1
|
Steinbach MK, Leipert J, Matzanke T, Tholey A. Digital Microfluidics for Sample Preparation in Low-Input Proteomics. SMALL METHODS 2024:e2400495. [PMID: 39205538 DOI: 10.1002/smtd.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Low-input proteomics, also referred to as micro- or nanoproteomics, has become increasingly popular as it allows one to elucidate molecular processes in rare biological materials. A major prerequisite for the analytics of minute protein amounts, e.g., derived from low cell numbers, down to single cells, is the availability of efficient sample preparation methods. Digital microfluidics (DMF), a technology allowing the handling and manipulation of low liquid volumes, has recently been shown to be a powerful and versatile tool to address the challenges in low-input proteomics. Here, an overview is provided on recent advances in proteomics sample preparation using DMF. In particular, the capability of DMF to isolate proteomes from cells and small model organisms, and to perform all necessary chemical sample preparation steps, such as protein denaturation and proteolytic digestion on-chip, are highlighted. Additionally, major prerequisites to making these steps compatible with follow-up analytical methods such as liquid chromatography-mass spectrometry will be discussed.
Collapse
Affiliation(s)
- Max K Steinbach
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany
| | - Jan Leipert
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany
| | - Theo Matzanke
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105, Kiel, Germany
| |
Collapse
|
2
|
Wang Z, Liu PK, Li L. A Tutorial Review of Labeling Methods in Mass Spectrometry-Based Quantitative Proteomics. ACS MEASUREMENT SCIENCE AU 2024; 4:315-337. [PMID: 39184361 PMCID: PMC11342459 DOI: 10.1021/acsmeasuresciau.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 08/27/2024]
Abstract
Recent advancements in mass spectrometry (MS) have revolutionized quantitative proteomics, with multiplex isotope labeling emerging as a key strategy for enhancing accuracy, precision, and throughput. This tutorial review offers a comprehensive overview of multiplex isotope labeling techniques, including precursor-based, mass defect-based, reporter ion-based, and hybrid labeling methods. It details their fundamental principles, advantages, and inherent limitations along with strategies to mitigate the limitation of ratio-distortion. This review will also cover the applications and latest progress in these labeling techniques across various domains, including cancer biomarker discovery, neuroproteomics, post-translational modification analysis, cross-linking MS, and single-cell proteomics. This Review aims to provide guidance for researchers on selecting appropriate methods for their specific goals while also highlighting the potential future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Zicong Wang
- School
of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Peng-Kai Liu
- Biophysics
Graduate program, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School
of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Biophysics
Graduate program, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Lachman
Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Wisconsin
Center for NanoBioSystems, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
3
|
Mehta A, Ratre YK, Soni VK, Shukla D, Sonkar SC, Kumar A, Vishvakarma NK. Orchestral role of lipid metabolic reprogramming in T-cell malignancy. Front Oncol 2023; 13:1122789. [PMID: 37256177 PMCID: PMC10226149 DOI: 10.3389/fonc.2023.1122789] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/12/2023] [Indexed: 06/01/2023] Open
Abstract
The immune function of normal T cells partially depends on the maneuvering of lipid metabolism through various stages and subsets. Interestingly, T-cell malignancies also reprogram their lipid metabolism to fulfill bioenergetic demand for rapid division. The rewiring of lipid metabolism in T-cell malignancies not only provides survival benefits but also contributes to their stemness, invasion, metastasis, and angiogenesis. Owing to distinctive lipid metabolic programming in T-cell cancer, quantitative, qualitative, and spatial enrichment of specific lipid molecules occur. The formation of lipid rafts rich in cholesterol confers physical strength and sustains survival signals. The accumulation of lipids through de novo synthesis and uptake of free lipids contribute to the bioenergetic reserve required for robust demand during migration and metastasis. Lipid storage in cells leads to the formation of specialized structures known as lipid droplets. The inimitable changes in fatty acid synthesis (FAS) and fatty acid oxidation (FAO) are in dynamic balance in T-cell malignancies. FAO fuels the molecular pumps causing chemoresistance, while FAS offers structural and signaling lipids for rapid division. Lipid metabolism in T-cell cancer provides molecules having immunosuppressive abilities. Moreover, the distinctive composition of membrane lipids has implications for immune evasion by malignant cells of T-cell origin. Lipid droplets and lipid rafts are contributors to maintaining hallmarks of cancer in malignancies of T cells. In preclinical settings, molecular targeting of lipid metabolism in T-cell cancer potentiates the antitumor immunity and chemotherapeutic response. Thus, the direct and adjunct benefit of lipid metabolic targeting is expected to improve the clinical management of T-cell malignancies.
