1
|
Pomella S, Melaiu O, Cifaldi L, Bei R, Gargari M, Campanella V, Barillari G. Biomarkers Identification in the Microenvironment of Oral Squamous Cell Carcinoma: A Systematic Review of Proteomic Studies. Int J Mol Sci 2024; 25:8929. [PMID: 39201614 PMCID: PMC11354375 DOI: 10.3390/ijms25168929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
An important determinant for oral squamous cell carcinoma (OSCC) onset and outcome is the composition of the tumor microenvironment (TME). Thus, the study of the interactions occurring among cancer cells, immune cells, and cancer-associated fibroblasts within the TME could facilitate the understanding of the mechanisms underlying OSCC development and progression, as well as of its sensitivity or resistance to the therapy. In this context, it must be highlighted that the characterization of TME proteins is enabled by proteomic methodologies, particularly mass spectrometry (MS). Aiming to identify TME protein markers employable for diagnosing and prognosticating OSCC, we have retrieved a total of 119 articles spanning 2001 to 2023, of which 17 have passed the selection process, satisfying all its criteria. We have found a total of 570 proteins detected by MS-based proteomics in the TME of OSCC; among them, 542 are identified by a single study, while 28 are cited by two or more studies. These 28 proteins participate in extracellular matrix remodeling and/or energy metabolism. Here, we propose them as markers that could be used to characterize the TME of OSCC for diagnostic/prognostic purposes. Noteworthy, most of the 28 individuated proteins share one feature: being modulated by the hypoxia that is present in the proliferating OSCC mass.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (L.C.); (R.B.); (M.G.); (V.C.)
| |
Collapse
|
2
|
Abdolahi M, Ghaedi Talkhounche P, Derakhshan Nazari MH, Hosseininia HS, Khoshdel-Rad N, Ebrahimi Sadrabadi A. Functional Enrichment Analysis of Tumor Microenvironment-Driven Molecular Alterations That Facilitate Epithelial-to-Mesenchymal Transition and Distant Metastasis. Bioinform Biol Insights 2024; 18:11779322241227722. [PMID: 38318286 PMCID: PMC10840405 DOI: 10.1177/11779322241227722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Nowadays, hepatocellular carcinoma (HCC) is the second leading cause of cancer deaths, and identifying the effective factors in causing this disease can play an important role in its prevention and treatment. Tumors provide effective agents for invasion and metastasis to other organs by establishing appropriate communication between cancer cells and the microenvironment. Epithelial-to-mesenchymal transition (EMT) can be mentioned as one of the effective phenomena in tumor invasion and metastasis. Several factors are involved in inducing this phenomenon in the tumor microenvironment, which helps the tumor survive and migrate to other places. It can be effective to identify these factors in the use of appropriate treatment strategies and greater patient survival. This study investigated the molecular differences between tumor border cells and tumor core cells or internal tumor cells in HCC for specific EMT genes. Expression of NOTCH1, ID1, and LST1 genes showed a significant increase at the HCC tumor border. Targeting these genes can be considered as a useful therapeutic strategy to prevent distant metastasis in HCC patients.
Collapse
Affiliation(s)
- Mahnaz Abdolahi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Parnian Ghaedi Talkhounche
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Hossein Derakhshan Nazari
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Haniyeh Sadat Hosseininia
- Department of Cellular and Molecular Biology, Faculty of Advanced Medical Science, Islamic Azad University of Medical Sciences, Tehran, Iran
- Cytotech & Bioinformatics Research Group, Bioinformatics Department, Tehran, Iran
| | - Niloofar Khoshdel-Rad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amin Ebrahimi Sadrabadi
- Cytotech & Bioinformatics Research Group, Bioinformatics Department, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
| |
Collapse
|
3
|
Lall SP, Alsafwani ZW, Batra SK, Seshacharyulu P. ASPORIN: A root of the matter in tumors and their host environment. Biochim Biophys Acta Rev Cancer 2024; 1879:189029. [PMID: 38008263 PMCID: PMC10872503 DOI: 10.1016/j.bbcan.2023.189029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Asporin (ASPN) has been identified as one of the members of the class I small leucine-rich proteoglycans (SLRPs) family in the extracellular matrix (ECM). It is involved in classic ensigns of cancers such as self-dependent growth, resistance to growth inhibitors, restricting apoptosis, cancer metastasis, and bone-related disorders. ASPN is different from other members of SLRPs, such as decorin (DCN) and biglycan (BGN), in a way that it contains a distinctive length of aspartate (D) residues in the amino (N) -terminal region. These D-repeats residues possess germline polymorphisms and are identified to be linked with cancer progression and osteoarthritis (OA). The polyaspartate stretch in the N-terminal region of the protein and its resemblance to DCN are the reasons it is called asporin. In this review, we comprehensively summarized and updated the dual role of ASPN in various malignancies, its structure in mice and humans, variants, mutations, cancer-associated signalings and functions, the relationship between ASPN and cancer-epithelial, stromal fibroblast crosstalk, immune cells and immunosuppression in cancer and other diseases. In cancer and other bone-related diseases, ASPN is identified to be regulating various signaling pathways such as TGFβ, Wnt/β-catenin, notch, hedgehog, EGFR, HER2, and CD44-mediated Rac1. These pathways promote cancer cell invasion, proliferation, and migration by mediating the epithelial-to-mesenchymal transition (EMT) process. Finally, we discussed mouse models mimicking ASPN in vivo function in cancers and the probability of therapeutic targeting of ASPN in cancer cells, fibrosis, and other bone-related diseases.
Collapse
Affiliation(s)
- Shobhit P Lall
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Zahraa W Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
4
|
Zhou J, Lyu N, Wang Q, Yang M, Kimchi ET, Cheng K, Joshi T, Tukuli AR, Staveley-O'Carroll KF, Li G. A novel role of TGFBI in macrophage polarization and macrophage-induced pancreatic cancer growth and therapeutic resistance. Cancer Lett 2023; 578:216457. [PMID: 37865162 DOI: 10.1016/j.canlet.2023.216457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Tumor-associated macrophages (TAMs), as a major and essential component of tumor microenvironment (TME), play a critical role in orchestrating pancreatic cancer (PaC) tumorigenesis from initiation to angiogenesis, growth, and systemic dissemination, as well as immunosuppression and resistance to chemotherapy and immunotherapy; however, the critical intrinsic factors responsible for TAMs reprograming and function remain to be identified. By performing single-cell RNA sequencing, transforming growth factor-beta-induced protein (TGFBI) was identified as TAM-producing factor in murine PaC tumors. TAMs express TGFBI in human PaC and TGFBI expression is positively related with human PaC growth. By inducing TGFBI loss-of-function in macrophage (MΦs) in vitro with siRNA and in vivo with Cre-Lox strategy in our developed TGFBI-floxed mice, we demonstrated disruption of TGFBI not only inhibited MΦ polarization to M2 phenotype and MΦ-mediated stimulation on PaC growth, but also significantly improved anti-tumor immunity, sensitizing PaC to chemotherapy in association with regulation of fibronectin 1, Cxcl10, and Ccl5. Our studies suggest that targeting TGFBI in MΦ can develop an effective therapeutic intervention for highly lethal PaC.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Nan Lyu
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Qiongling Wang
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Ming Yang
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Eric T Kimchi
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Trupti Joshi
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65212, USA; Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65212, USA; Department of Health Management and Informatics and MU Institute of Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Adama R Tukuli
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65212, USA
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA.
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA; Department of Molecular Microbiology & Immunology, University of Missouri-Columbia, Columbia, MO, 65212, USA.
| |
Collapse
|
5
|
Gesteira TF, Verma S, Coulson-Thomas VJ. Small leucine rich proteoglycans: Biology, function and their therapeutic potential in the ocular surface. Ocul Surf 2023; 29:521-536. [PMID: 37355022 PMCID: PMC11092928 DOI: 10.1016/j.jtos.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Small leucine rich proteoglycans (SLRPs) are the largest family of proteoglycans, with 18 members that are subdivided into five classes. SLRPs are small in size and can be present in tissues as glycosylated and non-glycosylated proteins, and the most studied SLRPs include decorin, biglycan, lumican, keratocan and fibromodulin. SLRPs specifically bind to collagen fibrils, regulating collagen fibrillogenesis and the biomechanical properties of tissues, and are expressed at particularly high levels in fibrous tissues, such as the cornea. However, SLRPs are also very active components of the ECM, interacting with numerous growth factors, cytokines and cell surface receptors. Therefore, SLRPs regulate major cellular processes and have a central role in major fundamental biological processes, such as maintaining corneal homeostasis and transparency and regulating corneal wound healing. Over the years, mutations and/or altered expression of SLRPs have been associated with various corneal diseases, such as congenital stromal corneal dystrophy and cornea plana. Recently, there has been great interest in harnessing the various functions of SLRPs for therapeutic purposes. In this comprehensive review, we describe the structural features and the related functions of SLRPs, and how these affect the therapeutic potential of SLRPs, with special emphasis on the use of SLRPs for treating ocular surface pathologies.
Collapse
Affiliation(s)
| | - Sudhir Verma
- College of Optometry, University of Houston, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | | |
Collapse
|
6
|
Zhang R, Kang R, Tang D. Ferroptosis in gastrointestinal cancer: From mechanisms to implications. Cancer Lett 2023; 561:216147. [PMID: 36965540 DOI: 10.1016/j.canlet.2023.216147] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Ferroptosis is a form of regulated cell death that is initiated by excessive lipid peroxidation that results in plasma membrane damage and the release of damage-associated molecular patterns. In recent years, ferroptosis has gained significant attention in cancer research due to its unique mechanism compared to other forms of regulated cell death, especially caspase-dependent apoptotic cell death. Gastrointestinal (GI) cancer encompasses malignancies that arise in the digestive tract, including the stomach, intestines, pancreas, colon, liver, rectum, anus, and biliary system. These cancers are a global health concern, with high incidence and mortality rates. Despite advances in medical treatments, drug resistance caused by defects in apoptotic pathways remains a persistent challenge in the management of GI cancer. Hence, exploring the role of ferroptosis in GI cancers may lead to more efficacious treatment strategies. In this review, we provide a comprehensive overview of the core mechanism of ferroptosis and discuss its function, regulation, and implications in the context of GI cancers.
Collapse
Affiliation(s)
- Ruoxi Zhang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Sorvina A, Antoniou M, Esmaeili Z, Kochetkova M. Unusual Suspects: Bone and Cartilage ECM Proteins as Carcinoma Facilitators. Cancers (Basel) 2023; 15:cancers15030791. [PMID: 36765749 PMCID: PMC9913341 DOI: 10.3390/cancers15030791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The extracellular matrix (ECM) is the complex three-dimensional network of fibrous proteins and proteoglycans that constitutes an essential part of every tissue to provide support for normal tissue homeostasis. Tissue specificity of the ECM in its topology and structure supports unique biochemical and mechanical properties of each organ. Cancers, like normal tissues, require the ECM to maintain multiple processes governing tumor development, progression and spread. A large body of experimental and clinical evidence has now accumulated to demonstrate essential roles of numerous ECM components in all cancer types. Latest findings also suggest that multiple tumor types express, and use to their advantage, atypical ECM components that are not found in the cancer tissue of origin. However, the understanding of cancer-specific expression patterns of these ECM proteins and their exact roles in selected tumor types is still sketchy. In this review, we summarize the latest data on the aberrant expression of bone and cartilage ECM proteins in epithelial cancers and their specific functions in the pathogenesis of carcinomas and discuss future directions in exploring the utility of this selective group of ECM components as future drug targets.
