-abundance. The advent of deep learning (DL) has brought with it significant advances in interaction prediction, and we show how DL is used for each source data type. We review the literature taxonomically, present example case studies in each category, and conclude with observations about the strengths and weaknesses of machine learning methods in the context of the principal sources of data for protein interaction prediction.
Collapse
Affiliation(s)
- Neal Kewalramani
- Program in Bioinformatics, Boston University, Boston, Massachusetts, USA
| | - Andrew Emili
- OHSU Knight Cancer Institute, Portland, Oregon, USA
| | - Mark Crovella
- Department of Computer Science and Program in Bioinformatics, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Halsana AA, Chakroborty T, Halder AK, Basu S. DensePPI: A Novel Image-Based Deep Learning Method for Prediction of Protein-Protein Interactions. IEEE Trans Nanobioscience 2023; 22:904-911. [PMID: 37028059 DOI: 10.1109/tnb.2023.3251192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Protein-protein interactions (PPI) are crucial for understanding the behaviour of living organisms and identifying disease associations. This paper proposes DensePPI, a novel deep convolution strategy applied to the 2D image map generated from the interacting protein pairs for PPI prediction. A colour encoding scheme has been introduced to embed the bigram interaction possibilities of Amino Acids into RGB colour space to enhance the learning and prediction task. The DensePPI model is trained on 5.5 million sub-images of size 128×128 generated from nearly 36,000 interacting and 36,000 non-interacting benchmark protein pairs. The performance is evaluated on independent datasets from five different organisms; Caenorhabditis elegans, Escherichia coli, Helicobacter Pylori, Homo sapiens and Mus Musculus. The proposed model achieves an average prediction accuracy score of 99.95% on these datasets, considering inter-species and intra-species interactions. The performance of DensePPI is compared with the state-of-the-art methods and outperforms those approaches in different evaluation metrics. Improved performance of DensePPI indicates the efficiency of the image-based encoding strategy of sequence information with the deep learning architecture in PPI prediction. The enhanced performance on diverse test sets shows that the DensePPI is significant for intra-species interaction prediction and cross-species interactions. The dataset, supplementary file, and the developed models are available at https://github.com/Aanzil/DensePPI for academic use only.
Collapse
|
16
|
Peng L, Yuan R, Han C, Han G, Tan J, Wang Z, Chen M, Chen X. CellEnBoost: A Boosting-Based Ligand-Receptor Interaction Identification Model for Cell-to-Cell Communication Inference. IEEE Trans Nanobioscience 2023; 22:705-715. [PMID: 37216267 DOI: 10.1109/tnb.2023.3278685] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cell-to-cell communication (CCC) plays important roles in multicellular organisms. The identification of communication between cancer cells themselves and one between cancer cells and normal cells in tumor microenvironment helps understand cancer genesis, development and metastasis. CCC is usually mediated by Ligand-Receptor Interactions (LRIs). In this manuscript, we developed a Boosting-based LRI identification model (CellEnBoost) for CCC inference. First, potential LRIs are predicted by data collection, feature extraction, dimensional reduction, and classification based on an ensemble of Light gradient boosting machine and AdaBoost combining convolutional neural network. Next, the predicted LRIs and known LRIs are filtered. Third, the filtered LRIs are applied to CCC elucidation by combining CCC strength measurement and single-cell RNA sequencing data. Finally, CCC inference results are visualized using heatmap view, Circos plot view, and network view. The experimental results show that CellEnBoost obtained the best AUCs and AUPRs on the collected four LRI datasets. Case study in human head and neck squamous cell carcinoma (HNSCC) tissues demonstrates that fibroblasts were more likely to communicate with HNSCC cells, which is in accord with the results from iTALK. We anticipate that this work can contribute to the diagnosis and treatment of cancers.
Collapse
|
17
|
Xie S, Xie X, Zhao X, Liu F, Wang Y, Ping J, Ji Z. HNSPPI: a hybrid computational model combing network and sequence information for predicting protein-protein interaction. Brief Bioinform 2023; 24:bbad261. [PMID: 37480553 DOI: 10.1093/bib/bbad261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023] Open
Abstract
Most life activities in organisms are regulated through protein complexes, which are mainly controlled via Protein-Protein Interactions (PPIs). Discovering new interactions between proteins and revealing their biological functions are of great significance for understanding the molecular mechanisms of biological processes and identifying the potential targets in drug discovery. Current experimental methods only capture stable protein interactions, which lead to limited coverage. In addition, expensive cost and time consuming are also the obvious shortcomings. In recent years, various computational methods have been successfully developed for predicting PPIs based only on protein homology, primary sequences of protein or gene ontology information. Computational efficiency and data complexity are still the main bottlenecks for the algorithm generalization. In this study, we proposed a novel computational framework, HNSPPI, to predict PPIs. As a hybrid supervised learning model, HNSPPI comprehensively characterizes the intrinsic relationship between two proteins by integrating amino acid sequence information and connection properties of PPI network. The experimental results show that HNSPPI works very well on six benchmark datasets. Moreover, the comparison analysis proved that our model significantly outperforms other five existing algorithms. Finally, we used the HNSPPI model to explore the SARS-CoV-2-Human interaction system and found several potential regulations. In summary, HNSPPI is a promising model for predicting new protein interactions from known PPI data.
Collapse
Affiliation(s)
- Shijie Xie
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd, Nanjing, Jiangsu 210095, China
| | - Xiaojun Xie
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd, Nanjing, Jiangsu 210095, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital affiliated to Capital Medical University, Beijing 100020, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yiming Wang
- Key Laboratory of Biological Interactions and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jihui Ping
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhiwei Ji
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd, Nanjing, Jiangsu 210095, China
| |
Collapse
|
18
|
Jha K, Saha S, Karmakar S. Prediction of Protein-Protein Interactions Using Vision Transformer and Language Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3215-3225. [PMID: 37027644 DOI: 10.1109/tcbb.2023.3248797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The knowledge of protein-protein interaction (PPI) helps us to understand proteins' functions, the causes and growth of several diseases, and can aid in designing new drugs. The majority of existing PPI research has relied mainly on sequence-based approaches. With the availability of multi-omics datasets (sequence, 3D structure) and advancements in deep learning techniques, it is feasible to develop a deep multi-modal framework that fuses the features learned from different sources of information to predict PPI. In this work, we propose a multi-modal approach utilizing protein sequence and 3D structure. To extract features from the 3D structure of proteins, we use a pre-trained vision transformer model that has been fine-tuned on the structural representation of proteins. The protein sequence is encoded into a feature vector using a pre-trained language model. The feature vectors extracted from the two modalities are fused and then fed to the neural network classifier to predict the protein interactions. To showcase the effectiveness of the proposed methodology, we conduct experiments on two popular PPI datasets, namely, the human dataset and the S. cerevisiae dataset. Our approach outperforms the existing methodologies to predict PPI, including multi-modal approaches. We also evaluate the contributions of each modality by designing uni-modal baselines. We perform experiments with three modalities as well, having gene ontology as the third modality.