Collapse
Affiliation(s)
- Arundhati Mehta
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Yashwant Kumar Ratre
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Subhash C. Sonkar
- Multidisciplinary Research Unit, Maulana Azad Medical College, University of Delhi, New Delhi, India
| | - Ajay Kumar
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
4
|
Leipert J, Steinbach MK, Tholey A. Isobaric Peptide Labeling on Digital Microfluidics for Quantitative Low Cell Number Proteomics. Anal Chem 2021; 93:6278-6286. [PMID: 33823593 DOI: 10.1021/acs.analchem.1c01205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Digital microfluidics (DMF) is a technology suitable for bioanalytical applications requiring miniaturized, automated, and multiplexed liquid handling. Its use in LC-MS-based proteomics, however, has so far been limited to qualitative proteome analyses. This is mainly due to the need for detergents that enable facile, reproducible droplet movement, which are compatible with organic solvents commonly used in targeted chemical modifications of peptides. Aiming to implement isobaric peptide labeling, a widely applied technique allowing multiplexed quantitative proteome studies, on DMF devices, we tested different commercially available detergents. We identified the maltoside-based detergent 3-dodecyloxypropyl-1-β-d-maltopyranoside (DDOPM) to enable facile droplet movement and show micelle formation even in the presence of organic solvent, which is necessary for isobaric tandem mass tag (TMT) labeling. The detergent is fully compatible with reversed phase LC-MS, not interfering with peptide identification. Tryptic digestion in the presence of DDOPM was more efficient than without detergent, resulting in more protein identifications. Using this detergent, we report the first on-DMF chip isobaric labeling strategy, with TMT-labeling efficiency comparable to conventional protocols. The newly developed labeling protocol was evaluated in the multiplexed analyses of a protein standard digest spiked into 25 cells. Finally, using only 75 cells per biological replicate, we were able to identify 39 proteins being differentially abundant after treatment of Jurkat T cells with the anticancer drug doxorubicin. In summary, we demonstrate an important step toward multiplexed quantitative proteomics on DMF, which, in combination with larger chip arrays and optimized hardware, could enable high throughput low cell number proteomics.
Collapse
Affiliation(s)
- Jan Leipert
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel 24105, Germany
| | - Max K Steinbach
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel 24105, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel 24105, Germany
| |
Collapse
|
5
|
Canals D, Salamone S, Santacreu BJ, Nemeth E, Aguilar D, Hernandez-Corbacho MJ, Adada M, Staquicini DI, Arap W, Pasqualini R, Haley J, Obeid LM, Hannun YA. Ceramide launches an acute anti-adhesion pro-migration cell signaling program in response to chemotherapy. FASEB J 2020; 34:7610-7630. [PMID: 32307766 PMCID: PMC8265206 DOI: 10.1096/fj.202000205r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Chemotherapy has been reported to upregulate sphingomylinases and increase cellular ceramide, often linked to the induction to cell death. In this work, we show that sublethal doses of doxorubicin and vorinostat still increased cellular ceramide, which was located predominantly at the plasma membrane. To interrogate possible functions of this specific pool of ceramide, we used recombinant enzymes to mimic physiological levels of ceramide at the plasma membrane upon chemotherapy treatment. Using mass spectrometry and network analysis, followed by experimental confirmation, the results revealed that this pool of ceramide acutely regulates cell adhesion and cell migration pathways with weak connections to commonly established ceramide functions (eg, cell death). Neutral sphingomyelinase 2 (nSMase2) was identified as responsible for the generation of plasma membrane ceramide upon chemotherapy treatment, and both ceramide at the plasma membrane and nSMase2 were necessary and sufficient to mediate these "side" effects of chemotherapy on cell adhesion and migration. This is the first time a specific pool of ceramide is interrogated for acute signaling functions, and the results define plasma membrane ceramide as an acute signaling effector necessary and sufficient for regulation of cell adhesion and cell migration under chemotherapeutical stress.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Silvia Salamone
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Bruno Jaime Santacreu
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - Erika Nemeth
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Daniel Aguilar
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Catalunya, Spain
| | | | - Mohamad Adada
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Daniela I. Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - John Haley
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Northport VA Hospital
- Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Biochemistry, Stony Brook University
- Stony Brook Cancer Center, Stony Brook, NY, United States
| |
Collapse
|
6
|
Chen X, Wei S, Ji Y, Guo X, Yang F. Quantitative proteomics using SILAC: Principles, applications, and developments. Proteomics 2015; 15:3175-92. [DOI: 10.1002/pmic.201500108] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/24/2015] [Accepted: 06/08/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| | - Shasha Wei
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| | - Yanlong Ji
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| | - Xiaojing Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| |
Collapse
|
7
|
Guo L, Xiao Y, Wang Y. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts. Toxicol Appl Pharmacol 2014; 277:21-9. [PMID: 24625837 DOI: 10.1016/j.taap.2014.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/23/2014] [Accepted: 02/28/2014] [Indexed: 12/18/2022]
Abstract
Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ~6500 unique proteins quantified, ~300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content.