Collapse
|
8
|
Zhang X, Tian C, Tian C, Cheng J, Mao W, Li M, Chen M. LTBP2 inhibits prostate cancer progression and metastasis via the PI3K/AKT signaling pathway. Exp Ther Med 2022; 24:563. [PMID: 36034756 PMCID: PMC9400130 DOI: 10.3892/etm.2022.11500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Biochemical recurrence (BCR) is a cause of concern in advanced prostate cancer (PCa). Thus, novel diagnostic biomarkers are required to improve clinical care. However, research on PCa immunotherapy is also scarce. Hence, the present study aimed to explore promising BCR-related diagnostic biomarkers, and their expression pattern, prognostic value, immune response effects, biological functions, and possible molecular mechanisms were evaluated. GEO datasets (GSE46602, GSE70768, and GSE116918) were downloaded and merged as the training cohort, and differential expression analysis was performed. Lasso regression and SVM-RFE algorithm, as well as PPI analysis and MCODE algorithm, were then applied to filter BCR-related biomarker genes. The CIBERSORT and estimation of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE) methods were used to calculate the fractions of tumor-infiltrating immune cells. GO/DO enrichment analyses were used to identify the biological functions. The expression of latent transforming growth factor β-binding protein 2 (LTBP2) was determined by RT-qPCR and western blotting. The role of LTBP2 in PCa was determined by CCK-8, Transwell, and the potential mechanism was investigated by KEGG and GSEA and confirmed by western blotting. In total, 44 BCR-related differentially expressed genes (DEGs) in the training cohort were screened. LTBP2 was found to be a diagnostic biomarker of BCR in PCa and was associated with CD4+ T-cell infiltration and response to anti-PD-1/PD-L1 immunotherapy. Subsequently, using the ESTIMATE algorithm, it was identified that LTBP2 was associated with the tumor microenvironment and could be a predictor of the clinical benefit of immune checkpoint blockade. Finally, the expression and biological function of LTBP2 were evaluated via cellular experiments. The results showed that LTBP2 was downregulated in PCa cells and inhibited PCa proliferation and metastasis via the PI3K/AKT signaling pathway in vitro. In conclusion, LTBP2 was a promising diagnostic biomarker of BCR of PCa and had an important role in CD4+ T-cell recruitment. Moreover, it was associated with immunotherapy in patients with PCa who developed BCR, and it inhibited PCa proliferation and metastasis via the PI3K/AKT signaling pathway in vitro.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Department of Urology, Affiliated Zhongda Hospital of South‑East University, Nanjing, Jiangsu 210009, P.R. China
| | - Chuanjie Tian
- Department of Urology, Langxi County People's Hospital, Xuancheng, Anhui 242100, P.R. China
| | - Chuanjie Tian
- Department of Urology, Langxi County People's Hospital, Xuancheng, Anhui 242100, P.R. China
| | - Jianbin Cheng
- Department of Urology Surgery, Heqiao Hospital, Yixing, Jiangsu 214200, P.R. China
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of South‑East University, Nanjing, Jiangsu 210009, P.R. China
| | - Menglan Li
- NHC Contraceptives Adverse Reaction Surveillance Center, Jiangsu Health Development Research Center, Nanjing, Jiangsu 210036, P.R. China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of South‑East University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
9
|
Monteiro MV, Rocha M, Gaspar VM, Mano JF. Programmable Living Units for Emulating Pancreatic Tumor-Stroma Interplay. Adv Healthc Mater 2022; 11:e2102574. [PMID: 35426253 DOI: 10.1002/adhm.202102574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/02/2022] [Indexed: 12/19/2022]
Abstract
Bioengineering close-to-native in vitro models that emulate tumors bioarchitecture and microenvironment is highly appreciable for improving disease modeling toolboxes. Herein, pancreatic cancer living units-so termed cancer-on-a-bead models-are generated. Such user-programmable in vitro platforms exhibit biomimetic multicompartmentalization and tunable integration of cancer associated stromal elements. These stratified units can be rapidly assembled in-air, exhibit reproducible morphological features, tunable size, and recapitulate spatially resolved tumor-stroma extracellular matrix (ECM) niches. Compartmentalization of pancreatic cancer and stromal cells in well-defined ECM microenvironments stimulates the secretion of key biomolecular effectors including transforming growth factor β and Interleukin 1-β, closely emulating the signatures of human pancreatic tumors. Cancer-on-a-bead models also display increased drug resistance to chemotherapeutics when compared to their reductionistic counterparts, reinforcing the importance to differentially model ECM components inclusion and their spatial stratification as observed in vivo. Beyond providing a universal technology that enables spatial modularity in tumor-stroma elements bioengineering, a scalable, in-air fabrication of ECM-tunable 3D platforms that can be leveraged for recapitulating differential matrix composition occurring in other human neoplasias is provided here.
Collapse
Affiliation(s)
- Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Marta Rocha
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
10
|
Tognetti M, Sklodowski K, Müller S, Kamber D, Muntel J, Bruderer R, Reiter L. Biomarker Candidates for Tumors Identified from Deep-Profiled Plasma Stem Predominantly from the Low Abundant Area. J Proteome Res 2022; 21:1718-1735. [PMID: 35605973 PMCID: PMC9251764 DOI: 10.1021/acs.jproteome.2c00122] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The plasma proteome
has the potential to enable a holistic analysis
of the health state of an individual. However, plasma biomarker discovery
is difficult due to its high dynamic range and variability. Here,
we present a novel automated analytical approach for deep plasma profiling
and applied it to a 180-sample cohort of human plasma from lung, breast,
colorectal, pancreatic, and prostate cancers. Using a controlled quantitative
experiment, we demonstrate a 257% increase in protein identification
and a 263% increase in significantly differentially abundant proteins
over neat plasma. In the cohort, we identified 2732 proteins. Using
machine learning, we discovered biomarker candidates such as STAT3
in colorectal cancer and developed models that classify the diseased
state. For pancreatic cancer, a separation by stage was achieved.
Importantly, biomarker candidates came predominantly from the low
abundance region, demonstrating the necessity to deeply profile because
they would have been missed by shallow profiling.
Collapse
Affiliation(s)
| | | | | | | | - Jan Muntel
- Biognosys, Schlieren, Zurich 8952, Switzerland
| | | | | |
Collapse
|
11
|
Rademaker G, Boumahd Y, Peiffer R, Anania S, Wissocq T, Liégeois M, Luis G, Sounni NE, Agirman F, Maloujahmoum N, De Tullio P, Thiry M, Bellahcène A, Castronovo V, Peulen O. Myoferlin targeting triggers mitophagy and primes ferroptosis in pancreatic cancer cells. Redox Biol 2022; 53:102324. [PMID: 35533575 PMCID: PMC9096673 DOI: 10.1016/j.redox.2022.102324] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/26/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Gilles Rademaker
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium
| | - Yasmine Boumahd
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), Mitochondria Adaptation in Cancer Group, University of Liège, B-4000, Liège, Belgium
| | - Raphaël Peiffer
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), Mitochondria Adaptation in Cancer Group, University of Liège, B-4000, Liège, Belgium
| | - Sandy Anania
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), Mitochondria Adaptation in Cancer Group, University of Liège, B-4000, Liège, Belgium
| | - Tom Wissocq
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium
| | - Maude Liégeois
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, University of Liège, B-4000, Liège, Belgium
| | - Géraldine Luis
- Laboratory of Tumor and Development Biology, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium
| | - Nor Eddine Sounni
- Laboratory of Tumor and Development Biology, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium
| | - Ferman Agirman
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium
| | - Naïma Maloujahmoum
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium
| | - Pascal De Tullio
- Center for Interdisciplinary Research on Medicines (CIRM), Metabolomics Group, University of Liège, B-4000, Liège, Belgium
| | - Marc Thiry
- Laboratory of Cellular and Tissular Biology, GIGA-Neurosciences, Cell Biology L3, University of Liège, B-4000, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-cancer, University of Liège, Pathology Institute B23, B-4000, Liège, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), Mitochondria Adaptation in Cancer Group, University of Liège, B-4000, Liège, Belgium.
| |
Collapse
|
12
|
Zhao J, Liu X, Cong K, Chang J, Shan H, Zheng Y. The prognostic significance of LTBP2 for malignant tumors: Evidence based on 11 observational studies. Medicine (Baltimore) 2022; 101:e29207. [PMID: 35512078 PMCID: PMC9276395 DOI: 10.1097/md.0000000000029207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/14/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AIMS At present, increasing reports have shown that latent transforming growth factor-β-binding protein 2 (LTBP2) was associated with the prognosis of many types of cancer. We performed rounded analysis to comprehensively analyze and evaluate the prognostic significance of LTBP2 for patients with malignant tumors. METHODS We identified relevant studies by searching database including PubMed, Embase, Cochrane Library, and Web of Science. The odds ratio with its 95% confidence interval (CI) was used to assess the correlation between LTBP2 and clinicopathologic features or overall survival of patients with cancer. Hazard ratio with its 95% CI was used to explore the prognostic risk factors. The analysis was performed and assessed using Review Manager 5.2. RESULTS A total of 11 studies including 2322 participants were included in this systematic review. Pooled results showed that malignant tissues experienced higher incidence of high LTBP2 expression when compared with adjacent or normal tissues. Patients with high LTBP2 expression experienced significantly lower 1-year, 2-year, 3-year, and 4-year overall survival rate, with the pooled odds ratios being 0.26 (95% CI 0.13-0.53; P = .0002), 0.27 (95% CI 0.14-0.50; P < .0001), 0.26 (95% CI 0.13-0.53; P = .0002), and 0.21 (95% CI 0.06-0.73; P = .01) respectively. Univariate analysis showed high LTBP2 expression, tumor node metastasis stage, T stage, and N stage were prognostic factors of patients with tumors. Multivariate analysis indicated high LTBP2 expression was an independent prognostic factor. CONCLUSIONS The present analysis suggested that LTBP2 may have significant association with survival of patients with cancer. High LTBP2 expression was an independent prognostic factor and indicated poor survival.
Collapse
Affiliation(s)
- Jianmeng Zhao
- The Second Department of General Surgery, Guangrao County People's Hospital, Guangrao, China
| | - Xiaokang Liu
- Department of Medical Oncology, Guangrao County People's Hospital, Guangrao, China
| | - Ke Cong
- The Second Department of General Surgery, Guangrao County People's Hospital, Guangrao, China
| | - Jinzhe Chang
- The Second Department of General Surgery, Guangrao County People's Hospital, Guangrao, China
| | - Hongqing Shan
- The Second Department of General Surgery, Guangrao County People's Hospital, Guangrao, China
| | - Yuenan Zheng
- The Second Department of General Surgery, Guangrao County People's Hospital, Guangrao, China
| |
Collapse
|
13
|
Takedachi M, Yamamoto S, Kawasaki K, Shimomura J, Murata M, Morimoto C, Hirai A, Kawakami K, Bhongsatiern P, Iwayama T, Sawada K, Yamada S, Murakami S. Reciprocal role of PLAP-1 in HIF-1α-mediated responses to hypoxia. J Periodontal Res 2022; 57:470-478. [PMID: 35138637 DOI: 10.1111/jre.12976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/29/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the mutual regulation of hypoxia-inducible factor (HIF)-1α activity and periodontal ligament-associated protein-1 (PLAP-1) expression in human periodontal ligament cells (HPDLs). BACKGROUND Cellular responses to hypoxia regulate various biological events (e.g., inflammation and tissue regeneration) through activation of HIF-1α. PLAP-1, an extracellular matrix protein preferentially expressed in the periodontal ligament, plays important roles in the functions of HPDLs. Although PLAP-1 expression has been demonstrated in hypoxic regions, the involvement of PLAP-1 in responses to hypoxia has not been revealed. METHODS HPDLs were cultured under normoxic (20% O2 ) or hypoxic (1% O2 ) conditions with or without deferoxamine mesylate (chemical hypoxia inducer) or chetomin (HIF signaling inhibitor). Expression levels of PLAP-1 and HIF-1α were examined by real-time reverse transcription-polymerase chain reaction and western blot analysis. Luciferase reporter assays of HIF-1α activity were performed using 293T cells stably transfected with a hypoxia response element (HRE)-containing luciferase vector in the presence or absence of recombinant PLAP-1 or PLAP-1 gene transfection. RESULTS Cultivation under hypoxic conditions elevated the gene and protein expression levels of PLAP-1 in HPDLs. Deferoxamine mesylate treatment also enhanced PLAP-1 expression in HPDLs. Hypoxia-induced PLAP-1 expression was significantly suppressed in the presence of chetomin. PLAP-1-suppressed HPDLs showed increased HIF-1α accumulation in the nucleus during culture under hypoxic conditions, but not in the presence of recombinant PLAP-1. In the presence of recombinant PLAP-1, hypoxia-induced HRE activity of 293T cells was significantly suppressed in a dose-dependent manner. Transfection of the PLAP-1 gene resulted in a significant reduction of HRE activity during culture under hypoxic conditions. CONCLUSION PLAP-1 expression is upregulated under hypoxic conditions through HIF-1α activation. Moreover, hypoxia-induced PLAP-1 expression regulates HIF-1α signaling.