Collapse
|
19
|
Ye J, Li A, Zheng H, Yang B, Lu Y. Machine Learning Advances in Predicting Peptide/Protein-Protein Interactions Based on Sequence Information for Lead Peptides Discovery. Adv Biol (Weinh) 2023; 7:e2200232. [PMID: 36775876 DOI: 10.1002/adbi.202200232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/30/2022] [Indexed: 02/14/2023]
Abstract
Peptides have shown increasing advantages and significant clinical value in drug discovery and development. With the development of high-throughput technologies and artificial intelligence (AI), machine learning (ML) methods for discovering new lead peptides have been expanded and incorporated into rational drug design. Predictions of peptide-protein interactions (PepPIs) and protein-protein interactions (PPIs) are both opportunities and challenges in computational biology, which will help to better understand the mechanisms of disease and provide the impetus for the discovery of lead peptides. This paper comprehensively reviews computational models for PepPI and PPI predictions. It begins with an introduction of various databases of peptide ligands and target proteins. Then it discusses data formats and feature representations for proteins and peptides. Furthermore, classical ML methods and emerging deep learning (DL) methods that can be used to train prediction models of PepPI and PPI are classified into four categories, and their advantages and disadvantages are analyzed. To assess the relative performance of different models, different validation protocols and evaluation indexes are discussed. The goal of this review is to help researchers quickly get started to develop computational frameworks using these integrated resources and eventually promote the discovery of lead peptides.
Collapse
Affiliation(s)
- Jiahao Ye
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - An Li
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Hao Zheng
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Banghua Yang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yiming Lu
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
20
|
Jha K, Karmakar S, Saha S. Graph-BERT and language model-based framework for protein-protein interaction identification. Sci Rep 2023; 13:5663. [PMID: 37024543 PMCID: PMC10079975 DOI: 10.1038/s41598-023-31612-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
Identification of protein-protein interactions (PPI) is among the critical problems in the domain of bioinformatics. Previous studies have utilized different AI-based models for PPI classification with advances in artificial intelligence (AI) techniques. The input to these models is the features extracted from different sources of protein information, mainly sequence-derived features. In this work, we present an AI-based PPI identification model utilizing a PPI network and protein sequences. The PPI network is represented as a graph where each node is a protein pair, and an edge is defined between two nodes if there exists a common protein between these nodes. Each node in a graph has a feature vector. In this work, we have used the language model to extract feature vectors directly from protein sequences. The feature vectors for protein in pairs are concatenated and used as a node feature vector of a PPI network graph. Finally, we have used the Graph-BERT model to encode the PPI network graph with sequence-based features and learn the hidden representation of the feature vector for each node. The next step involves feeding the learned representations of nodes to the fully connected layer, the output of which is fed into the softmax layer to classify the protein interactions. To assess the efficacy of the proposed PPI model, we have performed experiments on several PPI datasets. The experimental results demonstrate that the proposed approach surpasses the existing PPI works and designed baselines in classifying PPI.
Collapse
Affiliation(s)
- Kanchan Jha
- Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, Bihar, 801103, India.
| | - Sourav Karmakar
- Department of Computer Science and Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Sriparna Saha
- Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, Bihar, 801103, India
| |
Collapse
|
21
|
Huang Y, Wuchty S, Zhou Y, Zhang Z. SGPPI: structure-aware prediction of protein-protein interactions in rigorous conditions with graph convolutional network. Brief Bioinform 2023; 24:6995378. [PMID: 36682013 DOI: 10.1093/bib/bbad020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/17/2022] [Accepted: 01/05/2023] [Indexed: 01/23/2023] Open
Abstract
While deep learning (DL)-based models have emerged as powerful approaches to predict protein-protein interactions (PPIs), the reliance on explicit similarity measures (e.g. sequence similarity and network neighborhood) to known interacting proteins makes these methods ineffective in dealing with novel proteins. The advent of AlphaFold2 presents a significant opportunity and also a challenge to predict PPIs in a straightforward way based on monomer structures while controlling bias from protein sequences. In this work, we established Structure and Graph-based Predictions of Protein Interactions (SGPPI), a structure-based DL framework for predicting PPIs, using the graph convolutional network. In particular, SGPPI focused on protein patches on the protein-protein binding interfaces and extracted the structural, geometric and evolutionary features from the residue contact map to predict PPIs. We demonstrated that our model outperforms traditional machine learning methods and state-of-the-art DL-based methods using non-representation-bias benchmark datasets. Moreover, our model trained on human dataset can be reliably transferred to predict yeast PPIs, indicating that SGPPI can capture converging structural features of protein interactions across various species. The implementation of SGPPI is available at https://github.com/emerson106/SGPPI.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Biomedical Informatics, Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences, Center for Non-Coding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- Institute of Data Science and Computing, University of Miami, Coral Gables, FL 33146, USA
| | - Yuan Zhou
- Department of Biomedical Informatics, Ministry of Education Key Laboratory of Molecular Cardiovascular Sciences, Center for Non-Coding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ziding Zhang
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
22
|
Albu AI, Bocicor MI, Czibula G. MM-StackEns: A new deep multimodal stacked generalization approach for protein-protein interaction prediction. Comput Biol Med 2023; 153:106526. [PMID: 36623437 DOI: 10.1016/j.compbiomed.2022.106526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Accurate in-silico identification of protein-protein interactions (PPIs) is a long-standing problem in biology, with important implications in protein function prediction and drug design. Current computational approaches predominantly use a single data modality for describing protein pairs, which may not fully capture the characteristics relevant for identifying PPIs. Another limitation of existing methods is their poor generalization to proteins outside the training graph. In this paper, we aim to address these shortcomings by proposing a new ensemble approach for PPI prediction, which learns information from two modalities, corresponding to pairs of sequences and to the graph formed by the training proteins and their interactions. Our approach uses a siamese neural network to process sequence information, while graph attention networks are employed for the network view. For capturing the relationships between the proteins in a pair, we design a new feature fusion module, based on computing the distance between the distributions corresponding to the two proteins. The prediction is made using a stacked generalization procedure, in which the final classifier is represented by a Logistic Regression model trained on the scores predicted by the sequence and graph models. Additionally, we show that protein sequence embeddings obtained using pretrained language models can significantly improve the generalization of PPI methods. The experimental results demonstrate the good performance of our approach, which surpasses all the related work on two Yeast data sets, while outperforming the majority of literature approaches on two Human data sets and on independent multi-species data sets.
Collapse
Affiliation(s)
- Alexandra-Ioana Albu
- Department of Computer Science, Babeş-Bolyai University, 1 Mihail Kogalniceanu Street, Cluj-Napoca, 400084, Romania.
| | - Maria-Iuliana Bocicor
- Department of Computer Science, Babeş-Bolyai University, 1 Mihail Kogalniceanu Street, Cluj-Napoca, 400084, Romania.
| | - Gabriela Czibula
- Department of Computer Science, Babeş-Bolyai University, 1 Mihail Kogalniceanu Street, Cluj-Napoca, 400084, Romania.