Collapse
Affiliation(s)
- Lei Guo
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403, United States
| | - Yongsheng Xiao
- Department of Chemistry, University of California, Riverside, CA 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403, United States; Department of Chemistry, University of California, Riverside, CA 92521-0403, United States.
| |
Collapse
|
8
|
Prins JM, Fu L, Guo L, Wang Y. Cd²⁺-induced alteration of the global proteome of human skin fibroblast cells. J Proteome Res 2014; 13:1677-87. [PMID: 24527689 PMCID: PMC3993958 DOI: 10.1021/pr401159f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Cadmium
(Cd2+) is a toxic heavy metal and a well-known
human carcinogen. The toxic effects of Cd2+ on biological
systems are diverse and thought to be exerted through a complex array
of mechanisms. Despite the large number of studies aimed to elucidate
the toxic mechanisms of action of Cd2+, few have been targeted
toward investigating the ability of Cd2+ to disrupt multiple
cellular pathways simultaneously and the overall cellular responses
toward Cd2+ exposure. In this study, we employed a quantitative
proteomic method, relying on stable isotope labeling by amino acids
in cell culture (SILAC) and LC–MS/MS, to assess the Cd2+-induced simultaneous alterations of multiple cellular pathways
in cultured human skin fibroblast cells. By using this approach, we
were able to quantify 2931 proteins, and 400 of them displayed significantly
changed expression following Cd2+ exposure. Our results
unveiled that Cd2+ treatment led to the marked upregulation
of several antioxidant enzymes (e.g., metallothionein-1G, superoxide
dismutase, pyridoxal kinase, etc.), enzymes associated with glutathione
biosynthesis and homeostasis (e.g., glutathione S-transferases, glutathione
synthetase, glutathione peroxidase, etc.), and proteins involved in
cellular energy metabolism (e.g., glycolysis, pentose phosphate pathway,
and the citric acid cycle). Additionally, we found that Cd2+ treatment resulted in the elevated expression of two isoforms of
dimethylarginine dimethylaminohydrolase (DDAH I and II), enzymes known
to play a key role in regulating nitric oxide biosynthesis. Consistent
with these findings, we observed elevated formation of nitric oxide
in human skin (GM00637) and lung (IMR-90) fibroblast cells following
Cd2+ exposure. The upregulation of DDAH I and II suggests
a role of nitric oxide synthesis in Cd2+-induced toxicity
in human cells.