Collapse
Affiliation(s)
- Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satomi Yamamoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kohsuke Kawasaki
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Junpei Shimomura
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mari Murata
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Chiaki Morimoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Asae Hirai
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kazuma Kawakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Phan Bhongsatiern
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Keigo Sawada
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
14
|
Pi R, Chen Y, Du Y, Dong S. Comprehensive Analysis of Myoferlin in Human Pancreatic Cancer via Bioinformatics. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2602322. [PMID: 34957301 PMCID: PMC8702316 DOI: 10.1155/2021/2602322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 01/11/2023]
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related death and urgently needs biomarkers for clinical diagnosis and prognosis. It has been reported that myoferlin (MYOF) is implicated in the regulation of proliferation, invasion, and migration of tumor cells in many cancers including pancreatic cancer. To confirm the prognostic value of MYOF in pancreatic cancer, a comprehensive cancer versus healthy people analysis was conducted using public data. MYOF mRNA expression levels were compared in many kinds of cancers including pancreatic cancer via the Oncomine and Gene Expression Profiling Interactive Analysis (GEPIA) databases. The results have shown that MYOF mRNA expression levels were upregulated in most types of cancers, especially in pancreatic cancer, compared with healthy people's tissues. Data from the Cancer Cell Line Encyclopedia (CCLE) and European Bioinformatics Institute (EMBL-EML) database also revealed that MYOF mRNA is highly expressed in most cancer cells, particularly in pancreatic cancer cell lines. Furthermore, the prognostic value of MYOF was evaluated using GEPIA and Long-term Outcome and Gene Expression Profiling Database of pan-cancers (LOGpc) database. Higher expression of MYOF was associated with poorer overall survival, especially in the lower stage and lower grade. Coexpressed genes, possible regulators, and the correlation between MYOF expressions were analyzed via the GEPIA and LinkedOmics database. Nineteen coexpressed genes were identified, and most of these genes were related to cancer. The Tumor Immune Estimation Resource (TIMER) database was used to analyze the correlation between MYOF and immune response. Notably, we found that MYOF might have a potential novel immune regulatory role in tumor immunity. These results support that MYOF is a candidate prognostic biomarker for pancreatic cancer, which calls for further genomics research of pancreatic cancer and deeply functional studies on MYOF.
Collapse
Affiliation(s)
- Rou Pi
- Shanghai Engineering Research Centre of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yanmei Chen
- Shanghai Engineering Research Centre of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yijie Du
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Institute of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Suzhen Dong
- Shanghai Engineering Research Centre of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
15
|
The Role of Latent Transforming Growth Factor β Binding Protein 2 (LTBP2) in the Diagnosis and Stage Discrimination of Gastric Cancer. Indian J Surg 2021. [DOI: 10.1007/s12262-021-03133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Basak D, Jamal Z, Ghosh A, Mondal PK, Dey Talukdar P, Ghosh S, Ghosh Roy B, Ghosh R, Halder A, Chowdhury A, Dhali GK, Chattopadhyay BK, Saha ML, Basu A, Roy S, Mukherjee C, Biswas NK, Chatterji U, Datta S. Reciprocal interplay between asporin and decorin: Implications in gastric cancer prognosis. PLoS One 2021; 16:e0255915. [PMID: 34379688 PMCID: PMC8357146 DOI: 10.1371/journal.pone.0255915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
Effective patient prognosis necessitates identification of novel tumor promoting drivers of gastric cancer (GC) which contribute to worsened conditions by analysing TCGA-gastric adenocarcinoma dataset. Small leucine-rich proteoglycans, asporin (ASPN) and decorin (DCN), play overlapping roles in development and diseases; however, the mechanisms underlying their interplay remain elusive. Here, we investigated the complex interplay of asporin, decorin and their interaction with TGFβ in GC tumor and corresponding normal tissues. The mRNA levels, protein expressions and cellular localizations of ASPN and DCN were analyzed using real-time PCR, western blot and immunohistochemistry, respectively. The protein-protein interaction was predicted by in-silico interaction analysis and validated by co-immunoprecipitation assay. The correlations between ASPN and EMT proteins, VEGF and collagen were achieved using western blot analysis. A significant increase in expression of ASPN in tumor tissue vs. normal tissue was observed in both TCGA and our patient cohort. DCN, an effective inhibitor of the TGFβ pathway, was negatively correlated with stages of GC. Co-immunoprecipitation demonstrated that DCN binds with TGFβ, in normal gastric epithelium, whereas in GC, ASPN preferentially binds TGFβ. Possible activation of the canonical TGFβ pathway by phosphorylation of SMAD2 in tumor tissues suggests its role as an intracellular tumor promoter. Furthermore, tissues expressing ASPN showed unregulated EMT signalling. Our study uncovers ASPN as a GC-promoting gene and DCN as tumor suppressor, suggesting that ASPN can act as a prognostic marker in GC. For the first time, we describe the physical interaction of TGFβ with ASPN in GC and DCN with TGFβ in GC and normal gastric epithelium respectively. This study suggests that prevention of ASPN-TGFβ interaction or overexpression of DCN could serve as promising therapeutic strategies for GC patients.
Collapse
Affiliation(s)
- Dipjit Basak
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | - Zarqua Jamal
- Cancer Research Lab, Department of Zoology, University of Calcutta, Kolkata, India
| | - Arnab Ghosh
- National Institute of Biomedical Genomics, Kalyani, India
| | | | | | - Semanti Ghosh
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | | | - Ranajoy Ghosh
- The School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Aniket Halder
- The School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Abhijit Chowdhury
- The School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Gopal Krishna Dhali
- The School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | | | - Makhan Lal Saha
- Department of Surgery, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Abhimanyu Basu
- Department of Surgery, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Sukanta Roy
- The School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | | | | | - Urmi Chatterji
- Cancer Research Lab, Department of Zoology, University of Calcutta, Kolkata, India
| | - Shalini Datta
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
- * E-mail:
| |
Collapse
|
17
|
Gu H, Peng Y, Chen Y. An Emerging Therapeutic Approach by Targeting Myoferlin (MYOF) for Malignant Tumors. Curr Top Med Chem 2021; 20:1509-1515. [PMID: 32552653 DOI: 10.2174/1568026620666200618123436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/13/2020] [Accepted: 06/13/2020] [Indexed: 12/31/2022]
Abstract
Myoferlin (MYOF), as a member of the ferlin family, is a type II transmembrane protein with a single transmembrane domain at the carbon terminus. Studies have shown that MYOF is involved in pivotal physiological functions related to numerous cell membranes, such as extracellular secretion, endocytosis cycle, vesicle trafficking, membrane repair, membrane receptor recycling, and secreted protein efflux. Recently, the studies have also revealed that MYOF is overexpressed in a variety of cancers such as colorectal cancer, pancreatic cancer, breast cancer, melanoma, gastric cancer, and non-small-cell lung cancer. High expression of MYOF is associated with the high invasion of tumors and poor clinical prognosis. MYOF medicates the expression, secretion, and distribution of proteins, which were closely related to cancers, as well as the energy utilization of cancer cells, lipid metabolism and other physiological activities by regulating the physiological processes of membrane transport. In this short article, we briefly summarize the latest progress related to MYOF, indicating that small molecule inhibitors targeting the MYOF-C2D domain can selectively inhibit the proliferation and migration of cancer cells, and MYOF may be a promising target for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Haijun Gu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
18
|
Corona A, Blobe GC. The role of the extracellular matrix protein TGFBI in cancer. Cell Signal 2021; 84:110028. [PMID: 33940163 DOI: 10.1016/j.cellsig.2021.110028] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
The secreted extracellular protein, transforming growth factor beta induced (TGFBI or βIGH3), has roles in regulating numerous biological functions, including cell adhesion and bone formation, both during embryonic development and during the pathogenesis of human disease. TGFBI has been most studied in the context of hereditary corneal dystrophies, where mutations in TGFBI result in accumulation of TGFBI in the cornea. In cancer, early studies focused on TGFBI as a tumor suppressor, in part by promoting chemotherapy sensitivity. However, in established tumors, TGFBI largely has a role in promoting tumor progression, with elevated levels correlating to poorer clinical outcomes. As an important regulator of cancer progression, TGFBI expression and function is tightly regulated by numerous mechanisms including epigenetic silencing through promoter methylation and microRNAs. Mechanisms to target TGFBI have potential clinical utility in treating advanced cancers, while assessing TGFBI levels could be a biomarker for chemotherapy resistance and tumor progression.
Collapse
Affiliation(s)
- Armando Corona
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA
| | - Gerard C Blobe
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA; Department of Medicine, Duke University Medical Center, USA.
| |
Collapse
|
19
|
Yashiro M, Hasegawa T, Yamamoto Y, Tsujio G, Nishimura S, Sera T, Sugimoto A, Kushiyama S, Kasashima H, Fukuoka T, Sakurai K, Toyokawa T, Kubo N, Ohira M. Asporin Expression on Stromal Cells and/or Cancer Cells Might Be A Useful Prognostic Marker in Patients with Diffuse-Type Gastric Cancer. Eur Surg Res 2021; 62:53-60. [PMID: 33882483 DOI: 10.1159/000515458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Asporin (ASPN), a member of the proteoglycan family, has been shown to have a close correlation with cancer progression. It is not known whether ASPN is an oncogenic driver or a tumor suppressor in human gastric cancer. We sought herein to determine the relationship between ASPN expression and clinicopathological features of gastric cancer. PATIENTS AND METHODS A total of 296 gastric cancer patients (diffuse type, n = 144; intestinal type, n = 152) were enrolled. The ASPN expression level in each case was analyzed by immunohistochemistry. RESULTS ASPN was mainly found on stromal cells, especially on fibroblasts in tumor stroma, i.e., cancer-associated fibroblasts. The ASPN expression on either cancer cells or stromal cells was significantly high in macroscopic scirrhous-type tumors (p < 0.001) and histologically abundant stroma-type tumors (p < 0.001). Interestingly, a Kaplan-Meier survival curve of the 144 cases of diffuse-type gastric cancer revealed a significantly poorer prognosis in patients with ASPN-positive expression (p = 0.043; log rank) compared to those with ASPN-negative expression, but the prognoses were not significantly different in these subgroups of the 152 cases of intestinal-type gastric cancer. A multivariate analysis with respect to overall survival showed that ASPN expression on stromal cells and/or cancer cells was significantly correlated with overall survival in patients with diffuse-type gastric cancer (p = 0.041). CONCLUSION In gastric cancer, ASPN was expressed mainly on stromal cells and partially on cancer cells. ASPN expression on stromal cells and/or cancer cells might be a useful prognostic marker in patients with diffuse-type gastric cancer.
