1
|
Zhou K, Xia Y. High-Coverage Disulfide Mapping Enabled by Programmable Disulfide-Ene Reaction Integrated onto a Bottom-Up Protein Analysis Workflow. Anal Chem 2024; 96:17396-17404. [PMID: 39425647 DOI: 10.1021/acs.analchem.4c04257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Mapping disulfide linkages is crucial for characterizing pharmaceutical proteins during drug development and quality control. Traditional bottom-up protein analysis workflows often suffer from incomplete mapping for tryptic peptides consisting of multiple disulfide bonds. Although the employment of a partial reduction of disulfide bonds can improve disulfide mapping, it becomes a bottleneck of analysis because individual tuning is often needed. Herein, we have developed an online disulfide-ene reaction system in which the composition of the reaction solvent can be programmed to achieve optimal partial reduction of tryptic disulfide peptides after liquid chromatography separation. By coupling this system onto a bottom-up protein analysis workflow, high coverage for sequencing (71-83%) and disulfide mapping (84-100%) was achieved for standard proteins consisting of 4-19 disulfide bonds. The analytical capability was further demonstrated by mapping 13 scrambled disulfide bonds in lysozyme and achieving compositional analysis of IgG isotypes (κ and λ) and subclasses (IgG1-IgG4) from human plasma.
Collapse
Affiliation(s)
- Keting Zhou
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 10084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 10084, China
| |
Collapse
|
2
|
Chaturvedi S, Bawake S, Sharma N. Recent advancements in disulfide bridge characterization: Insights from mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9713. [PMID: 38361473 DOI: 10.1002/rcm.9713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024]
Abstract
RATIONALE Disulfide bridges (DSB) play an important role in stabilizing three-dimensional structures of biopharmaceuticals, single purified proteins, and various cyclic peptide drugs that contain disulfide in their structures. Incorrect cross-linking known as DSB scrambling results in misfolded structures that can be inactive, immunogenic, and susceptible to aggregation. Very few articles have been published on the experimental annotation of DSBs in proteins and cyclic peptide drugs. Accurate characterization of the disulfide bond is essential for understanding protein confirmation. METHODS Characterizing DSBs using mass spectrometry (MS) involves the chemical and enzymatic digestion of samples to obtain smaller peptide fragments, in both reduced and nonreduced forms. Subsequently, these samples are analyzed using MS to locate the DSB, either through interpretation or by employing various software tools. RESULTS The main challenge in DSB analysis methods using sample preparation is to obtain a sample solution in which nonnative DSBs are not formed due to high pH, temperature, and presence of free sulfhydryl groups. Formation of nonnative DSBs can lead to erroneous annotation of disulfide bond. Sample preparation techniques, fragmentation methods for DSB analysis, and contemporary approaches for DSB mapping using this fragmentation were discussed. CONCLUSIONS This review presents the latest advancement in MS-based characterization; also a critical perspective is presented for further annotation of DSBs using MS, primarily for single purified proteins or peptides that are densely connected and rich in cysteine. Despite significant breakthroughs resulting from advancements in MS, the analysis of disulfide bonds is not straightforward; it necessitates expertise in sample preparation and interpretation.
Collapse
Affiliation(s)
- Sachin Chaturvedi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (Ministry of Chemicals and Fertilizers, Government of India), NIPER Ahmedabad Opposite Air force Station Palaj, Gandhinagar, Gujarat, India
| | - Sanket Bawake
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (Ministry of Chemicals and Fertilizers, Government of India), NIPER Ahmedabad Opposite Air force Station Palaj, Gandhinagar, Gujarat, India
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (Ministry of Chemicals and Fertilizers, Government of India), NIPER Ahmedabad Opposite Air force Station Palaj, Gandhinagar, Gujarat, India
| |
Collapse
|
3
|
FNU PIJ, Tanim-Al-Hassan M, Yaroshuk T, Ai Y, Chen H. Absolute Quantitation of Peptides and Proteins by Coulometric Mass Spectrometry After Derivatization. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2024; 495:117153. [PMID: 38009161 PMCID: PMC10673616 DOI: 10.1016/j.ijms.2023.117153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Peptide/protein quantitation using mass spectrometry (MS) is advantageous due to its high sensitivity. Traditional absolute peptide quantitation methods rely on making calibration curves using peptide standards or isotope-labelled peptide standards, which are expensive and take time to synthesize. A method which can eliminate the need for using standards would be beneficial. Recently, we developed coulometric mass spectrometry (CMS) which can be used to quantify peptides that are oxidizable (e.g., those containing tyrosine or tryptophan), without using peptide standard. The method is based on electrochemical oxidation of peptides followed by MS to measure the oxidation yield. However, it cannot be directly used to quantify peptides without oxidizable residues. To extend this method for quantifying peptides/proteins in general, in this study, we adopted a derivatization strategy, in which a target peptide is first tagged with an electroactive reagent such as monocarboxymethylene blue NHS ester (MCMB-NHS ester), followed with quantitation by CMS. To illustrate the power of this method, we have analyzed peptides MG and RPPGFSPFR. The quantification error was less than 5%. Using RPPGFSPFR as an example, the quantitation sensitivity of the technique was found to be 0.25 pmol. Furthermore, we also used the strategy to quantify proteins cytochrome C and β-casein with an error of 2-26%.
Collapse
Affiliation(s)
- Praneeth Ivan Joel FNU
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Md. Tanim-Al-Hassan
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Timothy Yaroshuk
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Yongling Ai
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
4
|
van der Zon AAM, Verduin J, van den Hurk RS, Gargano AFG, Pirok BWJ. Sample transformation in online separations: how chemical conversion advances analytical technology. Chem Commun (Camb) 2023; 60:36-50. [PMID: 38053451 PMCID: PMC10729587 DOI: 10.1039/d3cc03599a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
While the advent of modern analytical technology has allowed scientists to determine the complexity of mixtures, it also spurred the demand to understand these sophisticated mixtures better. Chemical transformation can be used to provide insights into properties of complex samples such as degradation pathways or molecular heterogeneity that are otherwise unaccessible. In this article, we explore how sample transformation is exploited across different application fields to empower analytical methods. Transformation mechanisms include molecular-weight reduction, controlled degradation, and derivatization. Both offline and online transformation methods have been explored. The covered studies show that sample transformation facilitates faster reactions (e.g. several hours to minutes), reduces sample complexity, unlocks new sample dimensions (e.g. functional groups), provides correlations between multiple sample dimensions, and improves detectability. The article highlights the state-of-the-art and future prospects, focusing in particular on the characterization of protein and nucleic-acid therapeutics, nanoparticles, synthetic polymers, and small molecules.
Collapse
Affiliation(s)
- Annika A M van der Zon
- University of Amsterdam, van't Hoff Institute for Molecular Sciences, Analytical Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Joshka Verduin
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam, Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Rick S van den Hurk
- University of Amsterdam, van't Hoff Institute for Molecular Sciences, Analytical Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Andrea F G Gargano
- University of Amsterdam, van't Hoff Institute for Molecular Sciences, Analytical Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bob W J Pirok
- University of Amsterdam, van't Hoff Institute for Molecular Sciences, Analytical Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
5
|
Qi Z, Tao X, Tan G, Tian B, Zhang L, Kundu SC, Lu S. Electro-responsive silk fibroin microneedles for controlled release of insulin. Int J Biol Macromol 2023; 242:124684. [PMID: 37148951 DOI: 10.1016/j.ijbiomac.2023.124684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
To date, very limited work has been done on convenient and active control of insulin release. Herein, we report an electro-responsive insulin delivery system based on thiolated silk fibroin. The disulfide cross-linking points in TSF were reduced and broken to form sulfhydryl groups under electrification, which led to the increase of microneedle swelling degree and promoted insulin release. After power failure, the sulfhydryl group is oxidised to form disulfide bond crosslinking point again, resulting in the reduction of microneedle swelling degree and thus the reduction of release rate. The insulin loaded in the electro-responsive insulin delivery system showed good reversible electroresponsive release performance. The addition of graphene reduced the microneedle resistance and increased the drug release rate under current conditions. In vivo studies on type 1 diabetic mice show that electro-responsive insulin delivery system effectively controls the blood glucose before and after feeding by switching on and off the power supply, and this blood glucose control can be maintained within the safe range (100-200 mg/dL) for a long time (11h). Such electrically responsive delivery microneedles show potential for integration with glucose signal monitoring and are expected to build closed-loop insulin delivery systems.
