1
|
Dawkar VV, Barage SH, Barbole RS, Fatangare A, Grimalt S, Haldar S, Heckel DG, Gupta VS, Thulasiram HV, Svatoš A, Giri AP. Azadirachtin-A from Azadirachta indica Impacts Multiple Biological Targets in Cotton Bollworm Helicoverpa armigera. ACS OMEGA 2019; 4:9531-9541. [PMID: 31460043 PMCID: PMC6648242 DOI: 10.1021/acsomega.8b03479] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/11/2019] [Indexed: 05/11/2023]
Abstract
Azadirachtin-A (AzaA) from the Indian neem tree (Azadirachta indica) has insecticidal properties; however, its molecular mechanism remains elusive. The "targeted and nontargeted proteomic profiling", metabolomics, matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) imaging, gene expression, and in silico analysis provided clues about its action on Helicoverpa armigera. Fourth instar H. armigera larvae fed on AzaA-based diet (AzaD) suffered from significant mortality, growth retardation, reduced larval mass, complications in molting, and prolonged development. Furthermore, death of AzaD-fed larvae was observed with various phenotypes like bursting, blackening, and half-molting. Liquid chromatography-mass spectrometry (LC-MS) data showed limited catabolic processing of ingested AzaA and dramatic alternations of primary metabolism in H. armigera. MALDI-TOF imaging indicated the presence of AzaA in midgut of H. armigera. In the gut, out of 79 proteins identified, 34 were upregulated, which were related to digestion, immunity, energy production, and apoptosis mechanism. On the other hand, 45 proteins were downregulated, including those from carbohydrate metabolism, lipid metabolism, and energy transfer. In the hemolymph, 21 upregulated proteins were reported to be involved in immunity, RNA processing, and mRNA-directed protein synthesis, while 7 downregulated proteins were implicated in energy transfer, hydrolysis, lipid metabolism, defense mechanisms, and amino acid storage-related functions. Subsequently, six target proteins were identified using labeled AzaA that interacted with whole insect proteins. In silico analysis suggests that AzaA could be efficiently accommodated in the hydrophobic pocket of juvenile hormone esterase and showed strong interaction with active site residues, indicating plausible targets of AzaA in H. armigera. Quantitative polymerase chain reaction analysis suggested differential gene expression patterns and partly corroborated the proteomic results. Overall, data suggest that AzaA generally targets more than one protein in H. armigera and hence could be a potent biopesticide.
Collapse
Affiliation(s)
- Vishal V. Dawkar
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Research Group, Mass Spectrometry/Proteomics and Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- E-mail: . Tel: +91 (0)20 25902710. Fax: +91 (0)20 25902648
| | - Sagar H. Barage
- Bioinformatics
Centre, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, Maharashtra, India
- Amity
Institute of Biotechnology (AIB), Amity
University, Mumbai−Pune
Expressway, Bhatan, Post-Somathne, Panvel, Mumbai 410206, Maharashtra, India
| | - Ranjit S. Barbole
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Amol Fatangare
- Research Group, Mass Spectrometry/Proteomics and Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Susana Grimalt
- Research Group, Mass Spectrometry/Proteomics and Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Saikat Haldar
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - David G. Heckel
- Research Group, Mass Spectrometry/Proteomics and Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Vidya S. Gupta
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Hirekodathakallu V. Thulasiram
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Aleš Svatoš
- Research Group, Mass Spectrometry/Proteomics and Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ashok P. Giri
- Plant Molecular Biology Unit, Division of Biochemical
Sciences and Division of Organic
Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
2
|
Rasoolizadeh A, Goulet MC, Guay JF, Cloutier C, Michaud D. Population-associated heterogeneity of the digestive Cys protease complement in Colorado potato beetle, Leptinotarsa decemlineata. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:125-133. [PMID: 28267460 DOI: 10.1016/j.jinsphys.2017.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/19/2017] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
Herbivorous insects use complex protease complements to process plant proteins, useful to adjust their digestive functions to the plant diet and to elude the antidigestive effects of dietary protease inhibitors. We here assessed whether basic profiles and diet-related adjustments of the midgut protease complement may vary among populations of the insect herbivore Colorado potato beetle (Leptinotarsa decemlineata). Two laboratory colonies of this insect were used as models, derived from insect samples collected in potato fields ∼1200km distant from each other in North America. Synchronized 4th-instar larvae reared on potato were kept on this plant, or switched to tomato or eggplant, to compare their midgut cathepsin activities and content of intestain Cys proteases under different diet regimes. Cathepsin D activity, cathepsin L activity, cathepsin B activity and total intestain content shortly after larval molting on potato leaves were about two times lower in one population compared to the other. By comparison, cathepsin D activity, cathepsin B activity, total intestain content and relative abundance of the most prominent intestain families were similar in the two populations after three days regardless of the plant diet, unlike cathepsin L activity and less prominent intestain families showing population-associated variability. Variation in Cys protease profiles translated into the differential efficiency of a Cys protease inhibitor, tomato cystatin SlCYS8, to inhibit cathepsin L activity in midgut extracts of the two insect groups. Despite quantitative differences, SlCYS8 single variants engineered to strongly inhibit Cys proteases showed improved potency against cathepsin L activity of either population. These data suggest the feasibility of designing cystatins to control L. decemlineata that are effective against different populations of this insect. They underline, on the other hand, the practical relevance of considering natural variability of the protease complement among L. decemlineata target populations, eventually determinant in the success or failure of cystatin-based control strategies on a large-scale basis.