Collapse
Affiliation(s)
- John M Prins
- Department of Chemistry and ‡Environmental Toxicology Graduate Program, University of California , Riverside, California 92521-0403, United States
| | | | | | | |
Collapse
|
9
|
Zhang J, Lanham KA, Heideman W, Peterson RE, Li L. Statistically enhanced spectral counting approach to TCDD cardiac toxicity in the adult zebrafish heart. J Proteome Res 2013; 12:3093-103. [PMID: 23682714 PMCID: PMC3740750 DOI: 10.1021/pr400312u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental pollutant and teratogen that produces cardiac toxicity in the developing zebrafish. Here we adopted a label free quantitative proteomic approach based on normalized spectral abundance factor (NSAF) to investigate the disturbance of the cardiac proteome induced by TCDD in the adult zebrafish heart. The protein expression level changes between heart samples from TCDD-treated and control zebrafish were systematically evaluated by a large scale MudPIT analysis, which incorporated triplicate analyses for both control and TCDD-exposed heart proteomic samples to overcome the data-dependent variation in shotgun proteomic experiments and obtain a statistically significant protein data set with improved quantification confidence. A total of 519 and 443 proteins were identified in hearts collected from control and TCDD-treated zebrafish, respectively, among which 106 proteins showed statistically significant expression changes. After correcting for the experimental variation between replicate analyses by statistical evaluation, 55 proteins exhibited NSAF ratios above 2 and 43 proteins displayed NSAF ratios smaller than 0.5, with statistical significance by t test (p < 0.05). The proteins identified as altered by TCDD encompass a wide range of biological functions including calcium handling, myocardium cell architecture, energy production and metabolism, mitochondrial homeostasis, and stress response. Collectively, our results indicate that TCDD exposure alters the adult zebrafish heart in a way that could result in cardiac hypertrophy and heart failure and suggests a potential mechanism for the diastolic dysfunction observed in TCDD-exposed embryos.
Collapse
Affiliation(s)
- Jiang Zhang
- School of Pharmacy, University of Wisconsin - Madison, WI, USA
| | - Kevin A Lanham
- Department of Biomolecular Chemistry, University of Wisconsin - Madison, WI, USA
| | - Warren Heideman
- School of Pharmacy, University of Wisconsin - Madison, WI, USA
| | | | - Lingjun Li
- School of Pharmacy, University of Wisconsin - Madison, WI, USA
- Department of Chemistry, University of Wisconsin - Madison, WI, USA
| |
Collapse
|
10
|
Guo L, Xiao Y, Wang Y. Hexavalent chromium-induced alteration of proteomic landscape in human skin fibroblast cells. J Proteome Res 2013; 12:3511-8. [PMID: 23718831 DOI: 10.1021/pr400375p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hexavalent chromium [Cr(VI)] generated during industrial processes is carcinogenic. Although much is known about the deleterious effects caused by reactive oxygen species generated during the reduction of Cr(VI) after its absorption by biological systems, the precise mechanisms underlying Cr(VI) cytotoxicity remain poorly defined. Here, we analyzed, at the global proteome scale, the perturbation of protein expression in GM00637 human skin fibroblast cells upon exposure to potassium dichromate (K₂Cr₂O₇). We were able to quantify ∼4600 unique proteins, among which ∼400 exhibited significant alterations in expression levels upon a 24-h treatment with 0.5 μM K₂Cr₂O₇. Pathway analysis revealed the Cr(VI)-induced perturbation of cholesterol biosynthesis, G-protein signaling, inflammatory response, and selenoprotein pathways. In particular, we discovered that the K₂Cr₂O₇ treatment led to pronouncedly elevated expression of a large number of enzymes involved in de novo cholesterol biosynthesis. Real-time PCR analysis revealed the increased mRNA expression of selected genes involved in cholesterol biosynthesis. Consistently, K₂Cr₂O₇ treatment resulted in marked increases in cellular cholesterol level in multiple cell lines. Moreover, the Cr(VI)-induced growth inhibition of cultured human cells could be rescued by a cholesterol-lowering drug, lovastatin. Together, we demonstrated, for the first time, that Cr(VI) may exert its cytotoxic effect, at least partly, through the up-regulation of enzymes involved in de novo cholesterol biosynthesis and the resultant increase of cholesterol level in cells.