Collapse
Affiliation(s)
- Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Tsuyoshi Hasegawa
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Yurie Yamamoto
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Gen Tsujio
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Sadaaki Nishimura
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Tomohiro Sera
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Atsushi Sugimoto
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Shuhei Kushiyama
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Hiroaki Kasashima
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Tatsunari Fukuoka
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Katsunobu Sakurai
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Naoshi Kubo
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| |
Collapse
|
20
|
Liot S, Balas J, Aubert A, Prigent L, Mercier-Gouy P, Verrier B, Bertolino P, Hennino A, Valcourt U, Lambert E. Stroma Involvement in Pancreatic Ductal Adenocarcinoma: An Overview Focusing on Extracellular Matrix Proteins. Front Immunol 2021; 12:612271. [PMID: 33889150 PMCID: PMC8056076 DOI: 10.3389/fimmu.2021.612271] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide and is predicted to become second in 2030 in industrialized countries if no therapeutic progress is made. Among the different types of pancreatic cancers, Pancreatic Ductal Adenocarcinoma (PDAC) is by far the most represented one with an occurrence of more than 90%. This specific cancer is a devastating malignancy with an extremely poor prognosis, as shown by the 5-years survival rate of 2–9%, ranking firmly last amongst all cancer sites in terms of prognostic outcomes for patients. Pancreatic tumors progress with few specific symptoms and are thus at an advanced stage at diagnosis in most patients. This malignancy is characterized by an extremely dense stroma deposition around lesions, accompanied by tissue hypovascularization and a profound immune suppression. Altogether, these combined features make access to cancer cells almost impossible for conventional chemotherapeutics and new immunotherapeutic agents, thus contributing to the fatal outcomes of the disease. Initially ignored, the Tumor MicroEnvironment (TME) is now the subject of intensive research related to PDAC treatment and could contain new therapeutic targets. In this review, we will summarize the current state of knowledge in the field by focusing on TME composition to understand how this specific compartment could influence tumor progression and resistance to therapies. Attention will be paid to Tenascin-C, a matrix glycoprotein commonly upregulated during cancer that participates to PDAC progression and thus contributes to poor prognosis.
Collapse
Affiliation(s)
- Sophie Liot
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Jonathan Balas
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Alexandre Aubert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Laura Prigent
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Perrine Mercier-Gouy
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Philippe Bertolino
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France
| | - Ana Hennino
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France
| | - Ulrich Valcourt
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| |
Collapse
|
21
|
Sperb N, Tsesmelis M, Wirth T. Crosstalk between Tumor and Stromal Cells in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:E5486. [PMID: 32752017 PMCID: PMC7432853 DOI: 10.3390/ijms21155486] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a lethal cancer. The poor prognosis calls for a more detailed understanding of disease biology in order to pave the way for the development of effective therapies. Typically, the pancreatic tumor is composed of a minority of malignant cells within an excessive tumor microenvironment (TME) consisting of extracellular matrix (ECM), fibroblasts, immune cells, and endothelial cells. Research conducted in recent years has particularly focused on cancer-associated fibroblasts (CAFs) which represent the most prominent cellular component of the desmoplastic stroma. Here, we review the complex crosstalk between CAFs, tumor cells, and other components of the TME, and illustrate how these interactions drive disease progression. We also discuss the emerging field of CAF heterogeneity, their tumor-supportive versus tumor-suppressive capacity, and the consequences for designing stroma-targeted therapies in the future.
Collapse
Affiliation(s)
| | | | - Thomas Wirth
- Institute of Physiological Chemistry, University of Ulm, 89081 Ulm, Germany; (N.S.); (M.T.)
| |
Collapse
|
22
|
Yang L, Cui R, Li Y, Liang K, Ni M, Gu Y. Hypoxia-Induced TGFBI as a Serum Biomarker for Laboratory Diagnosis and Prognosis in Patients with Pancreatic Ductal Adenocarcinoma. Lab Med 2020; 51:352-361. [PMID: 31626700 DOI: 10.1093/labmed/lmz063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE To explore novel biomarkers for patients with pancreatic ductal adenocarcinoma (PDAC), from the perspective of tumor hypoxia. METHODS We screened 29 differentially expressed and hypoxia-upregulated genes from the Oncomine database. A total of 12 secretory proteins that interact with hypoxia-inducible factor 1 (HIF-1A) were selected by STRING (protein-protein interaction networks). After excluding enzymes and collagens, insulin-like growth factor-binding protein 3 (IGFBP3), glycoprotein NBM (GPNMB), transforming growth factor-β-induced (TGFBI), and biglycan (BGN) were detected by sandwich enzyme-linked immunosorbent assay (ELISA) in patients with cancer and healthy control individuals. RESULTS The serum level of TGFBI was significantly elevated in patients with PDAC, compared with healthy controls; the assay could discriminate among cases of PDAC in different clinical stages. The amount of TGFBI was significantly decreased after treatment. The combination of TGFBI and cancer antigen (CA) 19-9 was more accurate than TGFBI or CA 19-9 alone as diagnostic markers. Also, TGFBI might be used as a prognostic marker according to the PROGgeneV2 Pan Cancer Prognostics Database. CONCLUSIONS Serum TGFBI, combined with CA 19-9, offers higher diagnostic value than other methods for patients with PDAC. Also, TGFBI might be used as a prognostic marker.
Collapse
Affiliation(s)
- Lingmin Yang
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China.,Shanghai Baize Medical Laboratory, Shanghai, China
| | - Ranliang Cui
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory for Cancer, Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yueguo Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory for Cancer, Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Kai Liang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Min Ni
- Henan Newborn Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Gu
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| |
Collapse
|
23
|
Anania S, Peiffer R, Rademaker G, Hego A, Thiry M, Deldicque L, Francaux M, Maloujahmoum N, Agirman F, Bellahcène A, Castronovo V, Peulen O. Myoferlin Is a Yet Unknown Interactor of the Mitochondrial Dynamics' Machinery in Pancreas Cancer Cells. Cancers (Basel) 2020; 12:cancers12061643. [PMID: 32575867 PMCID: PMC7352660 DOI: 10.3390/cancers12061643] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreas ductal adenocarcinoma is one of the deadliest cancers where surgery remains the main survival factor. Mitochondria were described to be involved in tumor aggressiveness in several cancer types including pancreas cancer. We have previously reported that myoferlin controls mitochondrial structure and function, and demonstrated that myoferlin depletion disturbs the mitochondrial dynamics culminating in a mitochondrial fission. In order to unravel the mechanism underlying this observation, we explored the myoferlin localization in pancreatic cancer cells and showed a colocalization with the mitochondrial dynamic machinery element: mitofusin. This colocalization was confirmed in several pancreas cancer cell lines and in normal cell lines as well. Moreover, in pancreas cancer cell lines, it appeared that myoferlin interacted with mitofusin. These discoveries open-up new research avenues aiming at modulating mitofusin function in pancreas cancer.
Collapse
Affiliation(s)
- Sandy Anania
- Metastasis Research Laboratory (MRL), GIGA-Cancer, Pathology Institute B23, University of Liège, B-4000 Liège, Belgium; (S.A.); (R.P.); (G.R.); (N.M.); (F.A.); (A.B.); (V.C.)
- Center for Interdisciplinary Research on Medicines (CIRM), Pathology Institute B23, University of Liège, B-4000 Liège, Belgium
| | - Raphaël Peiffer
- Metastasis Research Laboratory (MRL), GIGA-Cancer, Pathology Institute B23, University of Liège, B-4000 Liège, Belgium; (S.A.); (R.P.); (G.R.); (N.M.); (F.A.); (A.B.); (V.C.)
- Center for Interdisciplinary Research on Medicines (CIRM), Pathology Institute B23, University of Liège, B-4000 Liège, Belgium
| | - Gilles Rademaker
- Metastasis Research Laboratory (MRL), GIGA-Cancer, Pathology Institute B23, University of Liège, B-4000 Liège, Belgium; (S.A.); (R.P.); (G.R.); (N.M.); (F.A.); (A.B.); (V.C.)
- Center for Interdisciplinary Research on Medicines (CIRM), Pathology Institute B23, University of Liège, B-4000 Liège, Belgium
| | - Alexandre Hego
- Imaging Facilities, GIGA-Research, GIGA-Institute B36, University of Liège, B-4000 Liège, Belgium;
| | - Marc Thiry
- Laboratory of Cellular and Tissular Biology, GIGA-Neurosciences, Cell Biology L3, University of Liège, B-4000 Liège, Belgium;
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; (L.D.); (M.F.)
| | - Marc Francaux
- Institute of Neuroscience, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; (L.D.); (M.F.)
| | - Naïma Maloujahmoum
- Metastasis Research Laboratory (MRL), GIGA-Cancer, Pathology Institute B23, University of Liège, B-4000 Liège, Belgium; (S.A.); (R.P.); (G.R.); (N.M.); (F.A.); (A.B.); (V.C.)
| | - Ferman Agirman
- Metastasis Research Laboratory (MRL), GIGA-Cancer, Pathology Institute B23, University of Liège, B-4000 Liège, Belgium; (S.A.); (R.P.); (G.R.); (N.M.); (F.A.); (A.B.); (V.C.)
| | - Akeila Bellahcène
- Metastasis Research Laboratory (MRL), GIGA-Cancer, Pathology Institute B23, University of Liège, B-4000 Liège, Belgium; (S.A.); (R.P.); (G.R.); (N.M.); (F.A.); (A.B.); (V.C.)
| | - Vincent Castronovo
- Metastasis Research Laboratory (MRL), GIGA-Cancer, Pathology Institute B23, University of Liège, B-4000 Liège, Belgium; (S.A.); (R.P.); (G.R.); (N.M.); (F.A.); (A.B.); (V.C.)
| | - Olivier Peulen
- Metastasis Research Laboratory (MRL), GIGA-Cancer, Pathology Institute B23, University of Liège, B-4000 Liège, Belgium; (S.A.); (R.P.); (G.R.); (N.M.); (F.A.); (A.B.); (V.C.)
- Center for Interdisciplinary Research on Medicines (CIRM), Pathology Institute B23, University of Liège, B-4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
24
|
de Oliveira G, Paccielli Freire P, Santiloni Cury S, de Moraes D, Santos Oliveira J, Dal-Pai-Silva M, do Reis PP, Francisco Carvalho R. An Integrated Meta-Analysis of Secretome and Proteome Identify Potential Biomarkers of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2020; 12:E716. [PMID: 32197468 PMCID: PMC7140071 DOI: 10.3390/cancers12030716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is extremely aggressive, has an unfavorable prognosis, and there are no biomarkers for early detection of the disease or identification of individuals at high risk for morbidity or mortality. The cellular and molecular complexity of PDAC leads to inconsistences in clinical validations of many proteins that have been evaluated as prognostic biomarkers of the disease. The tumor secretome, a potential source of biomarkers in PDAC, plays a crucial role in cell proliferation and metastasis, as well as in resistance to treatments, which together contribute to a worse clinical outcome. The massive amount of proteomic data from pancreatic cancer that has been generated from previous studies can be integrated and explored to uncover secreted proteins relevant to the diagnosis and prognosis of the disease. The present study aimed to perform an integrated meta-analysis of PDAC proteome and secretome public data to identify potential biomarkers of the disease. Our meta-analysis combined mass spectrometry data obtained from two systematic reviews of the pancreatic cancer literature, which independently selected 20 studies of the secretome and 35 of the proteome. Next, we predicted the secreted proteins using seven in silico tools or databases, which identified 39 secreted proteins shared between the secretome and proteome data. Notably, the expression of 31 genes of these secretome-related proteins was upregulated in PDAC samples from The Cancer Genome Atlas (TCGA) when compared to control samples from TCGA and The Genotype-Tissue Expression (GTEx). The prognostic value of these 39 secreted proteins in predicting survival outcome was confirmed using gene expression data from four PDAC datasets (validation set). The gene expression of these secreted proteins was able to distinguish high- and low-survival patients in nine additional tumor types from TCGA, demonstrating that deregulation of these secreted proteins may also contribute to the prognosis in multiple cancers types. Finally, we compared the prognostic value of the identified secreted proteins in PDAC biomarkers studies from the literature. This analysis revealed that our gene signature performed equally well or better than the signatures from these previous studies. In conclusion, our integrated meta-analysis of PDAC proteome and secretome identified 39 secreted proteins as potential biomarkers, and the tumor gene expression profile of these proteins in patients with PDAC is associated with worse overall survival.