Collapse
Affiliation(s)
- Asieh Rasoolizadeh
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Marie-Claire Goulet
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Conrad Cloutier
- Département de biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Dominique Michaud
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
3
|
Tanpure RS, Barbole RS, Dawkar VV, Waichal YA, Joshi RS, Giri AP, Gupta VS. Improved tolerance against Helicoverpa armigera in transgenic tomato over-expressing multi-domain proteinase inhibitor gene from Capsicum annuum. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:597-604. [PMID: 28878498 PMCID: PMC5567717 DOI: 10.1007/s12298-017-0456-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/27/2017] [Accepted: 06/01/2017] [Indexed: 05/12/2023]
Abstract
Plant proteinase inhibitors (PIs) are plant defense proteins and considered as potential candidates for engineering plant resistances against herbivores. Capsicum annuum proteinase inhibitor (CanPI7) is a multi-domain potato type II inhibitor (Pin-II) containing four inhibitory repeat domains (IRD), which target major classes of digestive enzymes in the gut of Helicoverpa armigera larvae. Stable integration and expression of the transgene in T1 transgenic generation, were confirmed by established molecular techniques. Protein extract of transgenic tomato lines showed increased inhibitory activity against H. armigera gut proteinases, supporting those domains of CanPI7 protein to be effective and active. When T1 generation plants were analyzed, they exhibited antibiosis effect against first instar larvae of H. armigera. Further, larvae fed on transgenic tomato leaves showed delayed growth relative to larvae fed on control plants, but did not change mortality rates significantly. Thus, better crop protection can be achieved in transgenic tomato by overexpression of multi-domain proteinase inhibitor CanPI7 gene against H. armigera larvae.
Collapse
Affiliation(s)
- Rahul S. Tanpure
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, MS 411008 India
| | - Ranjit S. Barbole
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, MS 411008 India
| | - Vishal V. Dawkar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, MS 411008 India
| | - Yashashree A. Waichal
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, MS 411008 India
| | - Rakesh S. Joshi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, MS 411007 India
| | - Ashok P. Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, MS 411008 India
| | - Vidya S. Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, MS 411008 India
| |
Collapse
|
4
|
Chikate YR, Dawkar VV, Barbole RS, Tilak PV, Gupta VS, Giri AP. RNAi of selected candidate genes interrupts growth and development of Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 133:44-51. [PMID: 27742360 DOI: 10.1016/j.pestbp.2016.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 06/06/2023]
Abstract
Helicoverpa armigera is one of the major crop pests and is less amenable to current pest control approaches. RNA interference (RNAi) is emerging as a potent arsenal for the insect pest control over current methods. Here, we examined the effect on growth and development in H. armigera by targeting various enzymes/proteins such as proteases like trypsins (HaTry2, 3, 4 and 6), chymotrypsin (HaChy4) and cysteine protease like cathepsin (HaCATHL); glutathione S-transferases (HaGST1a, 6 and 8); esterases (HaAce4, HaJHE); catalase (HaCAT); super-oxide-dismutase (HaCu/ZnSOD); fatty acid binding protein (HaFabp) and chitin deacetylase (HaCda5b) through dsRNA approach. Significant downregulation of cognate mRNA expression and reduced activity of trypsin and GST-like enzyme were evident upon feeding candidate dsRNAs to the larvae. Among these, the highest mortality was observed in HaAce4 dsRNA fed larvae followed by HaJHE; HaCAT; HaCuZnSOD; HaFabp and HaTry3 whereas remaining ones showed relatively lower mortality. Furthermore, the dsRNA fed larvae showed significant reduction in the larval mass and abnormalities at the different stages of H. armigera development compared to their control diets. For example, malformed larvae, pupae and moth at a dose of 60μg/day were evident in high number of individual insects fed on dsRNA containing diets. Moreover, the growth and development of insects and moths were retarded in dsRNA fed larvae. These findings might provide potential new candidates for designing effective dsRNA as pesticide in crop protection.