Collapse
Affiliation(s)
- Lei Guo
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, USA
| | | | | |
Collapse
|
11
|
Tyleckova J, Hrabakova R, Mairychova K, Halada P, Radova L, Dzubak P, Hajduch M, Gadher SJ, Kovarova H. Cancer cell response to anthracyclines effects: mysteries of the hidden proteins associated with these drugs. Int J Mol Sci 2012; 13:15536-64. [PMID: 23443080 PMCID: PMC3546648 DOI: 10.3390/ijms131215536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/26/2012] [Accepted: 11/07/2012] [Indexed: 12/15/2022] Open
Abstract
A comprehensive proteome map of T-lymphoblastic leukemia cells and its alterations after daunorubicin, doxorubicin and mitoxantrone treatments was monitored and evaluated either by paired comparison with relevant untreated control and using multivariate classification of treated and untreated samples. With the main focus on early time intervals when the influence of apoptosis is minimized, we found significantly different levels of proteins, which corresponded to 1%–2% of the total amount of protein spots detected. According to Gene Ontology classification of biological processes, the highest representation of identified proteins for all three drugs belong to metabolic processes of proteins and nucleic acids and cellular processes, mainly cytoskeleton organisation and ubiquitin-proteasome pathway. Importantly, we observed significant proportion of changes in proteins involved in the generation of precursor metabolites and energy typical for daunorubicin, transport proteins participating in response to doxorubicin and a group of proteins of immune system characterising response to mitoxantrone. Both a paired comparison and the multivariate evaluation of quantitative data revealed daunorubicin as a distinct member of the group of anthracycline/anthracenedione drugs. A combination of identified drug specific protein changes, which may help to explain anti-cancer activity, together with the benefit of blocking activation of adaptive cancer pathways, presents important approaches to improving treatment outcomes in cancer.
Collapse
Affiliation(s)
- Jirina Tyleckova
- Institute of Animal Physiology and Genetics AS CR, v.v.i., 277 21 Libechov, Czech Republic; E-Mails: (J.T.); (R.H.); (K.M.)
| | - Rita Hrabakova
- Institute of Animal Physiology and Genetics AS CR, v.v.i., 277 21 Libechov, Czech Republic; E-Mails: (J.T.); (R.H.); (K.M.)
| | - Katerina Mairychova
- Institute of Animal Physiology and Genetics AS CR, v.v.i., 277 21 Libechov, Czech Republic; E-Mails: (J.T.); (R.H.); (K.M.)
| | - Petr Halada
- Institute of Microbiology AS CR, v.v.i., 142 20 Prague, Czech Republic; E-Mail:
| | - Lenka Radova
- Laboratory of Experimental Medicine, Institute of Translational and Molecular Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15 Olomouc, Czech Republic; E-Mails: (L.R.); (P.D.); (M.H.)
| | - Petr Dzubak
- Laboratory of Experimental Medicine, Institute of Translational and Molecular Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15 Olomouc, Czech Republic; E-Mails: (L.R.); (P.D.); (M.H.)
| | - Marian Hajduch
- Laboratory of Experimental Medicine, Institute of Translational and Molecular Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 775 15 Olomouc, Czech Republic; E-Mails: (L.R.); (P.D.); (M.H.)
| | | | - Hana Kovarova
- Institute of Animal Physiology and Genetics AS CR, v.v.i., 277 21 Libechov, Czech Republic; E-Mails: (J.T.); (R.H.); (K.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +420-315-639-582; Fax: +420-315-639-510
| |
Collapse
|
12
|
Mapping cyclosporine-induced changes in protein secretion by renal cells using stable isotope labeling with amino acids in cell culture (SILAC). J Proteomics 2012; 75:3674-87. [DOI: 10.1016/j.jprot.2012.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 04/09/2012] [Accepted: 04/18/2012] [Indexed: 01/14/2023]
|
13
|
Zhang F, Dai X, Wang Y. 5-Aza-2'-deoxycytidine induced growth inhibition of leukemia cells through modulating endogenous cholesterol biosynthesis. Mol Cell Proteomics 2012; 11:M111.016915. [PMID: 22398368 DOI: 10.1074/mcp.m111.016915] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