Collapse
Affiliation(s)
- Zhenzhen Qi
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaosheng Tao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Guohongfang Tan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Bin Tian
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Lehao Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Subhas C Kundu
- I3Bs Research Institute on Biomaterials, Biodegrabilities, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco 4805017, Portugal
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
6
|
Wei B, Zenaidee MA, Lantz C, Williams BJ, Totten S, Ogorzalek Loo RR, Loo JA. Top-down mass spectrometry and assigning internal fragments for determining disulfide bond positions in proteins. Analyst 2022; 148:26-37. [PMID: 36399030 PMCID: PMC9772244 DOI: 10.1039/d2an01517j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Disulfide bonds in proteins have a substantial impact on protein structure, stability, and biological activity. Localizing disulfide bonds is critical for understanding protein folding and higher-order structure. Conventional top-down mass spectrometry (TD-MS), where only terminal fragments are assigned for disulfide-intact proteins, can access disulfide information, but suffers from low fragmentation efficiency, thereby limiting sequence coverage. Here, we show that assigning internal fragments generated from TD-MS enhances the sequence coverage of disulfide-intact proteins by 20-60% by returning information from the interior of the protein sequence, which cannot be obtained by terminal fragments alone. The inclusion of internal fragments can extend the sequence information of disulfide-intact proteins to near complete sequence coverage. Importantly, the enhanced sequence information that arise from the assignment of internal fragments can be used to determine the relative position of disulfide bonds and the exact disulfide connectivity between cysteines. The data presented here demonstrates the benefits of incorporating internal fragment analysis into the TD-MS workflow for analyzing disulfide-intact proteins, which would be valuable for characterizing biotherapeutic proteins such as monoclonal antibodies and antibody-drug conjugates.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Muhammad A Zenaidee
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | | | | | - Rachel R Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Knoche L, Lisec J, Koch M. Analysis of electrochemical and liver microsomal transformation products of lasalocid by LC/HRMS. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9349. [PMID: 35781351 DOI: 10.1002/rcm.9349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Lasalocid (LAS), an ionophore, is used in cattle and poultry farming as feed additive for its antibiotic and growth-promoting properties. Literature on transformation products (TP) resulting from LAS degradation is limited. So far, only hydroxylation is found to occur as the metabolic reaction during the LAS degradation. To investigate potential TPs of LAS, we used electrochemistry (EC) and liver microsome (LM) assays to synthesize TPs, which were identified using liquid chromatography high-resolution mass spectrometry (LC/HRMS). METHODS Electrochemically produced TPs were analyzed online by direct coupling of the electrochemical cell to the electrospray ionization (ESI) source of a Sciex Triple-TOF high resolution mass spectrometer. Then, EC-treated LAS solution was collected and analyzed offline using LC/HRMS to confirm stable TPs and improve their annotation with a chemical structure due to informative MS/MS spectra. In a complementary approach, TPs formed by rat and human microsomal incubation were investigated using LC/HRMS. The resulting data were used to investigate LAS modification reactions and elucidate the chemical structure of obtained TPs. RESULTS The online measurements identified a broad variety of TPs, resulting from modification reactions like (de-)hydrogenation, hydration, methylation, oxidation as well as adduct formation with methanol. We consistently observed different ion complexations of LAS and LAS-TPs (Na+ ; 2Na+ K+ ; NaNH4 + ; KNH4 + ). Two stable methylated EC-TPs were found, structurally annotated, and assigned to a likely modification reaction. Using LM incubation, seven TPs were formed, mostly by oxidation/hydroxylation. After the identification of LM-TPs as Na+ -complexes, we identified LM-TPs as K+ -complexes. CONCLUSION We identified and characterized TPs of LAS using EC- and LM-based methods. Moreover, we found different ion complexes of LAS-based TPs. This knowledge, especially the different ion complexes, may help elucidate the metabolic and environmental degradation pathways of LAS.
Collapse
Affiliation(s)
- Lisa Knoche
- Department of Analytical Chemistry and Reference Materials, Organic Trace Analysis and Food Analysis, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Jan Lisec
- Department of Analytical Chemistry and Reference Materials, Organic Trace Analysis and Food Analysis, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - Matthias Koch
- Department of Analytical Chemistry and Reference Materials, Organic Trace Analysis and Food Analysis, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| |
Collapse
|
8
|
Yang X, Xia Y. Mapping Complex Disulfide Bonds via Implementing Photochemical Reduction Online with Liquid Chromatography-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:307-314. [PMID: 33136395 DOI: 10.1021/jasms.0c00324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Assigning disulfide linkage is a crucial task for protein identification. The current bottom-up proteomics workflow has limitations in characterizing peptide digests containing multiple disulfide bonds due to the difficulty of controlling partial reduction via conventional chemical reduction methods. Previously, our lab reported the development of an acetone/2-propanol (IPA) photoinitiating system for rapid (on second time scale) and tunable disulfide bond reduction. Herein, we incorporated this reaction system onto a liquid chromatography-mass spectrometry (LC-MS) system for bottom-up protein analysis applications. The photochemical reduction reaction was implemented in a flow microreactor which allowed for up to 15 s 254 nm UV irradiation. The microreactor was installed post LC separation and right before electrospray ionization, while a T-junction was used to introduce the photoinitiating solution to the LC eluent before entering the microreactor. The degree of disulfide reduction was tunable from partial reduction to complete reduction for peptides containing one or multiple disulfide bonds. Significantly improved sequence coverage was obtained from complete disulfide reduction, while assignment of the disulfide connectivity was facilitated from partial disulfide reduction when coupled with tandem mass spectrometry via collision-induced dissociation. As a proof-of-concept test, trypsin digests of lysozyme (four disulfide bonds) and bovine serum albumin (BSA, 17 disulfide bonds) were analyzed by the LC-MS system coupled with online reduction. Sequence coverage was improved from 35% to 100% and 13% to 87% for lysozyme and BSA, respectively. All four disulfide bonds of lysozyme were determined. For BSA, nine disulfide bonds were characterized and eight adjacent disulfide bonds were narrowed down.
Collapse
Affiliation(s)
- Xiaoyue Yang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Liu C, Wang Q, Hivick BE, Ai Y, Champagne PA, Pan Y, Chen H. Capture of Electrochemically Generated Fleeting Carbazole Radical Cations and Elucidation of Carbazole Dimerization Mechanism by Mass Spectrometry. Anal Chem 2020; 92:15291-15296. [PMID: 33084312 DOI: 10.1021/acs.analchem.0c01223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The capture of reactive intermediates is important for the elucidation of reaction mechanisms. We report the first observation of electrochemically generated, short-lived radical cations of carbazole (t1/2 ≈ 97 μs) and two N-substituted carbazole derivatives by mass spectrometry. In addition, online investigation of the reactivity of electrochemically generated carbazole radical cations supports that the carbazole dimerization mechanism involves the reaction of one radical cation with one neutral molecule rather than the previously proposed coupling of two radical cations.