| |
Collapse
|
23
|
Ren ZH, You ZH, Zou Q, Yu CQ, Ma YF, Guan YJ, You HR, Wang XF, Pan J. DeepMPF: deep learning framework for predicting drug-target interactions based on multi-modal representation with meta-path semantic analysis. J Transl Med 2023; 21:48. [PMID: 36698208 PMCID: PMC9876420 DOI: 10.1186/s12967-023-03876-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Drug-target interaction (DTI) prediction has become a crucial prerequisite in drug design and drug discovery. However, the traditional biological experiment is time-consuming and expensive, as there are abundant complex interactions present in the large size of genomic and chemical spaces. For alleviating this phenomenon, plenty of computational methods are conducted to effectively complement biological experiments and narrow the search spaces into a preferred candidate domain. Whereas, most of the previous approaches cannot fully consider association behavior semantic information based on several schemas to represent complex the structure of heterogeneous biological networks. Additionally, the prediction of DTI based on single modalities cannot satisfy the demand for prediction accuracy. METHODS We propose a multi-modal representation framework of 'DeepMPF' based on meta-path semantic analysis, which effectively utilizes heterogeneous information to predict DTI. Specifically, we first construct protein-drug-disease heterogeneous networks composed of three entities. Then the feature information is obtained under three views, containing sequence modality, heterogeneous structure modality and similarity modality. We proposed six representative schemas of meta-path to preserve the high-order nonlinear structure and catch hidden structural information of the heterogeneous network. Finally, DeepMPF generates highly representative comprehensive feature descriptors and calculates the probability of interaction through joint learning. RESULTS To evaluate the predictive performance of DeepMPF, comparison experiments are conducted on four gold datasets. Our method can obtain competitive performance in all datasets. We also explore the influence of the different feature embedding dimensions, learning strategies and classification methods. Meaningfully, the drug repositioning experiments on COVID-19 and HIV demonstrate DeepMPF can be applied to solve problems in reality and help drug discovery. The further analysis of molecular docking experiments enhances the credibility of the drug candidates predicted by DeepMPF. CONCLUSIONS All the results demonstrate the effectively predictive capability of DeepMPF for drug-target interactions. It can be utilized as a useful tool to prescreen the most potential drug candidates for the protein. The web server of the DeepMPF predictor is freely available at http://120.77.11.78/DeepMPF/ , which can help relevant researchers to further study.
Collapse
Affiliation(s)
- Zhong-Hao Ren
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Zhu-Hong You
- grid.440588.50000 0001 0307 1240School of Computer Science, Northwestern Polytechnical University, Xi’an, 710129 China
| | - Quan Zou
- grid.54549.390000 0004 0369 4060Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Chang-Qing Yu
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Yan-Fang Ma
- grid.417234.70000 0004 1808 3203Department of Galactophore, The Third People’s Hospital of Gansu Province, Lanzhou, 730020 China
| | - Yong-Jian Guan
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Hai-Ru You
- grid.440588.50000 0001 0307 1240School of Computer Science, Northwestern Polytechnical University, Xi’an, 710129 China
| | - Xin-Fei Wang
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Jie Pan
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| |
Collapse
|
24
|
DeepCF-PPI: improved prediction of protein-protein interactions by combining learned and handcrafted features based on attention mechanisms. APPL INTELL 2023. [DOI: 10.1007/s10489-022-04387-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Jha K, Saha S. Analyzing Effect of Multi-Modality in Predicting Protein-Protein Interactions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:162-173. [PMID: 35259112 DOI: 10.1109/tcbb.2022.3157531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nowadays, multiple sources of information about proteins are available such as protein sequences, 3D structures, Gene Ontology (GO), etc. Most of the works on protein-protein interaction (PPI) identification had utilized these information about proteins, mainly sequence-based, but individually. The new advances in deep learning techniques allow us to leverage multiple sources/modalities of proteins, which complement each other. Some recent works have shown that multi-modal PPI models perform better than uni-modal approaches. This paper aims to investigate whether the performance of multi-modal PPI models is always consistent or depends on other factors such as dataset distribution, algorithms used to learn features, etc. We have used three modalities for this study: Protein sequence, 3D structure, and GO. Various techniques, including deep learning algorithms, are employed to extract features from multiple sources of proteins. These feature vectors from different modalities are then integrated in several combinations (bi-modal and tri-modal) to predict PPI. To conduct this study, we have used Human and S. cerevisiae PPI datasets. The obtained results demonstrate the potentiality of a multi-modal approach and deep learning techniques in predicting protein interactions. However, the predictive capability of a model for PPI depends on feature extraction methods as well. Also, increasing the modality does not always ensure performance improvement. In this study, the PPI model integrating two modalities outperforms the designed uni-modal and tri-modal PPI models.
Collapse
|
26
|
Murakami Y, Mizuguchi K. Recent developments of sequence-based prediction of protein-protein interactions. Biophys Rev 2022; 14:1393-1411. [PMID: 36589735 PMCID: PMC9789376 DOI: 10.1007/s12551-022-01038-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
The identification of protein-protein interactions (PPIs) can lead to a better understanding of cellular functions and biological processes of proteins and contribute to the design of drugs to target disease-causing PPIs. In addition, targeting host-pathogen PPIs is useful for elucidating infection mechanisms. Although several experimental methods have been used to identify PPIs, these methods can yet to draw complete PPI networks. Hence, computational techniques are increasingly required for the prediction of potential PPIs, which have never been seen experimentally. Recent high-performance sequence-based methods have contributed to the construction of PPI networks and the elucidation of pathogenetic mechanisms in specific diseases. However, the usefulness of these methods depends on the quality and quantity of training data of PPIs. In this brief review, we introduce currently available PPI databases and recent sequence-based methods for predicting PPIs. Also, we discuss key issues in this field and present future perspectives of the sequence-based PPI predictions.
Collapse
Affiliation(s)
- Yoichi Murakami
- grid.440890.10000 0004 0640 9413Tokyo University of Information Sciences, 4-1 Onaridai, Wakaba-Ku, Chiba, 265-8501 Japan
| | - Kenji Mizuguchi
- grid.136593.b0000 0004 0373 3971Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-Shi, Osaka, 565-0871 Japan ,grid.482562.fNational Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka 567-0085 Japan
| |
Collapse
|
27
|
Soleymani F, Paquet E, Viktor H, Michalowski W, Spinello D. Protein-protein interaction prediction with deep learning: A comprehensive review. Comput Struct Biotechnol J 2022; 20:5316-5341. [PMID: 36212542 PMCID: PMC9520216 DOI: 10.1016/j.csbj.2022.08.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022] Open
Abstract
Most proteins perform their biological function by interacting with themselves or other molecules. Thus, one may obtain biological insights into protein functions, disease prevalence, and therapy development by identifying protein-protein interactions (PPI). However, finding the interacting and non-interacting protein pairs through experimental approaches is labour-intensive and time-consuming, owing to the variety of proteins. Hence, protein-protein interaction and protein-ligand binding problems have drawn attention in the fields of bioinformatics and computer-aided drug discovery. Deep learning methods paved the way for scientists to predict the 3-D structure of proteins from genomes, predict the functions and attributes of a protein, and modify and design new proteins to provide desired functions. This review focuses on recent deep learning methods applied to problems including predicting protein functions, protein-protein interaction and their sites, protein-ligand binding, and protein design.