5-Aza-2'-deoxycytidine (5-Aza-CdR), a nucleoside analog that can inhibit DNA cytosine methylation, possesses potent antitumorigenic activities for myeloid disorders. Although 5-Aza-CdR is known to be incorporated into DNA and inhibit DNA (cytosine-5)-methyltransferases, the precise mechanisms underlying the drug's antineoplastic activity remain unclear. Here we utilized a mass spectrometry-based quantitative proteomic method to analyze the 5-Aza-CdR-induced perturbation of protein expression in Jurkat-T cells at the global proteome scale. Among the ≈ 2780 quantified proteins, 188 exhibited significant alteration in expression levels upon a 24-hr treatment with 5 μm 5-Aza-CdR. In particular, we found that drug treatment led to substantially reduced expression of farnesyl diphosphate synthase (FDPS) and farnesyl diphosphate farnesyltransferase (FDFT1), two important enzymes involved in de novo cholesterol synthesis. Consistent with this finding, 5-Aza-CdR treatment of leukemia (Jurkat-T, K562 and HL60) and melanoma (WM-266-4) cells led to a marked decrease in cellular cholesterol content and pronounced growth inhibition, which could be rescued by externally added cholesterol. Exposure of these cells to 5-Aza-CdR also led to epigenetic reactivation of dipeptidyl peptidase 4 (DPP4) gene. Additionally, suppression of DPP4 expression with siRNA induced elevated protein levels of FDPS and FDFT1, and increased cholesterol biosynthesis in WM-266-4 cells. Together, the results from the present study revealed, for the first time, that 5-Aza-CdR exerts its cytotoxic effects in leukemia and melanoma cells through epigenetic reactivation of DPP4 gene and the resultant inhibition of cholesterol biosynthesis in these cells.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| | | | | |
Collapse
|
14
|
Evans AR, Miriyala S, St Clair DK, Butterfield DA, Robinson RAS. Global effects of adriamycin treatment on mouse splenic protein levels. J Proteome Res 2012; 11:1054-64. [PMID: 22112237 DOI: 10.1021/pr200798g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adriamycin (ADR) is a potent anticancer drug used to treat a variety of cancers. Patients treated with ADR have experienced side effects such as heart failure, cardiomyopathy, and "chemobrain", which have been correlated to changes in protein expression in the heart and brain. In order to better understand cellular responses that are disrupted following ADR treatment in immune tissues, this work focuses on spleen. Significantly reduced spleen sizes were found in ADR-treated mice. Global isotopic labeling of tryptic peptides and nanoflow reversed-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) were employed to determine differences in the relative abundances of proteins from ADR-treated mice relative to controls. Fifty-nine proteins of the 388 unique proteins identified showed statistically significant differences in expression levels following acute ADR treatment. Differentially expressed proteins are involved in processes such as cytoskeletal structural integrity, cellular signaling and transport, transcription and translation, immune response, and Ca(2+) binding. These are the first studies to provide insight to the downstream effects of ADR treatment in a peripheral immune organ such as spleen using proteomics.
Collapse
Affiliation(s)
- Adam R Evans
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | |
Collapse
|
15
|
Lamoureux F, Mestre E, Essig M, Sauvage FL, Marquet P, Gastinel LN. Quantitative proteomic analysis of cyclosporine-induced toxicity in a human kidney cell line and comparison with tacrolimus. J Proteomics 2011; 75:677-94. [PMID: 21964257 DOI: 10.1016/j.jprot.2011.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 08/25/2011] [Accepted: 09/08/2011] [Indexed: 11/19/2022]
Abstract
The calcineurin-inhibitors (CNIs) cyclosporine (CsA) and tacrolimus (TAC) remain the pillars of modern immunosuppression regimens used in solid organ transplantation. Nephrotoxicity is an adverse effect that limits their successful use. The precise molecular mechanisms underlying this nephrotoxicity remain unclear. Using SILAC together with LC-MALDI-TOF/TOF, we investigated the CNIs-induced proteomic perturbations in renal cells. Among the 495 proteins quantifiable in both forward and reverse SILAC, 69 displayed CsA-induced perturbations: proteins involved in ER-stress/protein folding, apoptosis, metabolism/transport or cytoskeleton pathways were up-regulated, while cyclophilin B as well as nuclear and RNA-processing proteins were down-regulated. Co-administration of CsA with the antioxidant N-acetylcysteine significantly decreased lipid peroxidation and also partially corrected the CsA-induced unfolded protein response. TAC toxicity profile was apparently different from that of CsA, especially without perturbation of cyclophilins A and B, up-regulation of ER-chaperones nor down-regulation of a number of nuclear proteins. These results provide a new insight and are consistent with recent data regarding the molecular mechanisms of CNIs-induced nephrotoxicity. Our findings offer new directions for future research aiming to identify specific biomarkers of CsA nephrotoxicity.
Collapse
|
16
|
Affiliation(s)
- Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA.
| |
Collapse
|