Collapse
Affiliation(s)
- Chengyuan Liu
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States.,National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Brian E Hivick
- Department of Chemistry & Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Yongling Ai
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Pier Alexandre Champagne
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States.,Department of Chemistry & Biochemistry, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
10
|
Wang Q, Wang Q, Zhang Y, Mohamed YM, Pacheco C, Zheng N, Zare RN, Chen H. Electrocatalytic redox neutral [3 + 2] annulation of N-cyclopropylanilines and alkenes. Chem Sci 2020; 12:969-975. [PMID: 34163863 PMCID: PMC8179209 DOI: 10.1039/d0sc05665k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022] Open
Abstract
Although synthetic organic electrochemistry (EC) has advanced significantly, net redox neutral electrosynthesis is quite rare. Two approaches have been employed to achieve this type of electrosynthesis. One relies on turnover of the product by the reactant in a chain mechanism. The other involves both oxidation on the anode and reduction on the cathode in which the radical cation or the radical anion of the product has to migrate between two electrodes. Herein, a home-built electrochemistry/mass spectrometry (EC/MS) platform was used to generate an N-cyclopropylaniline radical cation electrochemically and to monitor its reactivity toward alkenes by mass spectrometry (MS), which led to the discovery of a new redox neutral reaction of intermolecular [3 + 2] annulation of N-cyclopropylanilines and alkenes to provide an aniline-substituted 5-membered carbocycle via direct electrolysis (yield up to 81%). A chain mechanism, involving the regeneration of the substrate radical cation and the formation of the neutral product, is shown to be responsible for promoting such a redox neutral annulation reaction, as supported by experimental evidence of EC/MS.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| | - Qile Wang
- Department of Chemistry and Biochemistry, University of Arkansas Fayetteville Arkansas 72701 USA
| | - Yuexiang Zhang
- Department of Chemistry and Biochemistry, Ohio University Athens Ohio 45701 USA
| | - Yasmine M Mohamed
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| | - Carlos Pacheco
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| | - Nan Zheng
- Department of Chemistry and Biochemistry, University of Arkansas Fayetteville Arkansas 72701 USA
| | - Richard N Zare
- Department of Chemistry, Stanford University Stanford California 94305-5080 USA
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| |
Collapse
|
11
|
Wang Y, Zhang W, Ouyang Z. Fast protein analysis enabled by high-temperature hydrolysis. Chem Sci 2020; 11:10506-10516. [PMID: 34094309 PMCID: PMC8162451 DOI: 10.1039/d0sc03237a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
While the bottom-up protein analysis serves as a mainstream method for biological studies, its efficiency is limited by the time-consuming process for enzymatic digestion or hydrolysis as well as the post-digestion treatment prior to mass spectrometry analysis. In this work, we developed an enzyme-free microreaction system for fast and selective hydrolysis of proteins, and a direct analysis of the protein digests was achieved by nanoESI (electrospray ionization) mass spectrometry. Using the microreactor, proteins in aqueous solution could be selectively hydrolyzed at the aspartyl sites within 2 min at high temperatures (∼150 °C). Being free of salts, the protein digest solution could be directly analyzed using a mass spectrometer with nanoESI without further purification or post-digestion treatment. This method has been validated for the analysis of a variety of proteins with molecular weights ranging from 8.5 to 67 kDa. With introduction of a reducing agent into the protein solutions, fast cleavage of disulfide bonds was also achieved along with high-temperature hydrolysis, allowing for fast analysis of large proteins such as bovine serum albumin. The high-temperature microreaction system was also used with a miniature mass spectrometer for the determination of highly specific peptides from Mycobacterium tuberculosis antigens, showing its potential for point-of-care analysis of protein biomarkers.
Collapse
Affiliation(s)
- Yuchen Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 P. R. China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 P. R. China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
12
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
13
|
Zhan Z, Zhang H, Niu X, Yu X, Sun H, Sha X, Zhao Y, Wang Y, Li WJ. Microliter Sample Insulin Detection Using a Screen-Printed Electrode Modified by Nickel Hydroxide. ACS OMEGA 2020; 5:6169-6176. [PMID: 32226901 PMCID: PMC7098017 DOI: 10.1021/acsomega.0c00194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/28/2020] [Indexed: 05/03/2023]
Abstract
The monitoring of insulin, which is the only hormone that helps regulate blood glucose levels in the body, plays a key role in the diagnosis and treatment of diabetes. However, most techniques today involve complicated electrode fabrication and testing processes, which are time-consuming and costly, and require a relatively large volume of sample. To overcome these drawbacks, we present here a low-cost insulin detection method based on a screen-printed electrode (SPE) modified by nickel hydroxide (Ni(OH)2). This novel method only requires 300 μL of insulin sample, and the time it takes for electrode preparation is about 12 times shorter than traditional electrode fabrication methods such as coating and sol-gel methods. The electrochemical behaviors of the Ni(OH)2-coated SPE (NSPE) sensing area in insulin aqueous solutions are studied using cyclic voltammetry, amperometric i-t curves, and electrochemical impedance spectroscopy. The results demonstrate that the NSPE sensing surface has excellent detection properties, such as a high sensitivity of 15.3 μA·μM-1 and a low detection limit of 138 nM. It takes a short time (∼10 min) to prepare the NSPE sensing surface, and only two drops (∼300 μL) of insulin samples are required in the detection process. Moreover, the selectivity of this method for insulin detection is verified by detecting mixtures of insulin and ascorbic acid or bovine hemoglobin. Finally, we discuss the potential clinical applications of this method by detecting various concentrations of insulin in human serum.
Collapse
Affiliation(s)
- Zhikun Zhan
- Key
Laboratory of Intelligent Rehabilitation and Neromodulation of Hebei
Province, Yanshan University at Qinhuangdao, Qinhuangdao 066004, China
| | - Hongyu Zhang
- Key
Laboratory of Intelligent Rehabilitation and Neromodulation of Hebei
Province, Yanshan University at Qinhuangdao, Qinhuangdao 066004, China
| | - Xuanyu Niu
- School
of Control Engineering, Northeastern University
at Qinhuangdao, Qinhuangdao 066004, China
| | - Xiaodong Yu
- School
of Control Engineering, Northeastern University
at Qinhuangdao, Qinhuangdao 066004, China
| | - Hui Sun
- School
of Control Engineering, Northeastern University
at Qinhuangdao, Qinhuangdao 066004, China
| | - Xiaopeng Sha
- School
of Control Engineering, Northeastern University
at Qinhuangdao, Qinhuangdao 066004, China
| | - Yuliang Zhao
- School
of Control Engineering, Northeastern University
at Qinhuangdao, Qinhuangdao 066004, China
- E-mail: (Y.Z.)
| | - Ying Wang
- School
of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing
Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Wen Jung Li
- Department
of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- E-mail: (W.J.L.)
| |
Collapse
|
14
|
Zhao P, Zare RN, Chen H. Absolute Quantitation of Oxidizable Peptides by Coulometric Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2398-2407. [PMID: 31429055 DOI: 10.1007/s13361-019-02299-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Quantitation methods for peptides using mass spectrometry have advanced rapidly. These methods rely on using standard and/or isotope-labeled peptides, which might be difficult or expensive to synthesize. To tackle this challenge, we present a new approach for absolute quantitation without the use of standards or calibration curves based on coulometry combined with mass spectrometry (MS). In this approach, which we call coulometric mass spectrometry (CMS), the mass spectrum of a target peptide containing one or more tyrosine residues is recorded before and after undergoing electrochemical oxidation. We record the total integrated oxidation current from the electrochemical measurement, which according to the Faraday's Law of coulometry, provides the number of moles of oxidized peptide. The ion intensity ratio of the target peptide before and after oxidation provides an excellent estimate of the fraction of the peptide that has been oxidized, from which the total amount of peptide is calculated. The striking strength of CMS is that it needs no standard peptide, but CMS does require the peptide to contain a known number of oxidizable groups. To illustrate the power of this method, we analyzed various tyrosine-containing peptides such as GGYR, DRVY, oxytocin, [Arg8]-vasotocin and angiotensinogen 1-14 with a quantification error ranging from - 7.5 to + 2.4%. This approach is also applicable to quantifying phosphopeptides and could be useful in proteomics research.
Collapse
Affiliation(s)
- Pengyi Zhao
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, 94305-5080, USA.
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
15
|
Adhikari S, Xia Y, McLuckey SA. Top-Down Analysis of Disulfide-Linked Proteins Using Photoinduced Radical Reactions and ET-DDC. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 444:116173. [PMID: 31372092 PMCID: PMC6675022 DOI: 10.1016/j.ijms.2019.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Top-down characterization of proteins via tandem mass spectrometry (MS/MS) can be challenging due to the presence of multiple disulfide bond linkages; which significantly inhibit the backbone cleavage efficiency for the formation of structurally informative fragment ions. In this study, we present a strategy of pairing a solution-phase photoinitiating system with dipolar direct current induced collisional activation of electron transfer products (ET-DDC) of proteins for a top-down MS/MS approach. The photoinitiating system allows for a rapid scission of all the disulfide linkages in the protein (on the time scale of seconds) with high efficiency (near to complete reduction); while ET-DDC collisional activation improves the fragmentation efficiency for the protein via broadband activation of all the first-generation charge reduced precursor ions (e.g., electron transfer no-dissociation or ETnoD products) from electron transfer reactions over a wide mass-to-charge range. As a result, this approach enabled the generation of extensive sequence informative fragment ion yields for a rapid and enhanced structural characterization of disulfide-linked proteins.