Collapse
Affiliation(s)
- Grasieli de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Paula Paccielli Freire
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Diogo de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Jakeline Santos Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Patrícia Pintor do Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, São Paulo, Brazil;
- Experimental Research Unity, Faculty of Medicine, São Paulo State University, UNESP, Botucatu 18618-970, São Paulo, Brazil
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| |
Collapse
|
25
|
Myoferlin, a Membrane Protein with Emerging Oncogenic Roles. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7365913. [PMID: 31828126 PMCID: PMC6885792 DOI: 10.1155/2019/7365913] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
Abstract
Myoferlin (MYOF), initially identified in muscle cells, is a member of the Ferlin family involved in membrane fusion, membrane repair, and membrane trafficking. Dysfunction of this protein is associated with muscular dysfunction. Recently, a growing body of studies have identified MYOF as an oncogenic protein. It is overexpressed in a variety of human cancers and promotes tumorigenesis, tumor cell motility, proliferation, migration, epithelial to mesenchymal transition, angiogenesis as well as metastasis. Clinically, MYOF overexpression is associated with poor outcome in various cancers. It can serve as a prognostic marker of human malignant disease. MYOF drives the progression of cancer in various processes, including surface receptor transportation, endocytosis, exocytosis, intercellular communication, fit mitochondrial structure maintenance and cell metabolism. Depletion of MYOF demonstrates significant antitumor effects both in vitro and in vivo, suggesting that targeting MYOF may produce promising clinical benefits in the treatment of malignant disease. In the present article, we reviewed the physiological function of MYOF as well as its role in cancer, thus providing a general understanding for further exploration of this protein.
Collapse
|
26
|
Nakazawa N, Yokobori T, Kaira K, Turtoi A, Baatar S, Gombodorj N, Handa T, Tsukagoshi M, Ubukata Y, Kimura A, Kogure N, Ogata K, Maeno T, Sohda M, Yajima T, Shimizu K, Mogi A, Kuwano H, Saeki H, Shirabe K. High Stromal TGFBI in Lung Cancer and Intratumoral CD8-Positive T Cells were Associated with Poor Prognosis and Therapeutic Resistance to Immune Checkpoint Inhibitors. Ann Surg Oncol 2019; 27:933-942. [PMID: 31571056 DOI: 10.1245/s10434-019-07878-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND We investigated whether the expression of transforming growth factor-beta-induced protein (TGFBI) and intratumoral immune cells including CD8- and Forkhead box protein P3 (Foxp3)-positive T cells in clinical lung cancer patients could predict the therapeutic response to nivolumab. METHODS Thirty-three patients who were treated with nivolumab were enrolled in this study. Immunohistochemical analyses of TGFBI, PD-L1, CD8, Foxp3, and vimentin expression were conducted. Serum concentrations of TGFBI and transforming growth factor-beta1 (TGF-β1) were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS Cancer TGFBI was not associated with prognosis and therapeutic response to nivolumab, but cancer stromal TGFBI and intratumoral CD8-positive T cells were associated with them. Therefore, we evaluated cancer stromal TGFBI and intratumoral CD8-positive T cells. The high-TGFBI-expression group had poorer clinical responses than did the low-TGFBI-expression group (p < 0.0001). The number of times nivolumab was administered in the high-CD8-expression group was significantly higher than that in the low-CD8-expression group (p = 0.0046). The high-CD8-expression group had better clinical responses than did the low-CD8-expression group (p = 0.0013). Interestingly, all patients in the high-TGFBI/low-CD8-expression group had progressive disease (PD). In contrast, all patients in the low-TGFBI/high-CD8-expression group had PR + SD (partial response + stable disease) by the Response Evaluation Criteria in Solid Tumors (RECIST 1.1). CONCLUSIONS The dual evaluation of stromal TGFBI and intratumoral CD8-positive T cells could be a useful predictive marker for nivolumab.
Collapse
Affiliation(s)
- Nobuhiro Nakazawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan.
| | - Takehiko Yokobori
- Department of Innovative Cancer Immunotherapy, Graduate School of Medicine, Gunma University, Maebashi, Japan.
| | - Kyoichi Kaira
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama University Hospital, Saitama, Japan.
| | - Andrei Turtoi
- Tumor Microenvironment Laboratory, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Montpellier, France
| | - Seded Baatar
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Navchaa Gombodorj
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Tadashi Handa
- Department of Diagnostic Pathology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Mariko Tsukagoshi
- Department of Innovative Cancer Immunotherapy, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yasunari Ubukata
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Akiharu Kimura
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Norimichi Kogure
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kyoichi Ogata
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Toshitaka Maeno
- Department of Respiratory Medicine, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Toshiki Yajima
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kimihiro Shimizu
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Akira Mogi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
27
|
Zhan S, Li J, Ge W. Multifaceted Roles of Asporin in Cancer: Current Understanding. Front Oncol 2019; 9:948. [PMID: 31608236 PMCID: PMC6771297 DOI: 10.3389/fonc.2019.00948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
The small leucine-rich proteoglycan (SLRP) family consists of 18 members categorized into five distinct classes, the traditional classes I–III, and the non-canonical classes IV–V. Unlike the other class I SLRPs (decorin and biglycan), asporin contains a unique and conserved stretch of aspartate (D) residues in its N terminus, and germline polymorphisms in the D-repeat-length are associated with osteoarthritis and prostate cancer progression. Since the first discovery of asporin in 2001, previous studies have focused mainly on its roles in bone and joint diseases, including osteoarthritis, intervertebral disc degeneration and periodontal ligament mineralization. Recently, asporin gene expression was also reported to be dysregulated in tumor tissues of different types of cancer, and to act as oncogene in pancreatic, colorectal, gastric, and prostate cancers, and some types of breast cancer, though it is also reported to function as a tumor suppressor gene in triple-negative breast cancer. Furthermore, asporin is also positively or negatively correlated with tumor proliferation, migration, invasion, and patient prognosis through its regulation of different signaling pathways, including the TGF-β, EGFR, and CD44 pathways. In this review, we seek to elucidate the signaling pathways and functions regulated by asporin in different types of cancer and to highlight some important issues that require investigation in future research.
Collapse
Affiliation(s)
- Shaohua Zhan
- National Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
28
|
Peulen O, Rademaker G, Anania S, Turtoi A, Bellahcène A, Castronovo V. Ferlin Overview: From Membrane to Cancer Biology. Cells 2019; 8:cells8090954. [PMID: 31443490 PMCID: PMC6770723 DOI: 10.3390/cells8090954] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
In mammal myocytes, endothelial cells and inner ear cells, ferlins are proteins involved in membrane processes such as fusion, recycling, endo- and exocytosis. They harbour several C2 domains allowing their interaction with phospholipids. The expression of several Ferlin genes was described as altered in several tumoural tissues. Intriguingly, beyond a simple alteration, myoferlin, otoferlin and Fer1L4 expressions were negatively correlated with patient survival in some cancer types. Therefore, it can be assumed that membrane biology is of extreme importance for cell survival and signalling, making Ferlin proteins core machinery indispensable for cancer cell adaptation to hostile environments. The evidences suggest that myoferlin, when overexpressed, enhances cancer cell proliferation, migration and metabolism by affecting various aspects of membrane biology. Targeting myoferlin using pharmacological compounds, gene transfer technology, or interfering RNA is now considered as an emerging therapeutic strategy.
Collapse
Affiliation(s)
- Olivier Peulen
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium.
| | - Gilles Rademaker
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium
| | - Sandy Anania
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium
| | - Andrei Turtoi
- Tumor Microenvironment Laboratory, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, 34000 Montpellier, France
- Institut du Cancer de Montpeiller, 34000 Montpellier, France
- Université de Montpellier, 34000 Montpellier, France
| | - Akeila Bellahcène
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium
| |
Collapse
|
29
|
Zou J, Huang R, Li H, Wang B, Chen Y, Chen S, Ou K, Wang X. Secreted TGF-beta-induced protein promotes aggressive progression in bladder cancer cells. Cancer Manag Res 2019; 11:6995-7006. [PMID: 31440088 PMCID: PMC6664251 DOI: 10.2147/cmar.s208984] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/05/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Transforming growth factor-beta-induced (TGFBI) is an exocrine protein, which has been found to be able to promote the development of nasopharyngeal carcinoma, glioma, pancreatic cancer, and other tumors. However, there is currently no report concerning the relationship between TGFBI and invasive progression of bladder cancer (BCa). Methods: IHC staining, qRT-PCR and Western blot were used to analyze TGFBI and EMT markers levels. In vivo tumorigenesis was performed by xenograft tumor model. Results: In this study, we found that both mRNA and protein levels of TGFBI were significantly up-regulated in muscle invasive bladder cancer (MIBC) tissues compared with non-muscle-invasive bladder cancer (NMIBC) tissues. The high expression level of TGFBI was positively correlated with high histological grade and advanced clinical stage, and BCa patients with high TGFBI levels exhibited poor prognoses. We further confirmed that high expression level of TGFBI can promote proliferation, invasive progression, and epithelial-to-mesenchymal transition (EMT) of BCa cells in vitro, as well as promote tumor growth and EMT in vivo, while silencing of TGFBI inhibited these malignant phenotypes. TGFBI was involved in the up-regulation of EMT by inducing the expression level of Slug, Vimentin, Snail, MMP2, and MMP9 genes, while it down-regulated the expression level of E-cadherin. Moreover, Western blot analysis was carried out to demonstrate that BCa cell lines stably transfected with expression of TGFBI, a secreted protein. Furthermore, conditional medium containing TGFBI protein also resulted in enhanced EMT and malignant phenotype of BCa cells. Conclusion: Our results indicate that high expression level of TGFBI promotes EMT, proliferation, and invasive progression of BCa cells, and TGFBI is a potential therapeutic target and prognostic marker for BCa. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://www.youtube.com/watch?v=GkmU8GAfOv0
Collapse
Affiliation(s)
- Jun Zou
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ruiyan Huang
- Department of Ultrasonography and Electrocardiograms, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Huajun Li
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Bin Wang
- Department of Urology, Affiliated Cancer Hospital & Institue of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yanfei Chen
- Department of Urology, Affiliated Cancer Hospital & Institue of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Shuwei Chen
- The Third Clinical College of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Kaifu Ou
- The Third Clinical College of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xutao Wang
- The Third Clinical College of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
30
|
Myoferlin Contributes to the Metastatic Phenotype of Pancreatic Cancer Cells by Enhancing Their Migratory Capacity through the Control of Oxidative Phosphorylation. Cancers (Basel) 2019; 11:cancers11060853. [PMID: 31248212 PMCID: PMC6628295 DOI: 10.3390/cancers11060853] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies with an overall survival of 5% and is the second cause of death by cancer, mainly linked to its high metastatic aggressiveness. Accordingly, understanding the mechanisms sustaining the PDAC metastatic phenotype remains a priority. In this study, we generated and used a murine in vivo model to select clones from the human Panc-1 PDAC cell line that exhibit a high propensity to seed and metastasize into the liver. We showed that myoferlin, a protein previously reported to be overexpressed in PDAC, is significantly involved in the migratory abilities of the selected cells. We first report that highly metastatic Panc-1 clones expressed a significantly higher myoferlin level than the corresponding low metastatic ones. Using scratch wound and Boyden’s chamber assays, we show that cells expressing a high myoferlin level have higher migratory potential than cells characterized by a low myoferlin abundance. Moreover, we demonstrate that myoferlin silencing leads to a migration decrease associated with a reduction of mitochondrial respiration. Since mitochondrial oxidative phosphorylation has been shown to be implicated in the tumor progression and dissemination, our data identify myoferlin as a valid potential therapeutic target in PDAC.