Collapse
Affiliation(s)
- Farzan Soleymani
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Eric Paquet
- National Research Council, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Herna Viktor
- School of Electrical Engineering and Computer Science, University of Ottawa, ON, Canada
| | | | - Davide Spinello
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
28
|
Canzler S, Fischer M, Ulbricht D, Ristic N, Hildebrand PW, Staritzbichler R. ProteinPrompt: a webserver for predicting protein-protein interactions. BIOINFORMATICS ADVANCES 2022; 2:vbac059. [PMID: 36699419 PMCID: PMC9710678 DOI: 10.1093/bioadv/vbac059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/19/2022] [Accepted: 08/14/2022] [Indexed: 01/28/2023]
Abstract
Motivation Protein-protein interactions (PPIs) play an essential role in a great variety of cellular processes and are therefore of significant interest for the design of new therapeutic compounds as well as the identification of side effects due to unexpected binding. Here, we present ProteinPrompt, a webserver that uses machine learning algorithms to calculate specific, currently unknown PPIs. Our tool is designed to quickly and reliably predict contact propensities based on an input sequence in order to scan large sequence libraries for potential binding partners, with the goal to accelerate and assure the quality of the laborious process of drug target identification. Results We collected and thoroughly filtered a comprehensive database of known binders from several sources, which is available as download. ProteinPrompt provides two complementary search methods of similar accuracy for comparison and consensus building. The default method is a random forest (RF) algorithm that uses the auto-correlations of seven amino acid scales. Alternatively, a graph neural network (GNN) implementation can be selected. Additionally, a consensus prediction is available. For each query sequence, potential binding partners are identified from a protein sequence database. The proteom of several organisms are available and can be searched for binders. To evaluate the predictive power of the algorithms, we prepared a test dataset that was rigorously filtered for redundancy. No sequence pairs similar to the ones used for training were included in this dataset. With this challenging dataset, the RF method achieved an accuracy rate of 0.88 and an area under the curve of 0.95. The GNN achieved an accuracy rate of 0.86 using the same dataset. Since the underlying learning approaches are unrelated, comparing the results of RF and GNNs reduces the likelihood of errors. The consensus reached an accuracy of 0.89. Availability and implementation ProteinPrompt is available online at: http://proteinformatics.org/ProteinPrompt, where training and test data used to optimize the methods are also available. The server makes it possible to scan the human proteome for potential binding partners of an input sequence within minutes. For local offline usage, we furthermore created a ProteinPrompt Docker image which allows for batch submission: https://gitlab.hzdr.de/proteinprompt/ProteinPrompt. In conclusion, we offer a fast, accurate, easy-to-use online service for predicting binding partners from an input sequence.
Collapse
Affiliation(s)
| | | | - David Ulbricht
- Institute of Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany
| | - Nikola Ristic
- Institute of Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany,Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, 10117 Berlin, Germany,Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | |
Collapse
|
29
|
Li Z, Wang D, Guo W, Zhang S, Chen L, Zhang YH, Lu L, Pan X, Huang T, Cai YD. Identification of cortical interneuron cell markers in mouse embryos based on machine learning analysis of single-cell transcriptomics. Front Neurosci 2022; 16:841145. [PMID: 35911980 PMCID: PMC9337837 DOI: 10.3389/fnins.2022.841145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian cortical interneurons (CINs) could be classified into more than two dozen cell types that possess diverse electrophysiological and molecular characteristics, and participate in various essential biological processes in the human neural system. However, the mechanism to generate diversity in CINs remains controversial. This study aims to predict CIN diversity in mouse embryo by using single-cell transcriptomics and the machine learning methods. Data of 2,669 single-cell transcriptome sequencing results are employed. The 2,669 cells are classified into three categories, caudal ganglionic eminence (CGE) cells, dorsal medial ganglionic eminence (dMGE) cells, and ventral medial ganglionic eminence (vMGE) cells, corresponding to the three regions in the mouse subpallium where the cells are collected. Such transcriptomic profiles were first analyzed by the minimum redundancy and maximum relevance method. A feature list was obtained, which was further fed into the incremental feature selection, incorporating two classification algorithms (random forest and repeated incremental pruning to produce error reduction), to extract key genes and construct powerful classifiers and classification rules. The optimal classifier could achieve an MCC of 0.725, and category-specified prediction accuracies of 0.958, 0.760, and 0.737 for the CGE, dMGE, and vMGE cells, respectively. The related genes and rules may provide helpful information for deepening the understanding of CIN diversity.
Collapse
Affiliation(s)
- Zhandong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Deling Wang
- State Key Laboratory of Oncology in South China, Department of Radiology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shiqi Zhang
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lin Lu
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States
| | - XiaoYong Pan
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tao Huang,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- Yu-Dong Cai,
| |
Collapse
|
30
|
Jiang Y, Wang Y, Shen L, Adjeroh DA, Liu Z, Lin J. Identification of all-against-all protein-protein interactions based on deep hash learning. BMC Bioinformatics 2022; 23:266. [PMID: 35804303 PMCID: PMC9264577 DOI: 10.1186/s12859-022-04811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein-protein interaction (PPI) is vital for life processes, disease treatment, and drug discovery. The computational prediction of PPI is relatively inexpensive and efficient when compared to traditional wet-lab experiments. Given a new protein, one may wish to find whether the protein has any PPI relationship with other existing proteins. Current computational PPI prediction methods usually compare the new protein to existing proteins one by one in a pairwise manner. This is time consuming. RESULTS In this work, we propose a more efficient model, called deep hash learning protein-and-protein interaction (DHL-PPI), to predict all-against-all PPI relationships in a database of proteins. First, DHL-PPI encodes a protein sequence into a binary hash code based on deep features extracted from the protein sequences using deep learning techniques. This encoding scheme enables us to turn the PPI discrimination problem into a much simpler searching problem. The binary hash code for a protein sequence can be regarded as a number. Thus, in the pre-screening stage of DHL-PPI, the string matching problem of comparing a protein sequence against a database with M proteins can be transformed into a much more simpler problem: to find a number inside a sorted array of length M. This pre-screening process narrows down the search to a much smaller set of candidate proteins for further confirmation. As a final step, DHL-PPI uses the Hamming distance to verify the final PPI relationship. CONCLUSIONS The experimental results confirmed that DHL-PPI is feasible and effective. Using a dataset with strictly negative PPI examples of four species, DHL-PPI is shown to be superior or competitive when compared to the other state-of-the-art methods in terms of precision, recall or F1 score. Furthermore, in the prediction stage, the proposed DHL-PPI reduced the time complexity from [Formula: see text] to [Formula: see text] for performing an all-against-all PPI prediction for a database with M proteins. With the proposed approach, a protein database can be preprocessed and stored for later search using the proposed encoding scheme. This can provide a more efficient way to cope with the rapidly increasing volume of protein datasets.