Collapse
Affiliation(s)
- Sarju Adhikari
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yu Xia
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Address reprint requests to: Dr. Scott A. McLuckey, 560 Oval Drive, Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA, Phone: (765) 494-5270, Fax: (765) 494-0239,
| |
Collapse
|
16
|
Cui L, Ma Y, Li M, Wei Z, Fei Q, Huan Y, Li H, Zheng L. Disulfide linkage assignment based on reducing electrochemistry and mass spectrometry using a lead electrode. Talanta 2019; 199:643-651. [PMID: 30952309 DOI: 10.1016/j.talanta.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 11/29/2022]
Abstract
The study of disulfide linkage is a crucial part of the quality assessment of biopharmaceutical products because disulfide bonds stabilize the tertiary structure of proteins and maintain protein functions. Therefore, a suitable method is highly required for disulfide linkage assignment when nested disulfide bonds formed with closely spaced cysteine residues. A novel approach for disulfide linkage assignment of disulfide-rich peptides and proteins via electrochemical reduction on a lead electrode with mass spectrometry is presented in this paper. The method features partial electrochemical reduction and alkylation of peptides followed by alkylated peptide sequencing based on tandem mass spectrometry. Lead was chosen for the first time as an electrode material for disulfide bond reduction, because it has the advantages of maintenance free (only infrequent polishing needed), easy operation in DC mode, and reusability. Without any special sample preparation and any chemical reduction agents, disulfide bond in peptides can be cleaved rapidly. The new method was successfully tested with two peptides and one protein containing nested disulfide bonds.
Collapse
Affiliation(s)
- Lili Cui
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yongge Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Ming Li
- Department of Chemistry, National Institute of Metrology, Beijing 100029, China.
| | - Zhonglin Wei
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Fei
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Yanfu Huan
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongmei Li
- Department of Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Lianyou Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
17
|
Zhao X, Shen Y, Tong W, Wang G, Chen DDY. Deducing disulfide patterns of cysteine-rich proteins using signature fragments produced by top-down mass spectrometry. Analyst 2019; 143:817-823. [PMID: 29362732 DOI: 10.1039/c7an01625e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct mapping of protein disulfide patterns using top-down mass spectrometry (MS) is often hampered by inadequate fragmentation at the disulfide-enclosing region, and insufficient structural information provided by the fragments. Here we used electron-transfer/high energy collision dissociation (EThcD) to improve the fragmentation efficiency, and developed strategies that minimize the false positive identification of fragments and deconvolute the signals representing specific modifications made to the disulfide-cleavage-induced fragments. We observed clear correlations between unique modification (attachment or removal of H or SH) patterns and the number of disulfide bonds that enclose the corresponding region. Using the characteristic signature fragments, we in part localized the Cys-bridging sites in disulfide-scrambled lysozymes, and reduced the number of putative disulfide patterns from 104 to 6. The results demonstrated the feasibility of direct analysis of complex disulfide patterns using top-down MS.
Collapse
Affiliation(s)
- Xiuxiu Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | | | | | | | | |
Collapse
|
18
|
Narayanan R, Basuri P, Jana SK, Mahendranath A, Bose S, Pradeep T. In situ monitoring of electrochemical reactions through CNT-assisted paper cell mass spectrometry. Analyst 2019; 144:5404-5412. [DOI: 10.1039/c9an00791a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel method of coupling electrochemistry (EC) with mass spectrometry (MS) is illustrated with a paper-based electrochemical cell supported by carbon nanotubes (CNTs).
Collapse
Affiliation(s)
- Rahul Narayanan
- DST Unit of Nanoscience and Thematic Unit of Excellence
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Pallab Basuri
- DST Unit of Nanoscience and Thematic Unit of Excellence
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Sourav Kanti Jana
- DST Unit of Nanoscience and Thematic Unit of Excellence
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Ananthu Mahendranath
- DST Unit of Nanoscience and Thematic Unit of Excellence
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Sandeep Bose
- DST Unit of Nanoscience and Thematic Unit of Excellence
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Thalappil Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| |
Collapse
|
19
|
Rush MJ, Riley NM, Westphall MS, Coon JJ. Top-Down Characterization of Proteins with Intact Disulfide Bonds Using Activated-Ion Electron Transfer Dissociation. Anal Chem 2018; 90:8946-8953. [PMID: 29949341 PMCID: PMC6434944 DOI: 10.1021/acs.analchem.8b01113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Here we report the fragmentation of disulfide linked intact proteins using activated-ion electron transfer dissociation (AI-ETD) for top-down protein characterization. This fragmentation method is then compared to the alternative methods of beam-type collisional activation (HCD), electron transfer dissociation (ETD), and electron transfer and higher-energy collision dissociation (EThcD). We analyzed multiple precursor charge states of the protein standards bovine insulin, α-lactalbumin, lysozyme, β-lactoglobulin, and trypsin inhibitor. In all cases, we found that AI-ETD provides a boost in protein sequence coverage information and the generation of fragment ions from within regions enclosed by disulfide bonds. AI-ETD shows the largest improvement over the other techniques when analyzing highly disulfide linked and low charge density precursor ions. This substantial improvement is attributed to the concurrent irradiation of the gas phase ions while the electron-transfer reaction is taking place, mitigating nondissociative electron transfer, helping unfold the gas phase protein during the electron transfer event, and preventing disulfide bond reformation. We also show that AI-ETD is able to yield comparable sequence coverage information when disulfide bonds are left intact relative to proteins that have been reduced and alkylated. This work demonstrates that AI-ETD is an effective fragmentation method for the analysis of proteins with intact disulfide bonds, dramatically enhancing sequence ion generation and total sequence coverage compared to HCD and ETD.
Collapse
Affiliation(s)
- Matthew J.P. Rush
- Genome Center of Wisconsin, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Nicholas M. Riley
- Genome Center of Wisconsin, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | | | - Joshua J. Coon
- Genome Center of Wisconsin, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
20
|
Xu S, Zhang Y, Xu L, Bai Y, Liu H. Online coupling techniques in ambient mass spectrometry. Analyst 2018; 141:5913-5921. [PMID: 27704091 DOI: 10.1039/c6an01705c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since ambient mass spectrometry (AMS) has been proven to have low matrix effects and high salt tolerance, great efforts have been made for online coupling of several analytical techniques with AMS. These analytical techniques include gas chromatography (GC), liquid chromatography (LC), capillary electrophoresis (CE), surface plasmon resonance (SPR), and electrochemistry flow cells. Various ambient ionization sources, represented by desorption electrospray ionization (DESI) and direct analysis in real time (DART), have been utilized as interfaces for the online coupling techniques. Herein, we summarized the advances in these online coupling methods. Close attention has been paid to different interface setups for coupling, as well as limits of detection, tolerance to different matrices, and applications of these new coupling techniques.
Collapse
Affiliation(s)
- Shuting Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Yiding Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Linnan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| |
Collapse
|
21
|
Lakbub JC, Shipman JT, Desaire H. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins. Anal Bioanal Chem 2017; 410:2467-2484. [PMID: 29256076 DOI: 10.1007/s00216-017-0772-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022]
Abstract
Disulfide bonds are important structural moieties of proteins: they ensure proper folding, provide stability, and ensure proper function. With the increasing use of proteins for biotherapeutics, particularly monoclonal antibodies, which are highly disulfide bonded, it is now important to confirm the correct disulfide bond connectivity and to verify the presence, or absence, of disulfide bond variants in the protein therapeutics. These studies help to ensure safety and efficacy. Hence, disulfide bonds are among the critical quality attributes of proteins that have to be monitored closely during the development of biotherapeutics. However, disulfide bond analysis is challenging because of the complexity of the biomolecules. Mass spectrometry (MS) has been the go-to analytical tool for the characterization of such complex biomolecules, and several methods have been reported to meet the challenging task of mapping disulfide bonds in proteins. In this review, we describe the relevant, recent MS-based techniques and provide important considerations needed for efficient disulfide bond analysis in proteins. The review focuses on methods for proper sample preparation, fragmentation techniques for disulfide bond analysis, recent disulfide bond mapping methods based on the fragmentation techniques, and automated algorithms designed for rapid analysis of disulfide bonds from liquid chromatography-MS/MS data. Researchers involved in method development for protein characterization can use the information herein to facilitate development of new MS-based methods for protein disulfide bond analysis. In addition, individuals characterizing biotherapeutics, especially by disulfide bond mapping in antibodies, can use this review to choose the best strategies for disulfide bond assignment of their biologic products. Graphical Abstract This review, describing characterization methods for disulfide bonds in proteins, focuses on three critical components: sample preparation, mass spectrometry data, and software tools.