Collapse
|
31
|
Li Y, Lee JS. Recent developments in affinity-based selection of aptamers for binding disease-related protein targets. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00842-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Li Y, He Y, Shao T, Pei H, Guo W, Mi D, Krimm I, Zhang Y, Wang P, Wang X, Liu M, Yi Z, Chen Y. Modification and Biological Evaluation of a Series of 1,5-Diaryl-1,2,4-triazole Compounds as Novel Agents against Pancreatic Cancer Metastasis through Targeting Myoferlin. J Med Chem 2019; 62:4949-4966. [DOI: 10.1021/acs.jmedchem.9b00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yunqi Li
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuan He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Ting Shao
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haixiang Pei
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dazhao Mi
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Isabelle Krimm
- Université de Lyon, CNRS, Université Claude-Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, Villeurbanne 69100, France
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Peili Wang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| |
Collapse
|
33
|
Goehrig D, Nigri J, Samain R, Wu Z, Cappello P, Gabiane G, Zhang X, Zhao Y, Kim IS, Chanal M, Curto R, Hervieu V, de La Fouchardière C, Novelli F, Milani P, Tomasini R, Bousquet C, Bertolino P, Hennino A. Stromal protein βig-h3 reprogrammes tumour microenvironment in pancreatic cancer. Gut 2019; 68:693-707. [PMID: 30415234 PMCID: PMC6580775 DOI: 10.1136/gutjnl-2018-317570] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Pancreatic cancer is associated with an abundant stromal reaction leading to immune escape and tumour growth. This massive stroma drives the immune escape in the tumour. We aimed to study the impact of βig-h3 stromal protein in the modulation of the antitumoural immune response in pancreatic cancer. DESIGN We performed studies with p48-Cre;KrasG12D, pdx1-Cre;KrasG12D;Ink4a/Arffl/fl, pdx1-Cre;KrasG12D; p53R172H mice and tumour tissues from patients with pancreatic ductal adenocarcinoma (PDA). Some transgenic mice were given injections of anti-βig-h3, anti-CD8, anti-PD1 depleting antibodies. Tumour growth as well as modifications in the activation of local immune cells were analysed by flow cytometry, immunohistochemistry and immunofluorescence. Tissue stiffness was measured by atomic force microscopy. RESULTS We identified βig-h3 stromal-derived protein as a key actor of the immune paracrine interaction mechanism that drives pancreatic cancer. We found that βig-h3 is highly produced by cancer-associated fibroblasts in the stroma of human and mouse. This protein acts directly on tumour-specific CD8+ T cells and F4/80 macrophages. Depleting βig-h3 in vivo reduced tumour growth by enhancing the number of activated CD8+ T cell within the tumour and subsequent apoptotic tumour cells. Furthermore, we found that targeting βig-h3 in established lesions released the tissue tension and functionally reprogrammed F4/80 macrophages in the tumour microenvironment. CONCLUSIONS Our data indicate that targeting stromal extracellular matrix protein βig-h3 improves the antitumoural response and consequently reduces tumour weight. Our findings present βig-h3 as a novel immunological target in pancreatic cancer.
Collapse
Affiliation(s)
- Delphine Goehrig
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
- Université Lyon 1, Villeurbanne, France
- Centre Léon Bérard, Lyon, France
| | | | | | - Zhichong Wu
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
- Université Lyon 1, Villeurbanne, France
- Centre Léon Bérard, Lyon, France
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Gaëlle Gabiane
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
- Université Lyon 1, Villeurbanne, France
- Centre Léon Bérard, Lyon, France
| | - Xinyi Zhang
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
- Université Lyon 1, Villeurbanne, France
- Centre Léon Bérard, Lyon, France
| | - Yajie Zhao
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
- Université Lyon 1, Villeurbanne, France
- Centre Léon Bérard, Lyon, France
| | - In-San Kim
- KU-KIST School, Korea University, Seongbuk-gu, Korea
| | - Marie Chanal
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
- Université Lyon 1, Villeurbanne, France
- Centre Léon Bérard, Lyon, France
| | - Roberta Curto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | | | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Pascale Milani
- Ecole Normale Supérieure de Lyon, Lyon, France
- Biomeca, Lyon
| | | | | | - Philippe Bertolino
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
- Université Lyon 1, Villeurbanne, France
- Centre Léon Bérard, Lyon, France
| | - Ana Hennino
- Cancer Research Center of Lyon, UMR INSERM 1052, Lyon, France
- Université Lyon 1, Villeurbanne, France
- Centre Léon Bérard, Lyon, France
| |
Collapse
|
34
|
Costanza B, Rademaker G, Tiamiou A, De Tullio P, Leenders J, Blomme A, Bellier J, Bianchi E, Turtoi A, Delvenne P, Bellahcène A, Peulen O, Castronovo V. Transforming growth factor beta-induced, an extracellular matrix interacting protein, enhances glycolysis and promotes pancreatic cancer cell migration. Int J Cancer 2019; 145:1570-1584. [PMID: 30834519 DOI: 10.1002/ijc.32247] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/02/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a deadly malignancy with no efficient therapy available up-to-date. Glycolysis is the main provider of energetic substrates to sustain cancer dissemination of PDAC. Accordingly, altering the glycolytic pathway is foreseen as a sound approach to trigger pancreatic cancer regression. Here, we show for the first time that high transforming growth factor beta-induced (TGFBI) expression in PDAC patients is associated with a poor outcome. We demonstrate that, although usually secreted by stromal cells, PDAC cells synthesize and secrete TGFBI in quantity correlated with their migratory capacity. Mechanistically, we show that TGFBI activates focal adhesion kinase signaling pathway through its binding to integrin αVβ5, leading to a significant enhancement of glycolysis and to the acquisition of an invasive phenotype. Finally, we show that TGFBI silencing significantly inhibits PDAC tumor development in a chick chorioallantoic membrane assay model. Our study highlights TGFBI as an oncogenic extracellular matrix interacting protein that bears the potential to serve as a target for new anti-PDAC therapeutic strategies.
Collapse
Affiliation(s)
- Brunella Costanza
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Gilles Rademaker
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Assia Tiamiou
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Pascal De Tullio
- Center for Interdisciplinary Research on Medicines, Metabolomics Group, University of Liège, Liège, Belgium
| | - Justine Leenders
- Center for Interdisciplinary Research on Medicines, Metabolomics Group, University of Liège, Liège, Belgium
| | - Arnaud Blomme
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Justine Bellier
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Elettra Bianchi
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Andrei Turtoi
- Tumor Microenvironment and Resistance to Treatment Laboratory, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | - Philippe Delvenne
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium.,Laboratory of Experimental Pathology, GIGA Cancer, University of Liège, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| |
Collapse
|
35
|
Human colon cancer cells highly express myoferlin to maintain a fit mitochondrial network and escape p53-driven apoptosis. Oncogenesis 2019; 8:21. [PMID: 30850580 PMCID: PMC6408501 DOI: 10.1038/s41389-019-0130-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 12/24/2022] Open
Abstract
Colon adenocarcinoma is the third most commonly diagnosed cancer and the second deadliest one. Metabolic reprogramming, described as an emerging hallmark of malignant cells, includes the predominant use of glycolysis to produce energy. Recent studies demonstrated that mitochondrial electron transport chain inhibitor reduced colon cancer tumour growth. Accumulating evidence show that myoferlin, a member of the ferlin family, is highly expressed in several cancer types, where it acts as a tumour promoter and participates in the metabolic rewiring towards oxidative metabolism. In this study, we showed that myoferlin expression in colon cancer lesions is associated with low patient survival and is higher than in non-tumoural adjacent tissue. Human colon cancer cells silenced for myoferlin exhibit a reduced oxidative phosphorylation activity associated with mitochondrial fission leading, ROS accumulation, decreased cell growth, and increased apoptosis. We observed the triggering of a DNA damage response culminating to a cell cycle arrest in wild-type p53 cells. The use of a p53 null cell line or a compound able to restore p53 activity (Prima-1) reverted the effects induced by myoferlin silencing, confirming the involvement of p53. The recent identification of a compound interacting with a myoferlin C2 domain and bearing anticancer potency identifies, together with our demonstration, this protein as a suitable new therapeutic target in colon cancer.
Collapse
|
36
|
Jiang K, Liu H, Xie D, Xiao Q. Differentially expressed genes ASPN, COL1A1, FN1, VCAN and MUC5AC are potential prognostic biomarkers for gastric cancer. Oncol Lett 2019; 17:3191-3202. [PMID: 30867749 PMCID: PMC6396260 DOI: 10.3892/ol.2019.9952] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. To the best of our knowledge, no biomarkers have been widely accepted for the early diagnosis and prognostic prediction of GC. This study aimed to identify potential novel prognostic biomarkers for GC. The dataset GSE29272, which originates from the public database Gene Expression Omnibus, was employed in the present study. The online tool GEO2R was used to calculate the differentially expressed genes (DEGs) in GSE29272 between tumour tissues and adjacent tissues. CytoHubba and MCODE plugins of Cytoscape software were used to obtain hub genes and modules of DEGs. The online tools Database for Annotation, Visualisation and Integrated Discovery and Search Tool for the Retrieval of Interacting Genes were employed to conduct Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis, and to construct protein-protein interaction networks. A total of 117 DEGs were extracted from GSE29272. In addition, 15 hub genes and seven modules were identified in the 117 DEGs. The enrichment analysis revealed that they were mainly enriched in GO biological process and cellular component domains, and the 'ECM-receptor interaction', 'focal adhesion', 'metabolism of xenobiotics by cytochrome P450' and 'drug metabolism' pathways. The hub genes asporin (ASPN), collagen type I α1 chain (COL1A1), fibronectin 1 (FN1), versican (VCAN) and mucin 5AC (MUC5AC) were demonstrated to have prognostic value for patients with GC. The ASPN and VCAN genes were significantly associated with overall survival and disease-free survival (log-rank P=0.025, 0.038, 0.0014 and 0.015, respectively). COL1A1 and FN1 were significantly associated with overall survival (log-rank P=0.013 and 0.05, respectively), and MUC5AC was significantly associated with disease-free survival (log-rank P=0.027). Results from the present study suggested that ASPN, COL1A1, FN1, VCAN and MUC5AC may represent novel prognostic biomarkers for GC.