Collapse
Affiliation(s)
- Yue Jiang
- College of Computer and Cyber Security, Fujian Normal University, Fuzhou, 350108, People's Republic of China
| | - Yuxuan Wang
- No. 2 Thoracic Surgery Department Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People's Republic of China
| | - Lin Shen
- College of Computer and Cyber Security, Fujian Normal University, Fuzhou, 350108, People's Republic of China
| | - Donald A Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, 26506, USA
| | - Zhidong Liu
- No. 2 Thoracic Surgery Department Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People's Republic of China.
| | - Jie Lin
- College of Computer and Cyber Security, Fujian Normal University, Fuzhou, 350108, People's Republic of China.
| |
Collapse
|
31
|
Wang J, Zhang L, Zeng A, Xia D, Yu J, Yu G. DeepIII: Predicting Isoform-Isoform Interactions by Deep Neural Networks and Data Fusion. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2177-2187. [PMID: 33764878 DOI: 10.1109/tcbb.2021.3068875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alternative splicing enables a gene translating into different isoforms and into the corresponding proteoforms, which actually accomplish various biological functions of a living body. Isoform-isoform interactions (IIIs) provide a higher resolution interactome to explore the cellular processes and disease mechanisms than the canonically studied protein-protein interactions (PPIs), which are often recorded at the coarse gene level. The knowledge of IIIs is critical to map pathways, understand protein complexity and functional diversity, but the known IIIs are very scanty. In this paper, we propose a deep learning based method called DeepIII to systematically predict genome-wide IIIs by integrating diverse data sources, including RNA-seq datasets of different human tissues, exon array data, domain-domain interactions (DDIs) of proteins, nucleotide sequences and amino acid sequences. Particularly, DeepIII fuses these data to learn the representation of isoform pairs with a four-layer deep neural networks, and then performs binary classification on the learnt representation to achieve the prediction of IIIs. Experimental results show that DeepIII achieves a superior prediction performance to the state-of-the-art solutions and the III network constructed by DeepIII gives more accurate isoform function prediction. Case studies further confirm that DeepIII can differentiate the individual interaction partners of different isoforms spliced from the same gene. The code and datasets of DeepIII are available at http://mlda.swu.edu.cn/codes.php?name=DeepIII.
Collapse
|
32
|
A Novel Ensemble Learning-Based Computational Method to Predict Protein-Protein Interactions from Protein Primary Sequences. BIOLOGY 2022; 11:biology11050775. [PMID: 35625503 PMCID: PMC9139052 DOI: 10.3390/biology11050775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Protein–protein interactions (PPIs) play a central role in the evolution and progression of various biological processes. In this article, we constructed a novel ensemble-learning-based model to predict potential PPIs, which only utilized the protein sequence information. The presented method used Discrete Hilbert transform to extract amino acid sequence information from position-specific scoring matrices. Then these extracted features were fed into rotation forest for training and predicting. When applying our method to the three datasets (Yeast, Human, and Oryza sativa) for detecting PPIs, we obtained excellent prediction performance. Furthermore, the comparison results indicated that our computational model is effective and robust in predicting potential PPI pairs. Abstract Protein–protein interactions (PPIs) are crucial for understanding the cellular processes, including signal cascade, DNA transcription, metabolic cycles, and repair. In the past decade, a multitude of high-throughput methods have been introduced to detect PPIs. However, these techniques are time-consuming, laborious, and always suffer from high false negative rates. Therefore, there is a great need of new computational methods as a supplemental tool for PPIs prediction. In this article, we present a novel sequence-based model to predict PPIs that combines Discrete Hilbert transform (DHT) and Rotation Forest (RoF). This method contains three stages: firstly, the Position-Specific Scoring Matrices (PSSM) was adopted to transform the amino acid sequence into a PSSM matrix, which can contain rich information about protein evolution. Then, the 400-dimensional DHT descriptor was constructed for each protein pair. Finally, these feature descriptors were fed to the RoF classifier for identifying the potential PPI class. When exploring the proposed model on the Yeast, Human, and Oryza sativa PPIs datasets, it yielded excellent prediction accuracies of 91.93, 96.35, and 94.24%, respectively. In addition, we also conducted numerous experiments on cross-species PPIs datasets, and the predictive capacity of our method is also very excellent. To further access the prediction ability of the proposed approach, we present the comparison of RoF with four powerful classifiers, including Support Vector Machine (SVM), Random Forest (RF), K-nearest Neighbor (KNN), and AdaBoost. We also compared it with some existing superiority works. These comprehensive experimental results further confirm the excellent and feasibility of the proposed approach. In future work, we hope it can be a supplemental tool for the proteomics analysis.
Collapse
|
33
|
Jha K, Saha S, Singh H. Prediction of protein-protein interaction using graph neural networks. Sci Rep 2022; 12:8360. [PMID: 35589837 PMCID: PMC9120162 DOI: 10.1038/s41598-022-12201-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/18/2022] [Indexed: 01/09/2023] Open
Abstract
Proteins are the essential biological macromolecules required to perform nearly all biological processes, and cellular functions. Proteins rarely carry out their tasks in isolation but interact with other proteins (known as protein-protein interaction) present in their surroundings to complete biological activities. The knowledge of protein-protein interactions (PPIs) unravels the cellular behavior and its functionality. The computational methods automate the prediction of PPI and are less expensive than experimental methods in terms of resources and time. So far, most of the works on PPI have mainly focused on sequence information. Here, we use graph convolutional network (GCN) and graph attention network (GAT) to predict the interaction between proteins by utilizing protein's structural information and sequence features. We build the graphs of proteins from their PDB files, which contain 3D coordinates of atoms. The protein graph represents the amino acid network, also known as residue contact network, where each node is a residue. Two nodes are connected if they have a pair of atoms (one from each node) within the threshold distance. To extract the node/residue features, we use the protein language model. The input to the language model is the protein sequence, and the output is the feature vector for each amino acid of the underlying sequence. We validate the predictive capability of the proposed graph-based approach on two PPI datasets: Human and S. cerevisiae. Obtained results demonstrate the effectiveness of the proposed approach as it outperforms the previous leading methods. The source code for training and data to train the model are available at https://github.com/JhaKanchan15/PPI_GNN.git .
Collapse
Affiliation(s)
- Kanchan Jha
- Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, Bihar, 801103, India.
| | - Sriparna Saha
- Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, Bihar, 801103, India
| | - Hiteshi Singh
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342030, India
| |
Collapse
|
34
|
Li Z, Guo W, Zeng T, Yin J, Feng K, Huang T, Cai YD. Detecting Brain Structure-Specific Methylation Signatures and Rules for Alzheimer's Disease. Front Neurosci 2022; 16:895181. [PMID: 35585924 PMCID: PMC9108872 DOI: 10.3389/fnins.2022.895181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive disease that leads to irreversible behavioral changes, erratic emotions, and loss of motor skills. These conditions make people with AD hard or almost impossible to take care of. Multiple internal and external pathological factors may affect or even trigger the initiation and progression of AD. DNA methylation is one of the most effective regulatory roles during AD pathogenesis, and pathological methylation alterations may be potentially different in the various brain structures of people with AD. Although multiple loci associated with AD initiation and progression have been identified, the spatial distribution patterns of AD-associated DNA methylation in the brain have not been clarified. According to the systematic methylation profiles on different structural brain regions, we applied multiple machine learning algorithms to investigate such profiles. First, the profile on each brain region was analyzed by the Boruta feature filtering method. Some important methylation features were extracted and further analyzed by the max-relevance and min-redundancy method, resulting in a feature list. Then, the incremental feature selection method, incorporating some classification algorithms, adopted such list to identify candidate AD-associated loci at methylation with structural specificity, establish a group of quantitative rules for revealing the effects of DNA methylation in various brain regions (i.e., four brain structures) on AD pathogenesis. Furthermore, some efficient classifiers based on essential methylation sites were proposed to identify AD samples. Results revealed that methylation alterations in different brain structures have different contributions to AD pathogenesis. This study further illustrates the complex pathological mechanisms of AD.