Collapse
Affiliation(s)
- Jude C Lakbub
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr, Lawrence, KS, 66045, USA
| | - Joshua T Shipman
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr, Lawrence, KS, 66045, USA
| | - Heather Desaire
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr, Lawrence, KS, 66045, USA.
| |
Collapse
|
22
|
Liu Y, Sun W, Shan B, Zhang K. DISC: DISulfide linkage Characterization from tandem mass spectra. Bioinformatics 2017; 33:3861-3870. [DOI: 10.1093/bioinformatics/btx667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 10/19/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yi Liu
- Department of Computer Science, The University of Western Ontario, London, ON, Canada
| | - Weiping Sun
- Department of Computer Science, The University of Western Ontario, London, ON, Canada
| | - Baozhen Shan
- Bioinformatics Solutions Inc. (BSI), Waterloo, ON, Canada
| | - Kaizhong Zhang
- Department of Computer Science, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
23
|
Maes E, Dyer JM, McKerchar HJ, Deb-Choudhury S, Clerens S. Protein-protein cross-linking and human health: the challenge of elucidating with mass spectrometry. Expert Rev Proteomics 2017; 14:917-929. [PMID: 28759730 DOI: 10.1080/14789450.2017.1362336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION In several biomedical research fields, the cross-linking of peptides and proteins has an important impact on health and wellbeing. It is therefore of crucial importance to study this class of post-translational modifications in detail. The huge potential of mass spectrometric technologies in the mapping of these protein-protein cross-links is however overshadowed by the challenges that the field has to overcome. Areas covered: In this review, we summarize the different pitfalls and challenges that the protein-protein cross-linking field is confronted with when using mass spectrometry approaches. We additionally focus on native disulfide bridges as an example and provide some examples of cross-links that are important in the biomedical field. Expert commentary: The current flow of methodological improvements, mainly from the chemical cross-linking field, has delivered a significant contribution to deciphering native and insult-induced cross-links. Although an automated data analysis of proteome-wide peptide cross-linking is currently only possible in chemical cross-linking experiments, the field is well on the way towards a more automated analysis of native and insult-induced cross-links in raw mass spectrometry data that will boost its potential in biomedical applications.
Collapse
Affiliation(s)
- Evelyne Maes
- a Food & Bio-Based Products, AgResearch Ltd ., Lincoln , New Zealand
| | - Jolon M Dyer
- a Food & Bio-Based Products, AgResearch Ltd ., Lincoln , New Zealand.,b Biomolecular Interaction Centre , University of Canterbury , Christchurch , New Zealand.,c Riddet Institute, Massey University , Palmerston North , New Zealand.,d Wine, Food & Molecular Biosciences , Lincoln University , Lincoln , New Zealand
| | - Hannah J McKerchar
- a Food & Bio-Based Products, AgResearch Ltd ., Lincoln , New Zealand.,b Biomolecular Interaction Centre , University of Canterbury , Christchurch , New Zealand
| | | | - Stefan Clerens
- a Food & Bio-Based Products, AgResearch Ltd ., Lincoln , New Zealand.,b Biomolecular Interaction Centre , University of Canterbury , Christchurch , New Zealand
| |
Collapse
|
24
|
Yuill EM, Baker LA. Electrochemical Aspects of Mass Spectrometry: Atmospheric Pressure Ionization and Ambient Ionization for Bioanalysis. ChemElectroChem 2017. [DOI: 10.1002/celc.201600751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elizabeth M. Yuill
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington, Indiana 47405 USA
| | - Lane A. Baker
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington, Indiana 47405 USA
| |
Collapse
|
25
|
Dual reductive/oxidative electrochemistry/liquid chromatography/mass spectrometry: Towards peptide and protein modification, separation and identification. J Chromatogr A 2017; 1479:153-160. [DOI: 10.1016/j.chroma.2016.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/22/2016] [Accepted: 12/05/2016] [Indexed: 01/16/2023]
|
26
|
Looi WD, Chamand L, Brown B, Brajter-Toth A. Role of Electrochemistry in Desorption Ionization Mass Spectrometry (LS DESI MS) of Aqueous Samples Containing Electrolyte Salts. Anal Chem 2016; 89:603-610. [DOI: 10.1021/acs.analchem.6b02406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wen Donq Looi
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Laura Chamand
- Faculty
of Chemistry, University of Strasbourg, 1 Rue Blasie Pascal, 67008 Strasbourg, France
| | - Blake Brown
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Anna Brajter-Toth
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
27
|
Parker WR, Brodbelt JS. Characterization of the Cysteine Content in Proteins Utilizing Cysteine Selenylation with 266 nm Ultraviolet Photodissociation (UVPD). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1344-1350. [PMID: 27091595 DOI: 10.1007/s13361-016-1405-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/30/2016] [Accepted: 04/02/2016] [Indexed: 06/05/2023]
Abstract
Characterization of the cysteine content of proteins is a key aspect of proteomics. By defining both the total number of cysteines and their bound/unbound state, the number of candidate proteins considered in database searches is significantly constrained. Herein we present a methodology that utilizes 266 nm UVPD to count the number of free and bound cysteines in intact proteins. In order to attain this goal, proteins were derivatized with N-(phenylseleno)phthalimide (NPSP) to install a selectively cleavable Se-S bond upon 266 UVPD. The number of Se-S bonds cleaved upon UVPD, a process that releases SePh moieties, corresponds to the number of cysteine residues per protein. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- W Ryan Parker
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | | |
Collapse
|
28
|
Parker WR, Holden DD, Cotham VC, Xu H, Brodbelt JS. Cysteine-Selective Peptide Identification: Selenium-Based Chromophore for Selective S-Se Bond Cleavage with 266 nm Ultraviolet Photodissociation. Anal Chem 2016; 88:7222-9. [PMID: 27320857 DOI: 10.1021/acs.analchem.6b01465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The tremendous number of peptides identified in current bottom-up mass spectrometric workflows, although impressive for high-throughput proteomics, results in little selectivity for more targeted applications. We describe a strategy for cysteine-selective proteomics based on a tagging method that installs a S-Se bond in peptides that is cleavable upon 266 nm ultraviolet photodissociation (UVPD). The alkylating reagent, N-(phenylseleno)phthalimide (NPSP), reacts with free thiols in cysteine residues and attaches a chromogenic benzeneselenol (SePh) group. Upon irradiation of tagged peptides with 266 nm photons, the S-Se bond is selectively cleaved, releasing a benzeneselenol moiety corresponding to a neutral loss of 156 Da per cysteine. Herein we demonstrate a new MS/MS scan mode, UVPDnLossCID, which facilitates selective screening of cysteine-containing peptides. A "prescreening" event occurs by activation of the top N peptide ions by 266 nm UVPD. Peptides exhibiting a neutral loss corresponding to one or more SePh groups are reactivated and sequenced by CID. Because of the low frequency of cysteine in the proteome, unique cysteine-containing peptides may serve as surrogates for entire proteins. UVPDnLossCID does not generate as many peptide spectrum matches (PSMs) as conventional bottom-up methods; however, UVPDnLossCID provides far greater selectivity.
Collapse
Affiliation(s)
- W Ryan Parker
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Dustin D Holden
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Victoria C Cotham
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Hua Xu
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| |
Collapse
|
29
|
Zheng Q, Chen H. Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:411-448. [PMID: 27145689 DOI: 10.1146/annurev-anchem-071015-041620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow-extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.