Collapse
Affiliation(s)
- Kaiyuan Jiang
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Department of Surgery, The Central Hospital of Shaoyang, Shaoyang, Hunan 422000, P.R. China
| | - Hongmei Liu
- Department of Gastroenterology, The Central Hospital of Shaoyang, Shaoyang, Hunan 422000, P.R. China
| | - Dongyi Xie
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiang Xiao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
37
|
He T. Implementation of Proteomics in Clinical Trials. Proteomics Clin Appl 2019; 13:e1800198. [DOI: 10.1002/prca.201800198] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/15/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Tianlin He
- Mosaiques Diagnostics GmbH 30659 Hannover Germany
- Institute of Molecular Cardiovascular Research (IMCAR)University Hospital RWTH Aachen 52074 Aachen Germany
| |
Collapse
|
38
|
Li H, Zhang Z, Chen L, Sun X, Zhao Y, Guo Q, Zhu S, Li P, Min L, Zhang S. Cytoplasmic Asporin promotes cell migration by regulating TGF-β/Smad2/3 pathway and indicates a poor prognosis in colorectal cancer. Cell Death Dis 2019; 10:109. [PMID: 30728352 PMCID: PMC6365561 DOI: 10.1038/s41419-019-1376-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/29/2018] [Accepted: 01/17/2019] [Indexed: 01/10/2023]
Abstract
Previous studies revealed that Asporin (ASPN) is a potential mediator in the development of various types of cancer as a secreted stroma protein, but the function of ASPN inside the cancer cells remains largely unknown. Here, we demonstrated a higher expression level of ASPN in colorectal cancer (CRC) than matched normal tissues, and 25% (2/8) CRC showed copy number variation (CNV) gain/amplification in ASPN gene. Both higher ASPN expression levels and ASPN CNV gain/amplification indicated a worse prognosis in CRC patients. ASPN can promote proliferation, migration, and invasion of CRC cells, and inhibit apoptosis by activating Akt/Erk and TGF-β/Smad2/3 signalings. Further investigations revealed that ASPN interacts with Smad2/3, facilitates its translocation into nucleus, and up-regulates the expression of Epithelial-mesenchymal transition (EMT) related genes. Rescue assays confirmed that TGF-β signaling is essential for the effects of ASPN on promoting CRC cell migration and invasion. In conclusion, ASPN promotes the migration and invasion of CRC cells via TGF-β/Smad2/3 pathway and could serve as a potential prognostic biomarker in CRC patients.
Collapse
Affiliation(s)
- Hengcun Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China
| | - Zheng Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China
| | - Lei Chen
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China
| | - Xiujing Sun
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China
| | - Yu Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China
| | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China.
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, 100050, Beijing, P. R. China.
| |
Collapse
|
39
|
LTBP2 is secreted from lung myofibroblasts and is a potential biomarker for idiopathic pulmonary fibrosis. Clin Sci (Lond) 2018; 132:1565-1580. [PMID: 30006483 PMCID: PMC6376615 DOI: 10.1042/cs20180435] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 02/07/2023]
Abstract
Although differentiation of lung fibroblasts into α-smooth muscle actin (αSMA)-positive myofibroblasts is important in the progression of idiopathic pulmonary fibrosis (IPF), few biomarkers reflecting the fibrotic process have been discovered. We performed microarray analyses between FACS-sorted steady-state fibroblasts (lineage (CD45, TER-119, CD324, CD31, LYVE-1, and CD146)-negative and PDGFRα-positive cells) from untreated mouse lungs and myofibroblasts (lineage-negative, Sca-1-negative, and CD49e-positive cells) from bleomycin-treated mouse lungs. Amongst several genes up-regulated in the FACS-sorted myofibroblasts, we focussed on Ltbp2, the gene encoding latent transforming growth factor-β (TGF-β) binding protein-2 (LTBP2), because of the signal similarity to Acta2, which encodes αSMA, in the clustering analysis. The up-regulation was reproduced at the mRNA and protein levels in human lung myofibroblasts induced by TGF-β1. LTBP2 staining in IPF lungs was broadly positive in the fibrotic interstitium, mainly as an extracellular matrix (ECM) protein; however, some of the αSMA-positive myofibroblasts were also stained. Serum LTBP2 concentrations, evaluated using ELISA, in IPF patients were significantly higher than those in healthy volunteers (mean: 21.4 compared with 12.4 ng/ml) and showed a negative correlation with % predicted forced vital capacity (r = -0.369). The Cox hazard model demonstrated that serum LTBP2 could predict the prognosis of IPF patients (hazard ratio for death by respiratory events: 1.040, 95% confidence interval: 1.026-1.054), which was validated using the bootstrap method with 1000-fold replication. LTBP2 is a potential prognostic blood biomarker that may reflect the level of differentiation of lung fibroblasts into myofibroblasts in IPF.
Collapse
|
40
|
Liu X, Wu J, Zhang D, Bing Z, Tian J, Ni M, Zhang X, Meng Z, Liu S. Identification of Potential Key Genes Associated With the Pathogenesis and Prognosis of Gastric Cancer Based on Integrated Bioinformatics Analysis. Front Genet 2018; 9:265. [PMID: 30065754 PMCID: PMC6056647 DOI: 10.3389/fgene.2018.00265] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
Background and Objective: Despite striking advances in multimodality management, gastric cancer (GC) remains the third cause of cancer mortality globally and identifying novel diagnostic and prognostic biomarkers is urgently demanded. The study aimed to identify potential key genes associated with the pathogenesis and prognosis of GC. Methods: Differentially expressed genes between GC and normal gastric tissue samples were screened by an integrated analysis of multiple gene expression profile datasets. Key genes related to the pathogenesis and prognosis of GC were identified by employing protein–protein interaction network and Cox proportional hazards model analyses. Results: We identified nine hub genes (TOP2A, COL1A1, COL1A2, NDC80, COL3A1, CDKN3, CEP55, TPX2, and TIMP1) which might be tightly correlated with the pathogenesis of GC. A prognostic gene signature consisted of CST2, AADAC, SERPINE1, COL8A1, SMPD3, ASPN, ITGBL1, MAP7D2, and PLEKHS1 was constructed with a good performance in predicting overall survivals. Conclusion: The findings of this study would provide some directive significance for further investigating the diagnostic and prognostic biomarkers to facilitate the molecular targeting therapy of GC.
Collapse
Affiliation(s)
- Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhitong Bing
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
41
|
Myoferlin controls mitochondrial structure and activity in pancreatic ductal adenocarcinoma, and affects tumor aggressiveness. Oncogene 2018; 37:4398-4412. [PMID: 29720728 PMCID: PMC6085282 DOI: 10.1038/s41388-018-0287-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/08/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death. Therapeutic options remain very limited and are based on classical chemotherapies. Energy metabolism reprogramming appears as an emerging hallmark of cancer and is considered a therapeutic target with considerable potential. Myoferlin, a ferlin family member protein overexpressed in PDAC, is involved in plasma membrane biology and has a tumor-promoting function. In the continuity of our previous studies, we investigated the role of myoferlin in the context of energy metabolism in PDAC. We used selected PDAC tumor samples and PDAC cell lines together with small interfering RNA technology to study the role of myoferlin in energetic metabolism. In PDAC patients, we showed that myoferlin expression is negatively correlated with overall survival and with glycolytic activity evaluated by 18F-deoxyglucose positron emission tomography. We found out that myoferlin is more abundant in lipogenic pancreatic cancer cell lines and is required to maintain a branched mitochondrial structure and a high oxidative phosphorylation activity. The observed mitochondrial fission induced by myoferlin depletion led to a decrease of cell proliferation, ATP production, and autophagy induction, thus indicating an essential role of myoferlin for PDAC cell fitness. The metabolic phenotype switch generated by myoferlin silencing could open up a new perspective in the development of therapeutic strategies, especially in the context of energy metabolism.
Collapse
|
42
|
Wang J, Liang WJ, Min GT, Wang HP, Chen W, Yao N. LTBP2 promotes the migration and invasion of gastric cancer cells and predicts poor outcome of patients with gastric cancer. Int J Oncol 2018; 52:1886-1898. [PMID: 29620158 PMCID: PMC5919710 DOI: 10.3892/ijo.2018.4356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/08/2018] [Indexed: 12/20/2022] Open
Abstract
Latent transforming growth factor-β-binding protein (LTBP)2 is a member of the fibrillin/LTBP superfamily of extracellular matrix proteins, and has been demonstrated to exhibit tumor-promoting and tumor-suppressive functions in different types of cancer. However, the function of LTBP2 in gastric cancer (GC) remains unknown. The aim of the present study was to investigate the expression and molecular function of LTBP2 in GC, and to evaluate its prognostic value for patients with GC. The results revealed that the expression of LTBP2 was upregulated in GC tissues and cell lines. Increased LTBP2 expression was associated with poor overall survival in patients with early-stage [tumor-node-metastasis (TNM) I/II] and late-stage (TNM III/IV) GC. Furthermore, silencing of LTBP2 effectively suppressed the proliferation, migration, invasion and epithelial-mesenchymal transition in GC cells. These results suggested that LTBP2 may be considered as a potential therapeutic target and a promising prognostic biomarker for human GC.
Collapse
Affiliation(s)
- Jun Wang
- Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wen-Jia Liang
- Department of Ultrasound, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Guang-Tao Min
- Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hong-Peng Wang
- Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wei Chen
- Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Nan Yao
- Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
43
|
Wu H, Jing X, Cheng X, He Y, Hu L, Wu H, Ye F, Zhao R. Asporin enhances colorectal cancer metastasis through activating the EGFR/src/cortactin signaling pathway. Oncotarget 2018; 7:73402-73413. [PMID: 27705916 PMCID: PMC5341987 DOI: 10.18632/oncotarget.12336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/25/2016] [Indexed: 02/05/2023] Open
Abstract
Asporin has been implicated as an oncogene in various types of human cancers; however, the roles of asporin in the development and progression of colorectal cancer (CRC) have not yet been determined. With clinical samples, we found that asporin was highly expressed in CRC tissues compared to adjacent normal tissues and the asporin expression levels were significantly associated with lymph node metastasis status and TNM stage of the patients. Through knockdown of asporin in CRC cell lines RKO and SW620 or overexpression of asporin in cell lines HT-29 and LoVo, we found that asporin could enhance wound healing, migration and invasion abilities of the CRC cells. Further more, with the human umbilical vein endothelial cells (HUVECs) tube formation assays and the xenograft model, we found that asporin promoted the tumor growth through stimulating the VEGF signaling pathway. The portal vein injection models suggested that asporin overexpression stimulated the liver metastasis of HT29 cell line, while asporin knockdown inhibited the liver metastasis of RKO cell line. In addition, asporin was found to augment the phosphorylation of EGFR/src/cortactin signaling pathway, which might be contributed to the biological functions of asporin in CRC metastasis. These results suggested that asporin promoted the tumor growth and metastasis of CRC, and it could be a potential therapeutic target for CRC patients in future.
Collapse
Affiliation(s)
- Huo Wu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqian Jing
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Cheng
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yonggang He
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Hu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haoxuan Wu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng Ye
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ren Zhao
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Myoferlin is a novel exosomal protein and functional regulator of cancer-derived exosomes. Oncotarget 2018; 7:83669-83683. [PMID: 27845903 PMCID: PMC5347796 DOI: 10.18632/oncotarget.13276] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/06/2016] [Indexed: 01/03/2023] Open
Abstract
Exosomes are communication mediators participating in the intercellular exchange of proteins, metabolites and nucleic acids. Recent studies have demonstrated that exosomes are characterized by a unique proteomic composition that is distinct from the cellular one. The mechanisms responsible for determining the proteome content of the exosomes remain however obscure. In the current study we employ ultrastructural approach to validate a novel exosomal protein myoferlin. This is a multiple C2-domain containing protein, known for its conserved physiological function in endocytosis and vesicle fusion biology. Emerging studies demonstrate that myoferlin is frequently overexpressed in cancer, where it promotes cancer cell migration and invasion. Our data expand these findings by showing that myoferlin is a general component of cancer cell derived exosomes from different breast and pancreatic cancer cell lines. Using proteomic analysis, we demonstrate for the first time that myoferlin depletion in cancer cells leads to a significantly modulated exosomal protein load. Such myoferlin-depleted exosomes were also functionally deficient as shown by their reduced capacity to transfer nucleic acids to human endothelial cells (HUVEC). Beyond this, myoferlin-depleted cancer exosomes also had a significantly reduced ability to induce migration and proliferation of HUVEC. The present study highlights myoferlin as a new functional player in exosome biology, calling for novel strategies to target this emerging oncogene in human cancer.