Collapse
Affiliation(s)
- ZhanDong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zeng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jie Yin
- Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Human Genetics, Institute of Genetics, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
35
|
Casadio R, Martelli PL, Savojardo C. Machine learning solutions for predicting protein–protein interactions. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rita Casadio
- Biocomputing Group University of Bologna Bologna Italy
| | | | | |
Collapse
|
36
|
Sahni G, Mewara B, Lalwani S, Kumar R. CF-PPI: Centroid based new feature extraction approach for Protein-Protein Interaction Prediction. J EXP THEOR ARTIF IN 2022. [DOI: 10.1080/0952813x.2022.2052189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Gunjan Sahni
- Department of Computer Science and Engineering, Career Point University, Kota, India
| | - Bhawna Mewara
- Department of Computer Science and Engineering, Career Point University, Kota, India
| | - Soniya Lalwani
- Department of Mathematics, Career Point University, Kota, India
| | - Rajesh Kumar
- Department of Electrical Engineering, Malaviya National Institute of Technology, Jaipur, India
| |
Collapse
|
37
|
Ren ZH, Yu CQ, Li LP, You ZH, Guan YJ, Li YC, Pan J. SAWRPI: A Stacking Ensemble Framework With Adaptive Weight for Predicting ncRNA-Protein Interactions Using Sequence Information. Front Genet 2022; 13:839540. [PMID: 35360836 PMCID: PMC8963817 DOI: 10.3389/fgene.2022.839540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) take essential effects on biological processes, like gene regulation. One critical way of ncRNA executing biological functions is interactions between ncRNA and RNA binding proteins (RBPs). Identifying proteins, involving ncRNA-protein interactions, can well understand the function ncRNA. Many high-throughput experiment have been applied to recognize the interactions. As a consequence of these approaches are time- and labor-consuming, currently, a great number of computational methods have been developed to improve and advance the ncRNA-protein interactions research. However, these methods may be not available to all RNAs and proteins, particularly processing new RNAs and proteins. Additionally, most of them cannot process well with long sequence. In this work, a computational method SAWRPI is proposed to make prediction of ncRNA-protein through sequence information. More specifically, the raw features of protein and ncRNA are firstly extracted through the k-mer sparse matrix with SVD reduction and learning nucleic acid symbols by natural language processing with local fusion strategy, respectively. Then, to classify easily, Hilbert Transformation is exploited to transform raw feature data to the new feature space. Finally, stacking ensemble strategy is adopted to learn high-level abstraction features automatically and generate final prediction results. To confirm the robustness and stability, three different datasets containing two kinds of interactions are utilized. In comparison with state-of-the-art methods and other results classifying or feature extracting strategies, SAWRPI achieved high performance on three datasets, containing two kinds of lncRNA-protein interactions. Upon our finding, SAWRPI is a trustworthy, robust, yet simple and can be used as a beneficial supplement to the task of predicting ncRNA-protein interactions.
Collapse
Affiliation(s)
- Zhong-Hao Ren
- School of Information Engineering, Xijing University, Xi’an, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi’an, China
- *Correspondence: Li-Ping Li, ; Chang-Qing Yu,
| | - Li-Ping Li
- School of Information Engineering, Xijing University, Xi’an, China
- *Correspondence: Li-Ping Li, ; Chang-Qing Yu,
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Yong-Jian Guan
- School of Information Engineering, Xijing University, Xi’an, China
| | - Yue-Chao Li
- School of Information Engineering, Xijing University, Xi’an, China
| | - Jie Pan
- School of Information Engineering, Xijing University, Xi’an, China
| |
Collapse
|
38
|
Li S, Wu S, Wang L, Li F, Jiang H, Bai F. Recent advances in predicting protein-protein interactions with the aid of artificial intelligence algorithms. Curr Opin Struct Biol 2022; 73:102344. [PMID: 35219216 DOI: 10.1016/j.sbi.2022.102344] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) are essential in the regulation of biological functions and cell events, therefore understanding PPIs have become a key issue to understanding the molecular mechanism and investigating the design of drugs. Here we highlight the major developments in computational methods developed for predicting PPIs by using types of artificial intelligence algorithms. The first part introduces the source of experimental PPI data. The second part is devoted to the PPI prediction methods based on sequential information. The third part covers representative methods using structural information as the input feature. The last part is methods designed by combining different types of features. For each part, the state-of-the-art computational PPI prediction methods are reviewed in an inclusive view. Finally, we discuss the flaws existing in this area and future directions of next-generation algorithms.
Collapse
Affiliation(s)
- Shiwei Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Sanan Wu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fenglei Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hualiang Jiang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Information Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
39
|
Zhu F, Li F, Deng L, Meng F, Liang Z. Protein Interaction Network Reconstruction with a Structural Gated Attention Deep Model by Incorporating Network Structure Information. J Chem Inf Model 2022; 62:258-273. [PMID: 35005980 DOI: 10.1021/acs.jcim.1c00982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein-protein interactions (PPIs) provide a physical basis of molecular communications for a wide range of biological processes in living cells. Establishing the PPI network has become a fundamental but essential task for a better understanding of biological events and disease pathogenesis. Although many machine learning algorithms have been employed to predict PPIs, with only protein sequence information as the training features, these models suffer from low robustness and prediction accuracy. In this study, a new deep-learning-based framework named the Structural Gated Attention Deep (SGAD) model was proposed to improve the performance of PPI network reconstruction (PINR). The improved predictive performances were achieved by augmenting multiple protein sequence descriptors, the topological features and information flow of the PPI network, which were further implemented with a gating mechanism to improve its robustness to noise. On 11 independent test data sets and one combined data set, SGAD yielded area under the curve values of approximately 0.83-0.93, outperforming other models. Furthermore, the SGAD ensemble can learn more characteristics information on protein pairs through a two-layer neural network, serving as a powerful tool in the exploration of PPI biological space.
Collapse
Affiliation(s)
- Fei Zhu
- School of Computer Science and Technology, Soochow University, Suzhou 215 006, China
| | - Feifei Li
- School of Computer Science and Technology, Soochow University, Suzhou 215 006, China
| | - Lei Deng
- School of Computer Science and Technology, Soochow University, Suzhou 215 006, China
| | - Fanwang Meng
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215 006, China
| |
Collapse
|
40
|
Wang K, Zhao X, Wang X. A large-scale prediction of protein-protein interactions based on random forest and matrix of sequence. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225501017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Protein-protein interaction (PPIs) is an important part of many life activities in organisms, and the prediction of protein-protein interactions is closely related to protein function, disease occurrence, and disease treatment. In order to optimize the prediction performance of protein interactions, here a RT-MOS model was constructed based on Random Forest (RF) and Matrix of Sequence (MOS) to predict protein-protein interactions. Firstly, MOS is used to encode the protein sequences into a 29-dimensional feature vector; Then, a prediction model RT-MOS is build based on random forest, and the RT-MOS model is optimized and evaluated using the test set; Finally, the optimized model RT-MOS is used for prediction. The experimental results show that the accuracy rates of the RT-MOS model on the benchmark dataset and the non-redundant dataset are 97.18% and 91.34%, respectively, and the accuracies on four external datasets of C.elegans, Drosophila, E.coli and H.sapiens are 96.21%, 97.86%, 97.54% and 97.75%, respectively. Compared with the existing methods, it is found that it is superior to the existing methods. The experimental results show that the model RT-MOS has the advantages of saving time, preventing overfitting and high accuracy, and is suitable for large-scale PPIs prediction.