Collapse
Affiliation(s)
- Qiuling Zheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701;
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701;
| |
Collapse
|
30
|
Liu H, Lei QP, Washabaugh M. Characterization of IgG2 Disulfide Bonds with LC/MS/MS and Postcolumn Online Reduction. Anal Chem 2016; 88:5080-7. [DOI: 10.1021/acs.analchem.5b04368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hongji Liu
- Analytical Biotechnology, MedImmune, One Medimmune Way, Gaithersburg, Maryland 20878, United States
| | - Qing Paula Lei
- Analytical Biotechnology, MedImmune, One Medimmune Way, Gaithersburg, Maryland 20878, United States
| | - Michael Washabaugh
- Analytical Biotechnology, MedImmune, One Medimmune Way, Gaithersburg, Maryland 20878, United States
| |
Collapse
|
31
|
Zheng Q, Zhang H, Wu S, Chen H. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:864-875. [PMID: 26902947 PMCID: PMC4841728 DOI: 10.1007/s13361-016-1356-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca(2+) on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Qiuling Zheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Shiyong Wu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
32
|
Merits of online electrochemistry liquid sample desorption electrospray ionization mass spectrometry (EC/LS DESI MS). Anal Bioanal Chem 2016; 408:2227-38. [DOI: 10.1007/s00216-015-9246-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022]
|
33
|
Cramer CN, Haselmann KF, Olsen JV, Nielsen PK. Disulfide Linkage Characterization of Disulfide Bond-Containing Proteins and Peptides by Reducing Electrochemistry and Mass Spectrometry. Anal Chem 2016; 88:1585-92. [DOI: 10.1021/acs.analchem.5b03148] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Christian N. Cramer
- Protein
Engineering, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
- Department
of Proteomics, The Novo Nordisk Foundation Center for Protein Research,
Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kim F. Haselmann
- Protein
Engineering, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Jesper V. Olsen
- Department
of Proteomics, The Novo Nordisk Foundation Center for Protein Research,
Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | |
Collapse
|
34
|
Switzar L, Nicolardi S, Rutten JW, Oberstein SAJL, Aartsma-Rus A, van der Burgt YEM. In-Depth Characterization of Protein Disulfide Bonds by Online Liquid Chromatography-Electrochemistry-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:50-8. [PMID: 26369777 PMCID: PMC4686567 DOI: 10.1007/s13361-015-1258-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 05/04/2023]
Abstract
Disulfide bonds are an important class of protein post-translational modifications, yet this structurally crucial modification type is commonly overlooked in mass spectrometry (MS)-based proteomics approaches. Recently, the benefits of online electrochemistry-assisted reduction of protein S-S bonds prior to MS analysis were exemplified by successful characterization of disulfide bonds in peptides and small proteins. In the current study, we have combined liquid chromatography (LC) with electrochemistry (EC) and mass analysis by Fourier transform ion cyclotron resonance (FTICR) MS in an online LC-EC-MS platform to characterize protein disulfide bonds in a bottom-up proteomics workflow. A key advantage of a LC-based strategy is the use of the retention time in identifying both intra- and interpeptide disulfide bonds. This is demonstrated by performing two sequential analyses of a certain protein digest, once without and once with electrochemical reduction. In this way, the "parent" disulfide-linked peptide detected in the first run has a retention time-based correlation with the EC-reduced peptides detected in the second run, thus simplifying disulfide bond mapping. Using this platform, both inter- and intra-disulfide-linked peptides were characterized in two different proteins, ß-lactoglobulin and ribonuclease B. In order to prevent disulfide reshuffling during the digestion process, proteins were digested at a relatively low pH, using (a combination of) the high specificity proteases trypsin and Glu-C. With this approach, disulfide bonds in ß-lactoglobulin and ribonuclease B were comprehensively identified and localized, showing that online LC-EC-MS is a useful tool for the characterization of protein disulfide bonds.
Collapse
Affiliation(s)
- Linda Switzar
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
- , Albinusdreef 2, Postzone S3, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Julie W Rutten
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Yuri E M van der Burgt
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
35
|
Cheng S, Wang J, Cai Y, Loo JA, Chen H. Enhancing Performance of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry Using Trap and Capillary Columns. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 392:73-79. [PMID: 27239159 PMCID: PMC4878830 DOI: 10.1016/j.ijms.2015.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent and important advance in the field that has extensive applications in surface analysis of solid samples but has also been extended to analysis of liquid samples. The liquid sample DESI typically employs a piece of fused silica capillary to transfer liquid sample for ionization. In this study, we present the improvement of liquid sample DESI-MS by replacing the sample transfer silica capillary with a trap column filled with chromatographic stationary phase materials (e.g., C4, C18). This type of trap column/liquid sample DESI can be used for trace analysis of organics and biomolecules such as proteins/peptides (in nM concentration) in high salt content matrices. Furthermore, when the sample transfer capillary is modified with enzyme covalently bound on its inside capillary wall, fast digestion (< 6 min) of proteins such as phosphoproteins can be achieved and the online digested proteins can be directly ionized using DESI with high sensitivity. The latter is ascribed to the freedom to select favorable spray solvent for the DESI analysis. Our data shows that liquid sample DESI-MS with a modified sample transfer capillary has significantly expanded its utility in bioanalysis.
Collapse
Affiliation(s)
- Si Cheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Jun Wang
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA ; Department of forensic science, Jiangsu Police Institute, Nanjing, Jiang Su, 210031, China
| | - Yi Cai
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, David Geffen School of Medicine at UCLA, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California 90095, USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
36
|
Wongkongkathep P, Li H, Zhang X, Loo RRO, Julian RR, Loo JA. Enhancing Protein Disulfide Bond Cleavage by UV Excitation and Electron Capture Dissociation for Top-Down Mass Spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 390:137-145. [PMID: 26644781 PMCID: PMC4669582 DOI: 10.1016/j.ijms.2015.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The application of ion pre-activation with 266 nm ultraviolet (UV) laser irradiation combined with electron capture dissociation (ECD) is demonstrated to enhance top-down mass spectrometry sequence coverage of disulfide bond containing proteins. UV-based activation can homolytically cleave a disulfide bond to yield two separated thiol radicals. Activated ECD experiments of insulin and ribonuclease A containing three and four disulfide bonds, respectively, were performed. UV-activation in combination with ECD allowed the three disulfide bonds of insulin to be cleaved and the overall sequence coverage to be increased. For the larger sized ribonuclease A with four disulfide bonds, irradiation from an infrared laser (10.6 µm) to disrupt non-covalent interactions was combined with UV-activation to facilitate the cleavage of up to three disulfide bonds. Preferences for disulfide bond cleavage are dependent on protein structure and sequence. Disulfide bonds can reform if the generated radicals remain in close proximity. By varying the time delay between the UV-activation and the ECD events, it was determined that disulfide bonds reform within 10-100 msec after their UV-homolytic cleavage.
Collapse
Affiliation(s)
- Piriya Wongkongkathep
- Department of Chemistry and Biochemistry, University of California-Los Angeles Los Angeles, CA 90095
| | - Huilin Li
- Department of Biological Chemistry, University of California-Los Angeles Los Angeles, CA 90095
| | - Xing Zhang
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521
| | - Rachel R. Ogorzalek Loo
- Department of Biological Chemistry, University of California-Los Angeles Los Angeles, CA 90095
| | - Ryan R. Julian
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles Los Angeles, CA 90095
- Department of Biological Chemistry, University of California-Los Angeles Los Angeles, CA 90095
- UCLA/DOE Institute of Genomics and Proteomics, University of California-Los Angeles Los Angeles, CA 90095
- Corresponding author at: University of California-Los Angeles, Department of Chemistry and Biochemistry, 402 Boyer Hall, Molecular Biology Institute, Los Angeles, CA, United States, Tel.: +1 310 794 7023; fax: +1 310 206 4038, (J.A. Loo)
| |
Collapse
|
37
|
Liu YM, Perry RH. Paper-Based Electrochemical Cell Coupled to Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1702-1712. [PMID: 26311335 DOI: 10.1007/s13361-015-1224-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 06/04/2023]
Abstract
On-line coupling of electrochemistry (EC) to mass spectrometry (MS) is a powerful approach for identifying intermediates and products of EC reactions in situ. In addition, EC transformations have been used to increase ionization efficiency and derivatize analytes prior to MS, improving sensitivity and chemical specificity. Recently, there has been significant interest in developing paper-based electroanalytical devices as they offer convenience, low cost, versatility, and simplicity. This report describes the development of tubular and planar paper-based electrochemical cells (P-EC) coupled to sonic spray ionization (SSI) mass spectrometry (P-EC/SSI-MS). The EC cells are composed of paper sandwiched between two mesh stainless steel electrodes. Analytes and reagents can be added directly to the paper substrate along with electrolyte, or delivered via the SSI microdroplet spray. The EC cells are decoupled from the SSI source, allowing independent control of electrical and chemical parameters. We utilized P-EC/SSI-MS to characterize various EC reactions such as oxidations of cysteine, dopamine, polycyclic aromatic hydrocarbons, and diphenyl sulfide. Our results show that P-EC/SSI-MS has the ability to increase ionization efficiency, to perform online EC transformations, and to capture intermediates of EC reactions with a response time on the order of hundreds of milliseconds. The short response time allowed detection of a deprotonated diphenyl sulfide intermediate, which experimentally confirms a previously proposed mechanism for EC oxidation of diphenyl sulfide to pseudodimer sulfonium ion. This report introduces paper-based EC/MS via development of two device configurations (tubular and planar electrodes), as well as discusses the capabilities, performance, and limitations of the technique.