Collapse
|
45
|
Innovative methods for biomarker discovery in the evaluation and development of cancer precision therapies. Cancer Metastasis Rev 2018; 37:125-145. [PMID: 29392535 DOI: 10.1007/s10555-017-9710-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The discovery of biomarkers able to detect cancer at an early stage, to evaluate its aggressiveness, and to predict the response to therapy remains a major challenge in clinical oncology and precision medicine. In this review, we summarize recent achievements in the discovery and development of cancer biomarkers. We also highlight emerging innovative methods in biomarker discovery and provide insights into the challenges faced in their evaluation and validation.
Collapse
|
46
|
Han L, Tang MM, Xu X, Jiang B, Huang J, Feng X, Qiang J. LTBP2 is a prognostic marker in head and neck squamous cell carcinoma. Oncotarget 2018; 7:45052-45059. [PMID: 27281608 PMCID: PMC5216705 DOI: 10.18632/oncotarget.8855] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/02/2016] [Indexed: 12/15/2022] Open
Abstract
Latent transforming growth factor (TGF)-beta binding protein 2 (LTBP2) belongs to the fibrillin/LTBP extracellular matrix glycoprotein superfamily. It plays vital roles in tumorigenesis through regulating TGFβ activity, elastogenesis and maintenance of the extracellular matrix (ECM) structure. In this study, we determined the expression levels of LTBP2 mRNA and protein in head and neck squamous cell carcinoma (HNSCC) tissues and adjacent normal tissues by quantitative reverse transcription PCR (qRT-PCR) and tissue microarray immunohistochemistry analysis (TMA-IHC) respectively. LTBP2 protein levels in cancer tissues were correlated with HNSCC patients' clinical characteristics and overall survival. Both LTBP2 mRNA and protein levels were significantly higher in HNSCC tissues than in adjacent normal tissues. High LTBP2 protein level was associated with lymph node metastasis and higher pTNM stages. High LTBP2 protein level is an independent prognostic marker in HNSCC. Our data suggest that LTBP2 acts as an oncogene in HNSCC development and progression. Detection of LTBP2 expression could be a useful prognosis marker and targeting LTBP2 may represent a novel strategy for cancer treatment through regulating activities of TGFβ.
Collapse
Affiliation(s)
- Liang Han
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Ming Ming Tang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Xinjiang Xu
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Bin Jiang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Jianfei Huang
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianfeng Qiang
- Department of Graduate, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
47
|
Simkova D, Kharaishvili G, Korinkova G, Ozdian T, Suchánková-Kleplová T, Soukup T, Krupka M, Galandakova A, Dzubak P, Janikova M, Navratil J, Kahounova Z, Soucek K, Bouchal J. The dual role of asporin in breast cancer progression. Oncotarget 2018; 7:52045-52060. [PMID: 27409832 PMCID: PMC5239534 DOI: 10.18632/oncotarget.10471] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 06/29/2016] [Indexed: 12/18/2022] Open
Abstract
Asporin has been reported as a tumor suppressor in breast cancer, while asporin-activated invasion has been described in gastric cancer. According to our in silico search, high asporin expresion associates with significantly better relapse free survival (RFS) in patients with low-grade tumors but RFS is significantly worse in patients with grade 3 tumors. In line with other studies, we have confirmed asporin expression by RNA scope in situ hybridization in cancer associated fibroblasts. We have also found asporin expression in the Hs578T breast cancer cell line which we confirmed by quantitative RT-PCR and western blotting. From multiple testing, we found that asporin can be downregulated by bone morphogenetic protein 4 while upregulation may be facilited by serum-free cultivation or by three dimensional growth in stiff Alvetex scaffold. Downregulation by shRNA inhibited invasion of Hs578T as well as of CAFs and T47D cells. Invasion of asporin-negative MDA-MB-231 and BT549 breast cancer cells through collagen type I was enhanced by recombinant asporin. Besides other investigations, large scale analysis of aspartic acid repeat polymorphism will be needed for clarification of the asporin dual role in progression of breast cancer.
Collapse
Affiliation(s)
- Dana Simkova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Gvantsa Kharaishvili
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Gabriela Korinkova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Tomas Ozdian
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Tereza Suchánková-Kleplová
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Tomas Soukup
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Michal Krupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Adela Galandakova
- Department of Medical Chemistry and Biochemistry, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Petr Dzubak
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Maria Janikova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jiri Navratil
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Zuzana Kahounova
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Karel Soucek
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
48
|
Hu D, Ansari D, Pawłowski K, Zhou Q, Sasor A, Welinder C, Kristl T, Bauden M, Rezeli M, Jiang Y, Marko-Varga G, Andersson R. Proteomic analyses identify prognostic biomarkers for pancreatic ductal adenocarcinoma. Oncotarget 2018. [PMID: 29515771 PMCID: PMC5839402 DOI: 10.18632/oncotarget.23929] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy. Here we show that shotgun and targeted protein sequencing can be used to identify potential prognostic biomarkers in formalin-fixed paraffin-embedded specimens from 9 patients with PDAC with “short” survival (<12 months) and 10 patients with “long” survival (>45 months) undergoing surgical resection. A total of 24 and 147 proteins were significantly upregulated [fold change ≥2 or ≤0.5 and P<0.05; or different detection frequencies (≥5 samples)] in patients with “short” survival (including GLUT1) and “long” survival (including C9orf64, FAM96A, CDH1 and CDH17), respectively. STRING analysis of these proteins indicated a tight protein-protein interaction network centered on TP53. Ingenuity pathway analysis linked proteins representing “activated stroma factors” and “basal tumor factors” to poor prognosis of PDAC. It also highlighted TCF1 and CTNNB1 as possible upstream regulators. Further parallel reaction monitoring verified that seven proteins were upregulated in patients with “short” survival (MMP9, CLIC3, MMP8, PRTN3, P4HA2, THBS1 and FN1), while 18 proteins were upregulated in patients with “long” survival, including EPCAM, LGALS4, VIL1, CLCA1 and TPPP3. Thus, we verified 25 protein biomarker candidates for PDAC prognosis at the tissue level. Furthermore, an activated stroma status and protein-protein interactions with TP53 might be linked to poor prognosis of PDAC.
Collapse
Affiliation(s)
- Dingyuan Hu
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund (Surgery), Lund, Sweden.,Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daniel Ansari
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund (Surgery), Lund, Sweden
| | - Krzysztof Pawłowski
- Department of Experimental Design and Bioinformatics, Warsaw University of Life Sciences, Warsaw, Poland.,Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Qimin Zhou
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund (Surgery), Lund, Sweden
| | - Agata Sasor
- Department of Pathology, Skåne University Hospital, Lund, Sweden
| | - Charlotte Welinder
- Lund University, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund, Sweden
| | - Theresa Kristl
- Lund University, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund, Sweden
| | - Monika Bauden
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund (Surgery), Lund, Sweden
| | - Melinda Rezeli
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Yi Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - György Marko-Varga
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Roland Andersson
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund (Surgery), Lund, Sweden
| |
Collapse
|
49
|
Park J, Choi Y, Namkung J, Yi SG, Kim H, Yu J, Kim Y, Kwon MS, Kwon W, Oh DY, Kim SW, Jeong SY, Han W, Lee KE, Heo JS, Park JO, Park JK, Kim SC, Kang CM, Lee WJ, Lee S, Han S, Park T, Jang JY, Kim Y. Diagnostic performance enhancement of pancreatic cancer using proteomic multimarker panel. Oncotarget 2017; 8:93117-93130. [PMID: 29190982 PMCID: PMC5696248 DOI: 10.18632/oncotarget.21861] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022] Open
Abstract
Due to its high mortality rate and asymptomatic nature, early detection rates of pancreatic ductal adenocarcinoma (PDAC) remain poor. We measured 1000 biomarker candidates in 134 clinical plasma samples by multiple reaction monitoring-mass spectrometry (MRM-MS). Differentially abundant proteins were assembled into a multimarker panel from a training set (n=684) and validated in independent set (n=318) from five centers. The level of panel proteins was also confirmed by immunoassays. The panel including leucine-rich alpha-2 glycoprotein (LRG1), transthyretin (TTR), and CA19-9 had a sensitivity of 82.5% and a specificity of 92.1%. The triple-marker panel exceeded the diagnostic performance of CA19-9 by more than 10% (AUCCA19-9 = 0.826, AUCpanel= 0.931, P < 0.01) in all PDAC samples and by more than 30% (AUCCA19-9 = 0.520, AUCpanel = 0.830, P < 0.001) in patients with normal range of CA19-9 (<37U/mL). Further, it differentiated PDAC from benign pancreatic disease (AUCCA19-9 = 0.812, AUCpanel = 0.892, P < 0.01) and other cancers (AUCCA19-9 = 0.796, AUCpanel = 0.899, P < 0.001). Overall, the multimarker panel that we have developed and validated in large-scale samples by MRM-MS and immunoassay has clinical applicability in the early detection of PDAC.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Yonghwan Choi
- Immunodiagnostics R&D Team, IVD Business Unit 5, SK Telecom, Seoul, Korea
| | - Junghyun Namkung
- Immunodiagnostics R&D Team, IVD Business Unit 5, SK Telecom, Seoul, Korea
| | - Sung Gon Yi
- Immunodiagnostics R&D Team, IVD Business Unit 5, SK Telecom, Seoul, Korea
| | - Hyunsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Jiyoung Yu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Yongkang Kim
- Department of Statistics, Seoul National University, Seoul, Korea
| | - Min-Seok Kwon
- Department of Statistics, Seoul National University, Seoul, Korea
| | - Wooil Kwon
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Do-Youn Oh
- Department of Internal Medicine and Cancer Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Sun-Whe Kim
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Yong Jeong
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Wonshik Han
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu Eun Lee
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Seok Heo
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Oh Park
- Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joo Kyung Park
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Song Cheol Kim
- Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Chang Moo Kang
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Woo Jin Lee
- Center for Liver Cancer, National Cancer Center, Seoul, Korea
| | - Seungyeoun Lee
- Department of Mathematics and Statistics, Sejong University, Seoul, Korea
| | - Sangjo Han
- Immunodiagnostics R&D Team, IVD Business Unit 5, SK Telecom, Seoul, Korea
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
50
|
A muscle-specific protein 'myoferlin' modulates IL-6/STAT3 signaling by chaperoning activated STAT3 to nucleus. Oncogene 2017; 36:6374-6382. [PMID: 28745314 PMCID: PMC5690845 DOI: 10.1038/onc.2017.245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/08/2017] [Accepted: 06/12/2017] [Indexed: 01/03/2023]
Abstract
Myoferlin, a member of ferlin family of proteins, was first discovered as a candidate gene for muscular dystrophy and cardiomyopathy. Recently, myoferlin was shown to be also expressed in endothelial and cancer cells where it was shown to modulate vascular endothelial growth factor (VEGFR)-2 and epidermal growth factor receptor (EGFR) signaling by enhancing their stability and recycling. Based on these reports, we hypothesized that myoferlin might be regulating IL-6 signaling by modulating IL-6R stabilization and recycling. However, in our immunoprecipitation (IP) experiments, we did not observe myoferlin binding with IL-6R. Instead, we made a novel discovery that in resting cells myoferlin was bound to EHD2 protein and when cells were treated with IL-6, myoferlin dissociated from EHD2 and binds to activated STAT3. Interestingly, myoferlin depletion did not affect STAT3 phosphorylation, but completely blocked STAT3 translocation to nucleus. In addition, inhibition of STAT3 phosphorylation by phosphorylation-defective STAT3 mutants or JAK inhibitor blocked STAT3 binding to myoferlin and nuclear translocation. Myoferlin knockdown significantly decreased IL-6-mediated tumor cell migration, tumorsphere formation and ALDH-positive cancer stem cell population, in vitro. Furthermore, myoferlin knockdown significantly decreased IL-6-meditated tumor growth and tumor metastasis. Based on these results, we have proposed a novel model for the role of myoferlin in chaperoning phosphorylated STAT3 to the nucleus.
Collapse
|