Collapse
|
41
|
Halder AK, Bandyopadhyay SS, Chatterjee P, Nasipuri M, Plewczynski D, Basu S. JUPPI: A Multi-Level Feature Based Method for PPI Prediction and a Refined Strategy for Performance Assessment. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:531-542. [PMID: 32750875 DOI: 10.1109/tcbb.2020.3004970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over the years, several methods have been proposed for the computational PPI prediction with different performance evaluation strategies. While attempting to benchmark performance scores, most of these methods often suffer with ill-treated cross-validation strategies, adhoc selection of positive/negative samples etc. To address these issues, in our proposed multi-level feature based PPI prediction approach (JUPPI), using sequence, domain and GO information as features, a refined evaluation strategy has been introduced. During the evaluation process, we first extract high quality negative data using three-stage filtering, and then introduce a pair-input based cross validation strategy with three difficulty levels for test-set predictions. Our proposed evaluation strategy reduces the component-level overlapping issue in test sets. Performance of JUPPI is compared with those of the state-of-the-art approaches in this domain and tested on six independent PPI datasets. In almost all the datasets, JUPPI outperforms the state-of-the-art not only at human proteome level for PPI prediction, but also for prediction of interactors for intrinsic disordered human proteins. https://figshare.com/projects/JUPPI_A_Multi-level_Feature_Based_Method_for_PPI_Prediction_and_a_Refined_Strategy_for_Performance_Assessment/81656 JUPPI tool and the developed datasets (JUPPId) are available in public domain for academic use along with supplementary materials, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TCBB.2020.3004970.
Collapse
|
42
|
Mahapatra S, Gupta VR, Sahu SS, Panda G. Deep Neural Network and Extreme Gradient Boosting Based Hybrid Classifier for Improved Prediction of Protein-Protein Interaction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:155-165. [PMID: 33621179 DOI: 10.1109/tcbb.2021.3061300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the behavioral process of life and disease-causing mechanism, knowledge regarding protein-protein interactions (PPI) is essential. In this paper, a novel hybrid approach combining deep neural network (DNN) and extreme gradient boosting classifier (XGB) is employed for predicting PPI. The hybrid classifier (DNN-XGB) uses a fusion of three sequence-based features, amino acid composition (AAC), conjoint triad composition (CT), and local descriptor (LD) as inputs. The DNN extracts the hidden information through a layer-wise abstraction from the raw features that are passed through the XGB classifier. The 5-fold cross-validation accuracy for intraspecies interactions dataset of Saccharomyces cerevisiae (core subset), Helicobacter pylori, Saccharomyces cerevisiae, and Human are 98.35, 96.19, 97.37, and 99.74 percent respectively. Similarly, accuracies of 98.50 and 97.25 percent are achieved for interspecies interaction dataset of Human- Bacillus Anthracis and Human- Yersinia pestis datasets, respectively. The improved prediction accuracies obtained on the independent test sets and network datasets indicate that the DNN-XGB can be used to predict cross-species interactions. It can also provide new insights into signaling pathway analysis, predicting drug targets, and understanding disease pathogenesis. Improved performance of the proposed method suggests that the hybrid classifier can be used as a useful tool for PPI prediction. The datasets and source codes are available at: https://github.com/SatyajitECE/DNN-XGB-for-PPI-Prediction.
Collapse
|
43
|
Dunham B, Ganapathiraju MK. Benchmark Evaluation of Protein-Protein Interaction Prediction Algorithms. Molecules 2021; 27:41. [PMID: 35011283 PMCID: PMC8746451 DOI: 10.3390/molecules27010041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Protein-protein interactions (PPIs) perform various functions and regulate processes throughout cells. Knowledge of the full network of PPIs is vital to biomedical research, but most of the PPIs are still unknown. As it is infeasible to discover all of them experimentally due to technical and resource limitations, computational prediction of PPIs is essential and accurately assessing the performance of algorithms is required before further application or translation. However, many published methods compose their evaluation datasets incorrectly, using a higher proportion of positive class data than occuring naturally, leading to exaggerated performance. We re-implemented various published algorithms and evaluated them on datasets with realistic data compositions and found that their performance is overstated in original publications; with several methods outperformed by our control models built on 'illogical' and random number features. We conclude that these methods are influenced by an over-characterization of some proteins in the literature and due to scale-free nature of PPI network and that they fail when tested on all possible protein pairs. Additionally, we found that sequence-only-based algorithms performed worse than those that employ functional and expression features. We present a benchmark evaluation of many published algorithms for PPI prediction. The source code of our implementations and the benchmark datasets created here are made available in open source.
Collapse
|
44
|
Narykov O, Johnson NT, Korkin D. Predicting protein interaction network perturbation by alternative splicing with semi-supervised learning. Cell Rep 2021; 37:110045. [PMID: 34818539 DOI: 10.1016/j.celrep.2021.110045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022] Open
Abstract
Alternative splicing introduces an additional layer of protein diversity and complexity in regulating cellular functions that can be specific to the tissue and cell type, physiological state of a cell, or disease phenotype. Recent high-throughput experimental studies have illuminated the functional role of splicing events through rewiring protein-protein interactions; however, the extent to which the macromolecular interactions are affected by alternative splicing has yet to be fully understood. In silico methods provide a fast and cheap alternative to interrogating functional characteristics of thousands of alternatively spliced isoforms. Here, we develop an accurate feature-based machine learning approach that predicts whether a protein-protein interaction carried out by a reference isoform is perturbed by an alternatively spliced isoform. Our method, called the alternatively spliced interactions prediction (ALT-IN) tool, is compared with the state-of-the-art PPI prediction tools and shows superior performance, achieving 0.92 in precision and recall values.
Collapse
Affiliation(s)
- Oleksandr Narykov
- Department of Computer Science, and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Nathan T Johnson
- Department of Computer Science, and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA; Harvard Program in Therapeutic Sciences, Harvard Medical School, and Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dmitry Korkin
- Department of Computer Science, and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
45
|
Martins YC, Ziviani A, Nicolás MF, de Vasconcelos ATR. Large-Scale Protein Interactions Prediction by Multiple Evidence Analysis Associated With an In-Silico Curation Strategy. FRONTIERS IN BIOINFORMATICS 2021; 1:731345. [PMID: 36303787 PMCID: PMC9581021 DOI: 10.3389/fbinf.2021.731345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Predicting the physical or functional associations through protein-protein interactions (PPIs) represents an integral approach for inferring novel protein functions and discovering new drug targets during repositioning analysis. Recent advances in high-throughput data generation and multi-omics techniques have enabled large-scale PPI predictions, thus promoting several computational methods based on different levels of biological evidence. However, integrating multiple results and strategies to optimize, extract interaction features automatically and scale up the entire PPI prediction process is still challenging. Most procedures do not offer an in-silico validation process to evaluate the predicted PPIs. In this context, this paper presents the PredPrIn scientific workflow that enables PPI prediction based on multiple lines of evidence, including the structure, sequence, and functional annotation categories, by combining boosting and stacking machine learning techniques. We also present a pipeline (PPIVPro) for the validation process based on cellular co-localization filtering and a focused search of PPI evidence on scientific publications. Thus, our combined approach provides means to extensive scale training or prediction of new PPIs and a strategy to evaluate the prediction quality. PredPrIn and PPIVPro are publicly available at https://github.com/YasCoMa/predprin and https://github.com/YasCoMa/ppi_validation_process.