Collapse
Affiliation(s)
- Yao-Min Liu
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA
| | - Richard H Perry
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
38
|
Lu M, Liu Y, Helmy R, Martin GE, Dewald HD, Chen H. Online Investigation of Aqueous-Phase Electrochemical Reactions by Desorption Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1676-1685. [PMID: 26242804 DOI: 10.1007/s13361-015-1210-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/16/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
Electrochemistry (EC) combined with mass spectrometry (MS) is a powerful tool for elucidation of electrochemical reaction mechanisms. However, direct online analysis of electrochemical reaction in aqueous phase was rarely explored. This paper presents the online investigation of several electrochemical reactions with biological relevance in the aqueous phase, such as nitrosothiol reduction, carbohydrate oxidation, and carbamazepine oxidation using desorption electrospray ionization mass spectrometry (DESI-MS). It was found that electroreduction of nitrosothiols [e.g., nitrosylated insulin B (13-23)] leads to free thiols by loss of NO, as confirmed by online MS analysis for the first time. The characteristic mass shift of 29 Da and the reduced intensity provide a quick way to identify nitrosylated species. Equally importantly, upon collision-induced dissociation (CID), the reduced peptide ion produces more fragment ions than its nitrosylated precursor ion (presumably the backbone fragmentation cannot compete with the facile NO loss for the precursor ion), thus facilitating peptide sequencing. In the case of saccharide oxidation, it was found that glucose undergoes electro-oxidation to produce gluconic acid at alkaline pH, but not at neutral and acidic pHs. Such a pH-dependent electrochemical behavior was also observed for disaccharides such as maltose and cellobiose. Upon electrochemical oxidation, carbamazepine was found to undergo ring contraction and amide bond cleavage, which parallels the oxidative metabolism observed for this drug in leucocytes. The mechanistic information of these redox reactions revealed by EC/DESI-MS would be of value in nitroso-proteome research and carbohydrate/drug metabolic studies.
Collapse
Affiliation(s)
- Mei Lu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Yong Liu
- Department of Process and Analytical Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ, 07065, USA.
| | - Roy Helmy
- Department of Process and Analytical Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ, 07065, USA
| | - Gary E Martin
- Department of Process and Analytical Chemistry, Merck Research Laboratories, Merck and Co., Inc., Rahway, NJ, 07065, USA
| | - Howard D Dewald
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
39
|
Büter L, Faber H, Wigger T, Vogel M, Karst U. Differential Protein Labeling Based on Electrochemically Generated Reactive Intermediates. Anal Chem 2015; 87:9931-8. [DOI: 10.1021/acs.analchem.5b02497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lars Büter
- Westfälische Wilhelms-Universität Münster, NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Helene Faber
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Tina Wigger
- Westfälische Wilhelms-Universität Münster, NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Martin Vogel
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Uwe Karst
- Westfälische Wilhelms-Universität Münster, NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| |
Collapse
|
40
|
Trabjerg E, Jakobsen RU, Mysling S, Christensen S, Jørgensen TJD, Rand KD. Conformational analysis of large and highly disulfide-stabilized proteins by integrating online electrochemical reduction into an optimized H/D exchange mass spectrometry workflow. Anal Chem 2015; 87:8880-8. [PMID: 26249042 DOI: 10.1021/acs.analchem.5b01996] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Analysis of disulfide-bonded proteins by hydrogen/deuterium exchange mass spectrometry (HDX-MS) requires effective and rapid reduction of disulfide bonds before enzymatic digestion in order to increase sequence coverage. In a conventional HDX-MS workflow, disulfide bonds are reduced chemically by addition of a reducing agent to the quench solution (e.g., tris(2-carboxyethyl)phosphine (TCEP)). The chemical reduction, however, is severely limited under quenched conditions due to a narrow time window as well as low pH and temperature. Here, we demonstrate the real-world applicability of integrating electrochemical reduction into an online HDX-MS workflow. We have optimized the electrochemical reduction efficiency during HDX-MS analysis of two particularly challenging disulfide stabilized proteins: a therapeutic IgG1-antibody and nerve growth factor-β (NGF). Several different parameters (flow rate and applied square wave potential, as well as the type of labeling and quench buffer) were investigated, and the optimized workflow increased the sequence coverage of NGF from 46% with chemical reduction to 99%, when electrochemical reduction was applied. Additionally, the optimized workflow also enabled a similar high sequence coverage of 96% and 87% for the heavy and light chain of the IgG1-antibody, respectively. The presented results demonstrate the successful electrochemical reduction during HDX-MS analysis of both a small exceptional tightly disulfide-bonded protein (NGF) as well as the largest protein attempted to date (IgG1-antibody). We envision that online electrochemical reduction is poised to decrease the complexity of sample handling and increase the versatility of the HDX-MS technique.
Collapse
Affiliation(s)
- Esben Trabjerg
- Department of Pharmacy, University of Copenhagen , Universitetsparken 2, Copenhagen E, DK-2100, Denmark.,Department of Biologics, H. Lundbeck A/S , Ottiliavej 9, Valby, DK-2500, Denmark
| | - Rasmus U Jakobsen
- Department of Pharmacy, University of Copenhagen , Universitetsparken 2, Copenhagen E, DK-2100, Denmark
| | - Simon Mysling
- Finsen Laboratory, Rigshospitalet and Biotech Research and Innovation Centre (BRIC), Copenhagen Biocenter , Ole Maaløes vej 5, Copenhagen N, DK-2200, Denmark
| | - Søren Christensen
- Department of Biologics, H. Lundbeck A/S , Ottiliavej 9, Valby, DK-2500, Denmark
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , Campuvej 55, Odense, DK-5230, Denmark
| | - Kasper D Rand
- Department of Pharmacy, University of Copenhagen , Universitetsparken 2, Copenhagen E, DK-2100, Denmark
| |
Collapse
|
41
|
Liu W, Shiue YL, Lin YR, Lin HYH, Liang SS. A Derivative Method with Free Radical Oxidation to Predict Resveratrol Metabolites by Tandem Mass Spectrometry. CURR ANAL CHEM 2015; 11:300-306. [PMID: 27594817 PMCID: PMC5003074 DOI: 10.2174/1573411011666150515233817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 11/24/2022]
Abstract
In this study, we demonstrated an oxidative method with free radical to generate 3,5,4′-trihydroxy-trans-stilbene (trans-resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI–MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4′-dihydroxy-trans-stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI–MS/MS can be utilized to evaluate different metabolites in various conditions.
Collapse
Affiliation(s)
- Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung,Taiwan
| | - Yow-Ling Shiue
- Institute of
Biomedical Science, National Sun Yat-Sen University, Kaohsiung,Taiwan
| | - Yi-Reng Lin
- Department of Biotechnology, Fooyin University, Kaohsiung,Taiwan
| | - Hugo You-Hsien Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung,Taiwan;; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; 6Department of
Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; 7Center for Resources, Research and Development, Kaohsiung Medical University, Kaohsiung,Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung,Taiwan;; Institute of
Biomedical Science, National Sun Yat-Sen University, Kaohsiung,Taiwan
| |
Collapse
|
42
|
|
43
|
Adduct formation of electrochemically generated reactive intermediates with biomolecules. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Na S, Paek E, Choi JS, Kim D, Lee SJ, Kwon J. Characterization of disulfide bonds by planned digestion and tandem mass spectrometry. MOLECULAR BIOSYSTEMS 2015; 11:1156-64. [PMID: 25703060 PMCID: PMC4410109 DOI: 10.1039/c4mb00688g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The identification of disulfide bonds provides critical information regarding the structure and function of a protein and is a key aspect in understanding signaling cascades in biological systems. Recent proteomic approaches using digestion enzymes have facilitated the characterization of disulfide-bonds and/or oxidized products from cysteine residues, although these methods have limitations in the application of MS/MS. For example, protein digestion to obtain the native form of disulfide bonds results in short lengths of amino acids, which can cause ambiguous MS/MS analysis due to false positive identifications. In this study we propose a new approach, termed planned digestion, to obtain sufficient amino acid lengths after cleavage for proteomic approaches. Application of the DBond software to planned digestion of specific proteins accurately identified disulfide-linked peptides. RNase A was used as a model protein in this study because the disulfide bonds of this protein have been well characterized. Application of this approach to peptides digested with Asp-N/C (chemical digestion) and trypsin under acid hydrolysis conditions identified the four native disulfide bonds of RNase A. Missed cleavages introduced by trypsin treatment for only 3 hours generated sufficient lengths of amino acids for identification of the disulfide bonds. Analysis using MS/MS successfully showed additional fragmentation patterns that are cleavage products of S-S and C-S bonds of disulfide-linkage peptides. These fragmentation patterns generate thioaldehydes, persulfide, and dehydroalanine. This approach of planned digestion with missed cleavages using the DBond algorithm could be applied to other proteins to determine their disulfide linkage and the oxidation patterns of cysteine residues.