Collapse
Affiliation(s)
- Yojana R Chikate
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, (MS), India
| | - Vishal V Dawkar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, (MS), India
| | - Ranjit S Barbole
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, (MS), India
| | - Priyadarshini V Tilak
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, (MS), India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, (MS), India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, (MS), India.
| |
Collapse
|
5
|
Chikate YR, Dawkar VV, Barbole RS, Tilak PV, Gupta VS, Giri AP. Data of in vitro synthesized dsRNAs on growth and development of Helicoverpa armigera. Data Brief 2016; 7:1602-5. [PMID: 27222861 PMCID: PMC4865661 DOI: 10.1016/j.dib.2016.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/02/2016] [Accepted: 04/11/2016] [Indexed: 11/28/2022] Open
Abstract
The data presented in this article is related to the research article “RNAi of selected candidate genes interrupts growth and development of Helicoverpa armigera” (Chikate et al., 2016) [1]. RNA interference (RNAi) is emerging as a potent insect pest control strategy over current methods and their resistance by pest. In this study we tested 15 different in vitro synthesized dsRNAs for gene silencing in Helicoverpa armigera. These dsRNAs were specific against H. armigera enzymes/proteins such as proteases like trypsins (HaTry2, 3, 4 and 6), chymotrypsin (HaChy4) and cysteine proteases such as cathepsin (HaCATHL); glutathione S-transferases (HaGST1a, 6 and 8); esterases (HaAce4, HaJHE); catalase (HaCAT); super-oxide-dismutase (HaCu/ZnSOD); fatty acid binding protein (HaFabp) and chitin deacetylase (HaCda5b). These dsRNAs were fed to second instar larvae at an optimized dose (60 µg/day) for 3 days separately. Effects of dsRNA feeding were observed in terms of larval mass gain, percentage mortality and phenotypic abnormalities in later developmental stages of H. armigera. These findings might provide potential new candidates for designing sequence-specific dsRNA as pesticide in crop protection.
Collapse
Affiliation(s)
- Yojana R Chikate
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Vishal V Dawkar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Ranjit S Barbole
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Priyadarshini V Tilak
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
6
|
Dawkar VV, Chikate YR, More TH, Gupta VS, Giri AP. The expression of proteins involved in digestion and detoxification are regulated in Helicoverpa armigera to cope up with chlorpyrifos insecticide. INSECT SCIENCE 2016; 23:68-77. [PMID: 25284010 DOI: 10.1111/1744-7917.12177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2014] [Indexed: 06/03/2023]
Abstract
Helicoverpa armigera is a key pest in many vital crops, which is mainly controlled by chemical strategies. To manage this pest is becoming challenging due to its ability and evolution of resistance against insecticides. Further, its subsequent spread on nonhost plant is remarkable in recent times. Hence, decoding resistance mechanism against phytochemicals and synthetic insecticides is a major challenge. The present work describes that the digestion, defense and immunity related enzymes are associated with chlorpyrifos resistance in H. armigera. Proteomic analysis of H. armigera gut tissue upon feeding on chlorpyrifos containing diet (CH) and artificial diet (AD) using nano-liquid chromatography-mass spectrometry identified upregulated 23-proteins in CH fed larvae. Database searches combined with gene ontology analysis revealed that the identified gut proteins engrossed in digestion, proteins crucial for immunity, adaptive responses to stress, and detoxification. Biochemical and quantitative real-time polymerase chain reaction analysis of candidate proteins indicated that insects were struggling to get nutrients and energy in presence of CH, while at the same time endeavoring to metabolize chlorpyrifos. Moreover, we proposed a potential processing pathway of chlorpyrifos in H. armigera gut by examining the metabolites using gas chromatography-mass spectrometry. H. armigera exhibit a range of intriguing behavioral, morphological adaptations and resistance to insecticides by regulating expression of proteins involved in digestion and detoxification mechanisms to cope up with chlorpyrifos. In these contexts, as gut is a rich repository of biological information; profound analysis of gut tissues can give clues of detoxification and resistance mechanism in insects.