Collapse
Affiliation(s)
- Yasmmin Côrtes Martins
- Bioinformatics Laboratory, National Laboratory of Scientific Computing, Petrópolis, Brazil
| | - Artur Ziviani
- Data Extreme Lab (DEXL), National Laboratory of Scientific Computing, Petrópolis, Brazil
| | - Marisa Fabiana Nicolás
- Bioinformatics Laboratory, National Laboratory of Scientific Computing, Petrópolis, Brazil
| | - Ana Tereza Ribeiro de Vasconcelos
- Bioinformatics Laboratory, National Laboratory of Scientific Computing, Petrópolis, Brazil
- *Correspondence: Ana Tereza Ribeiro de Vasconcelos,
| |
Collapse
|
46
|
Robust and accurate prediction of protein-protein interactions by exploiting evolutionary information. Sci Rep 2021; 11:16910. [PMID: 34413375 PMCID: PMC8376940 DOI: 10.1038/s41598-021-96265-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Various biochemical functions of organisms are performed by protein-protein interactions (PPIs). Therefore, recognition of protein-protein interactions is very important for understanding most life activities, such as DNA replication and transcription, protein synthesis and secretion, signal transduction and metabolism. Although high-throughput technology makes it possible to generate large-scale PPIs data, it requires expensive cost of both time and labor, and leave a risk of high false positive rate. In order to formulate a more ingenious solution, biology community is looking for computational methods to quickly and efficiently discover massive protein interaction data. In this paper, we propose a computational method for predicting PPIs based on a fresh idea of combining orthogonal locality preserving projections (OLPP) and rotation forest (RoF) models, using protein sequence information. Specifically, the protein sequence is first converted into position-specific scoring matrices (PSSMs) containing protein evolutionary information by using the Position-Specific Iterated Basic Local Alignment Search Tool (PSI-BLAST). Then we characterize a protein as a fixed length feature vector by applying OLPP to PSSMs. Finally, we train an RoF classifier for the purpose of identifying non-interacting and interacting protein pairs. The proposed method yielded a significantly better results than existing methods, with 90.07% and 96.09% prediction accuracy on Yeast and Human datasets. Our experiment show the proposed method can serve as a useful tool to accelerate the process of solving key problems in proteomics.
Collapse
|
47
|
Analysis of the Sequence Characteristics of Antifreeze Protein. Life (Basel) 2021; 11:life11060520. [PMID: 34204983 PMCID: PMC8226703 DOI: 10.3390/life11060520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/31/2022] Open
Abstract
Antifreeze protein (AFP) is a proteinaceous compound with improved antifreeze ability and binding ability to ice to prevent its growth. As a surface-active material, a small number of AFPs have a tremendous influence on the growth of ice. Therefore, identifying novel AFPs is important to understand protein–ice interactions and create novel ice-binding domains. To date, predicting AFPs is difficult due to their low sequence similarity for the ice-binding domain and the lack of common features among different AFPs. Here, a computational engine was developed to predict the features of AFPs and reveal the most important 39 features for AFP identification, such as antifreeze-like/N-acetylneuraminic acid synthase C-terminal, insect AFP motif, C-type lectin-like, and EGF-like domain. With this newly presented computational method, a group of previously confirmed functional AFP motifs was screened out. This study has identified some potential new AFP motifs and contributes to understanding biological antifreeze mechanisms.
Collapse
|
48
|
Yu G, Zeng J, Wang J, Zhang H, Zhang X, Guo M. Imbalance deep multi‐instance learning for predicting isoform–isoform interactions. INT J INTELL SYST 2021. [DOI: 10.1002/int.22402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Guoxian Yu
- School of Software Shandong University Jinan China
- College of Computer and Information Science Southwest University Chongqing China
- Joint SDU‐NTU Centre for Artificial Intelligence Research Shandong University Jinan China
| | - Jie Zeng
- College of Computer and Information Science Southwest University Chongqing China
| | - Jun Wang
- College of Computer and Information Science Southwest University Chongqing China
- Joint SDU‐NTU Centre for Artificial Intelligence Research Shandong University Jinan China
| | - Hong Zhang
- College of Computer and Information Science Southwest University Chongqing China
| | - Xiangliang Zhang
- CEMSE King Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - Maozu Guo
- School of Electrical and Information Engineering Beijing University of Civil Engineering and Architecture Beijing China
| |
Collapse
|
49
|
Czibula G, Albu AI, Bocicor MI, Chira C. AutoPPI: An Ensemble of Deep Autoencoders for Protein-Protein Interaction Prediction. ENTROPY 2021; 23:e23060643. [PMID: 34064042 PMCID: PMC8223997 DOI: 10.3390/e23060643] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/08/2021] [Accepted: 05/19/2021] [Indexed: 01/06/2023]
Abstract
Proteins are essential molecules, that must correctly perform their roles for the good health of living organisms. The majority of proteins operate in complexes and the way they interact has pivotal influence on the proper functioning of such organisms. In this study we address the problem of protein–protein interaction and we propose and investigate a method based on the use of an ensemble of autoencoders. Our approach, entitled AutoPPI, adopts a strategy based on two autoencoders, one for each type of interactions (positive and negative) and we advance three types of neural network architectures for the autoencoders. Experiments were performed on several data sets comprising proteins from four different species. The results indicate good performances of our proposed model, with accuracy and AUC values of over 0.97 in all cases. The best performing model relies on a Siamese architecture in both the encoder and the decoder, which advantageously captures common features in protein pairs. Comparisons with other machine learning techniques applied for the same problem prove that AutoPPI outperforms most of its contenders, for the considered data sets.
Collapse
|
50
|
Chen L, Li Z, Zeng T, Zhang YH, Li H, Huang T, Cai YD. Predicting gene phenotype by multi-label multi-class model based on essential functional features. Mol Genet Genomics 2021; 296:905-918. [PMID: 33914130 DOI: 10.1007/s00438-021-01789-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
Phenotype is one of the most significant concepts in genetics, which is used to describe all the characteristics of a research object that can be observed. Considering that phenotype reflects the integrated features of genotype and environment factors, it is hard to define phenotype characteristics, even difficult to predict unknown phenotypes. Restricted by current biological techniques, it is still quite expensive and time-consuming to obtain sufficient structural information of large-scale phenotype-associated genes/proteins. Various bioinformatics methods have been presented to solve such problem, and researchers have confirmed the efficacy and prediction accuracy of functional network-based prediction. But general functional descriptions have highly complicated inner structures for phenotype prediction. To further address this issue and improve the efficacy of phenotype prediction on more than ten kinds of phenotypes, we first extract functional enrichment features from GO and KEGG, and then use node2vec to learn functional embedding features of genes from a gene-gene network. All these features are analyzed by some feature selection methods (Boruta, minimum redundancy maximum relevance) to generate a feature list. Such list is fed into the incremental feature selection, incorporating some multi-label classifiers built by RAkEL and some classic base classifiers, to build an optimum multi-label multi-class classification model for phenotype prediction. According to recent researches, our method has indeed identified many literature-supported genes/proteins and their associated phenotypes, and even some candidate genes with re-assigned new phenotypes, which provide a new computational tool for the accurate and effective phenotypic prediction.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Tao Zeng
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Tao Huang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|