Collapse
Affiliation(s)
- Seungjin Na
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, United States of America
- Center for Computational Mass Spectrometry, University of California, San Diego, La Jolla, CA 92093, United States of America
| | - Eunok Paek
- Division of Computer Science and Engineering, Hanyang University, Seoul 133-791, Rep. of Korea
| | - Jong-Soon Choi
- Division of Life Science, Korea Basic Science Institute, Daejeon 350-333, Rep. of Korea
| | - Duwoon Kim
- Department of Food Science and Technology and Function Food Research Center, Chonnam National University, Gwangju 500-757, Rep. of Korea
| | - Seung Jae Lee
- Department of Chemistry and Research Center for Physics and Chemistry, Chonbuk National University, Jeonju 561-756, Rep. of Korea
| | - Joseph Kwon
- Division of Life Science, Korea Basic Science Institute, Daejeon 350-333, Rep. of Korea
| |
Collapse
|
45
|
Wiesner J, Resemann A, Evans C, Suckau D, Jabs W. Advanced mass spectrometry workflows for analyzing disulfide bonds in biologics. Expert Rev Proteomics 2015; 12:115-23. [DOI: 10.1586/14789450.2015.1018896] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
Zhang J, Ogorzalek Loo RR, Loo JA. Increasing Fragmentation of Disulfide-Bonded Proteins for Top-Down Mass Spectrometry by Supercharging. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 377:546-556. [PMID: 26028988 PMCID: PMC4448141 DOI: 10.1016/j.ijms.2014.07.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The disulfide bond is an important post-translational modification to form and maintain the native structure and biological functions of proteins. Characterization of disulfide bond linkages is therefore of essential interest in the structural elucidation of proteins. Top-down mass spectrometry (MS) of disulfide-bonded proteins has been hindered by relatively low sequence coverage due to disulfide cross-linking. In this study, we employed top-down ESI-MS with Fourier-transform ion cyclotron resonance (FT-ICR) MS with electron capture dissociation (ECD) and collisionally activated dissociation (CAD) to study the fragmentation of supercharged proteins with multiple intramolecular disulfide bonds. With charge enhancement upon the addition of sulfolane to the analyte solution, improved protein fragmentation and disulfide bond cleavage efficiency was observed for proteins including bovine β-lactoglobulin, soybean trypsin inhibitor, human proinsulin, and chicken lysozyme. Both the number and relative abundances of product ions representing disulfide cleavage increase with increasing charge states for the proteins studied. Our studies suggest supercharging ESI-MS is a promising tool to aid in the top-down MS analysis of disulfide-bonded proteins, providing potentially useful information for the determination of disulfide bond linkages.
Collapse
Affiliation(s)
- Jiang Zhang
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, 90095, United States
| | - Rachel R. Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, California, 90095, United States
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California, 90095, United States
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, 90095, United States
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, California, 90095, United States
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California, 90095, United States
- Corresponding author. Tel.: +1 310 794 7023; fax: +1 310 206 4038. (J.A. Loo)
| |
Collapse
|
47
|
Oberacher H, Pitterl F, Erb R, Plattner S. Mass spectrometric methods for monitoring redox processes in electrochemical cells. MASS SPECTROMETRY REVIEWS 2015; 34:64-92. [PMID: 24338642 PMCID: PMC4286209 DOI: 10.1002/mas.21409] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/24/2013] [Accepted: 08/12/2013] [Indexed: 06/03/2023]
Abstract
Electrochemistry (EC) is a mature scientific discipline aimed to study the movement of electrons in an oxidation-reduction reaction. EC covers techniques that use a measurement of potential, charge, or current to determine the concentration or the chemical reactivity of analytes. The electrical signal is directly converted into chemical information. For in-depth characterization of complex electrochemical reactions involving the formation of diverse intermediates, products and byproducts, EC is usually combined with other analytical techniques, and particularly the hyphenation of EC with mass spectrometry (MS) has found broad applicability. The analysis of gases and volatile intermediates and products formed at electrode surfaces is enabled by differential electrochemical mass spectrometry (DEMS). In DEMS an electrochemical cell is sampled with a membrane interface for electron ionization (EI)-MS. The chemical space amenable to EC/MS (i.e., bioorganic molecules including proteins, peptides, nucleic acids, and drugs) was significantly increased by employing electrospray ionization (ESI)-MS. In the simplest setup, the EC of the ESI process is used to analytical advantage. A limitation of this approach is, however, its inability to precisely control the electrochemical potential at the emitter electrode. Thus, particularly for studying mechanistic aspects of electrochemical processes, the hyphenation of discrete electrochemical cells with ESI-MS was found to be more appropriate. The analytical power of EC/ESI-MS can further be increased by integrating liquid chromatography (LC) as an additional dimension of separation. Chromatographic separation was found to be particularly useful to reduce the complexity of the sample submitted either to the EC cell or to ESI-MS. Thus, both EC/LC/ESI-MS and LC/EC/ESI-MS are common.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Florian Pitterl
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Robert Erb
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Sabine Plattner
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| |
Collapse
|
48
|
Cai Y, Zheng Q, Liu Y, Helmy R, Loo JA, Chen H. Integration of electrochemistry with ultra-performance liquid chromatography/mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:341-51. [PMID: 26307715 PMCID: PMC4552337 DOI: 10.1255/ejms.1318] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This study presents the development of ultra-performance liquid chromatography (UPLC) mass spectrometry (MS) combined with electrochemistry (EC) for the first time and its application for the structural analysis of proteins/peptides that contain disulfide bonds. In our approach, a protein/peptide mixture sample undergoes a fast UPLC separation and subsequent electrochemical reduction in an electrochemical flow cell followed by online MS and tandem mass spectrometry (MS/MS) analyses. The electrochemical cell is coupled to the mass spectrometer using our recently developed desorption electrospray ionization (DESI) interface. Using this UPLC/EC/DESI-MS method, peptides that contain disulfide bonds can be differentiated from those without disulfide bonds, as the former are electroactive and reducible. MS/MS analysis of the disulfide-reduced peptide ions provides increased information on the sequence and disulfide-linkage pattern. In a reactive DESI- MS detection experiment in which a supercharging reagent was used to dope the DESI spray solvent, increased charging was obtained for the UPLC-separated proteins. Strikingly, upon online electrolytic reduction, supercharged proteins (e.g., α-lactalbumin) showed even higher charging, which will be useful in top- down protein structure MS analysis as increased charges are known to promote protein ion dissociation. Also, the separation speed and sensitivity are enhanced by approximately 1(~)2 orders of magnitude by using UPLC for the liquid chromatography (LC)/EC/MS platform, in comparison to the previously used high- performance liquid chromatography (HPLC). This UPLC/EC/DESI-MS method combines the power of fast UPLC separation, fast electrochemical conversion, and online MS structural analysis for a potentially valuable tool for proteomics research and bioanalysis.
Collapse
Affiliation(s)
- Yi Cai
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701 USA.
| | - Qiuling Zheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701 USA.
| | - Yong Liu
- Department of Analytical Chemistry, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Roy Helmy
- Department of Analytical Chemistry, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Joseph A Loo
- Dep artment of Chemistry and Biochemistry, Department of Biological Chemistry, David Geffen School of Medicine at UCLA, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701 USA.
| |
Collapse
|
49
|
Li G, Pei J, Yin Y, Huang G. Direct sequencing of a disulfide-linked peptide with electrospray ionization tandem mass spectrometry. Analyst 2015; 140:2623-7. [DOI: 10.1039/c5an00011d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhanced corona discharge was employed for in-spray dissociation of disulfide bonds, facilitating disulfide-containing peptide sequencing with ESI-MS/MS.
Collapse
Affiliation(s)
- Gongyu Li
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Jiying Pei
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Yue Yin
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Guangming Huang
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
50
|
V. Shumyantseva V, V. Suprun E, V. Bulko T, I. Archakov A. Electrochemical methods for detection of post-translational modifications of proteins. Biosens Bioelectron 2014; 61:131-9. [DOI: 10.1016/j.bios.2014.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/11/2014] [Accepted: 05/01/2014] [Indexed: 01/04/2023]
|