Collapse
Affiliation(s)
- Vishal V Dawkar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 (MS), India
| | - Yojana R Chikate
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 (MS), India
| | - Tushar H More
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 (MS), India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 (MS), India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 (MS), India
| |
Collapse
|
7
|
Dawkar VV, Dholakia BB, Gupta VS. Agriproteomics of Bread Wheat: Comparative Proteomics and Network Analyses of Grain Size Variation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:372-82. [PMID: 26134253 DOI: 10.1089/omi.2015.0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Agriproteomics signifies the merging of agriculture research and proteomics systems science and is impacting plant research and societal development. Wheat is a frequently consumed foodstuff, has highly variable grain size that in effect contributes to wheat grain yield and the end-product quality. Very limited information is available on molecular basis of grain size due to complex multifactorial nature of this trait. Here, using liquid chromatography-mass spectrometry, we investigated the proteomics profiles from grains of wheat genotypes, Rye selection 111 (RS111) and Chinese spring (CS), which differ in their size. Significant differences in protein expression were found, including 33 proteins uniquely present in RS111 and 32 only in CS, while 54 proteins were expressed from both genotypes. Among differentially expressed proteins, 22 were upregulated, while 21 proteins were downregulated in RS111 compared to CS. Functional classification revealed their role in energy metabolism, seed storage, stress tolerance and transcription. Further, protein interactive network analysis was performed to predict the targets of identified proteins. Significantly different interactions patterns were observed between these genotypes with detection of proteins such as Cyp450, Sus2, and WRKY that could potentially affect seed size. The present study illustrates the potentials of agriproteomics as a veritable new frontier of plant omics research.
Collapse
Affiliation(s)
- Vishal V Dawkar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune, India
| | - Bhushan B Dholakia
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune, India
| |
Collapse
|
8
|
Kuwar SS, Pauchet Y, Vogel H, Heckel DG. Adaptive regulation of digestive serine proteases in the larval midgut of Helicoverpa armigera in response to a plant protease inhibitor. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 59:18-29. [PMID: 25662099 DOI: 10.1016/j.ibmb.2015.01.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 05/13/2023]
Abstract
Protease inhibitors (PIs) are direct defenses induced by plants in response to herbivory. PIs reduce herbivore digestive efficiency by inhibiting insects' digestive proteases; in turn insects can adapt to PIs by generally increasing protease levels and/or by inducing the expression of PI-insensitive proteases. Helicoverpa armigera, a highly polyphagous lepidopteran insect pest, is known for its ability to adapt to PIs. To advance our molecular and functional understanding of the regulation of digestive proteases, we performed a comprehensive gene expression experiment of H. armigera exposed to soybean Kunitz trypsin inhibitor (SKTI) using a custom-designed microarray. We observed poor larval growth on the SKTI diet until 24 h, however after 48 h larvae attained comparable weight to that of control diet. Although initially the expression of several trypsins and chymotrypsins increased, eventually the expression of some trypsins decreased, while the number of chymotrypsins and their expression increased in response to SKTI. Some of the diverged serine proteases were also differentially expressed. The expression of serine proteases observed using microarrays were further validated by qRT-PCR at different time points (12, 24, 48, 72 and 96 h) after the start of SKTI ingestion. There were also large changes in transcriptional patterns over time in the control diet. Carbohydrate metabolism and immune defense genes were affected in response to SKTI ingestion. Enzyme assays revealed reduced trypsin-specific activity and increased chymotrypsin-specific activity in response to SKTI. The differential regulation of trypsins and chymotrypsins at the transcript and protein levels accompanying a rebound in growth rate indicates that induction of SKTI-insensitive proteases is an effective strategy of H. armigera in coping with this protease inhibitor in its diet.
Collapse
Affiliation(s)
- Suyog S Kuwar
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany.
| |
Collapse
|
9
|
Mahajan NS, Dewangan V, Lomate PR, Joshi RS, Mishra M, Gupta VS, Giri AP. Structural features of diverse Pin-II proteinase inhibitor genes from Capsicum annuum. PLANTA 2015; 241:319-331. [PMID: 25269396 DOI: 10.1007/s00425-014-2177-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
The proteinase inhibitor (PI) genes from Capsicum annuum were characterized with respect to their UTR, introns and promoter elements. The occurrence of PIs with circularly permuted domain organization was evident. Several potato inhibitor II (Pin-II) type proteinase inhibitor (PI) genes have been analyzed from Capsicum annuum (L.) with respect to their differential expression during plant defense response. However, complete gene characterization of any of these C. annuum PIs (CanPIs) has not been carried out so far. Complete gene architectures of a previously identified CanPI-7 (Beads-on-string, Type A) and a member of newly isolated Bracelet type B, CanPI-69 are reported in this study. The 5' UTR (untranslated region), 3'UTR, and intronic sequences of both the CanPI genes were obtained. The genomic sequence of CanPI-7 exhibited, exon 1 (49 base pair, bp) and exon 2 (740 bp) interrupted by a 294-bp long type I intron. We noted the occurrence of three multi-domain PIs (CanPI-69, 70, 71) with circularly permuted domain organization. CanPI-69 was found to possess exon 1 (49 bp), exon 2 (551 bp) and a 584-bp long type I intron. The upstream sequence analysis of CanPI-7 and CanPI-69 predicted various transcription factor-binding sites including TATA and CAAT boxes, hormone-responsive elements (ABRELATERD1, DOFCOREZM, ERELEE4), and a defense-responsive element (WRKY71OS). Binding of transcription factors such as zinc finger motif MADS-box and MYB to the promoter regions was confirmed using electrophoretic mobility shift assay followed by mass spectrometric identification. The 3' UTR analysis for 25 CanPI genes revealed unique/distinct 3' UTR sequence for each gene. Structures of three domain CanPIs of type A and B were predicted and further analyzed for their attributes. This investigation of CanPI gene architecture will enable the better understanding of the genetic elements present in CanPIs.
Collapse
Affiliation(s)
- Neha S Mahajan
- Division of Biochemical Sciences, Plant Molecular Biology Unit, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, Maharashtra, India
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Plant protease inhibitors (PIs) are natural plant defense proteins that inhibit proteases of invading insect herbivores. However, their anti-insect efficacy is determined not only by their potency toward a vulnerable insect system but also by the response of the insect to such a challenge. Through the long history of coevolution with their host plants, insects have developed sophisticated mechanisms to circumvent antinutritional effects of dietary challenges. Their response takes the form of changes in gene expression and the protein repertoire in cells lining the alimentary tract, the first line of defense. Research in insect digestive proteases has revealed the crucial roles they play in insect adaptation to plant PIs and has brought about a new appreciation of how phytophagous insects employ this group of molecules in both protein digestion and counterdefense. This review provides researchers in related fields an up-to-date summary of recent advances.
Collapse
|
11
|
Joshi RS, Wagh TP, Sharma N, Mulani FA, Sonavane U, Thulasiram HV, Joshi R, Gupta VS, Giri AP. Way toward "dietary pesticides": molecular investigation of insecticidal action of caffeic acid against Helicoverpa armigera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10847-10854. [PMID: 25329913 DOI: 10.1021/jf503437r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bioprospecting of natural molecules is essential to overcome serious environmental issues and pesticide resistance in insects. Here we are reporting insights into insecticidal activity of a plant natural phenol. In silico and in vitro screening of multiple molecules supported by in vivo validations suggested that caffeic acid (CA) is a potent inhibitor of Helicoverpa armigera gut proteases. Protease activity and gene expression were altered in CA-fed larvae. The structure-activity relationship of CA highlighted that all the functional groups are crucial for inhibition of protease activity. Biophysical studies and molecular dynamic simulations revealed that sequential binding of multiple CA molecules induces conformational changes in the protease(s) and thus lead to a significant decline in their activity. CA treatment significantly inhibits the insect's detoxification enzymes, thus intensifying the insecticidal effect. Our findings suggest that CA can be implicated as a potent insecticidal molecule and explored for the development of effective dietary pesticides.
Collapse
Affiliation(s)
- R S Joshi
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411 008, India
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mahajan NS, Mishra M, Tamhane VA, Gupta VS, Giri AP. Stress inducible proteomic changes in Capsicum annuum leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:212-7. [PMID: 24316010 DOI: 10.1016/j.plaphy.2013.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/15/2013] [Indexed: 05/24/2023]
Abstract
Herbivore attack induces defense responses in plants, activating several signaling cascades. As a result, molecules deterrent to the herbivores are produced and accumulated in plants. Expression of defense mechanism/traits requires reorganization of the plant metabolism, redirecting the resources otherwise meant for growth. In the present work, protein profile of Capsicum annuum leaves was examined after herbivore attack/induction. Majority of proteins identified as differentially accumulated, were having roles in redox metabolism and photosynthesis. For example, superoxide dismutase and NADP oxidoreductase were upregulated by 10- and 6-fold while carbonic anhydrase and fructose-1,6-bisphosphatase were downregulated by 9- and 4-fold, respectively. Also, superoxide dismutase, NADPH quinone oxidoreductase and NADP dependent isocitrate dehydrogenase transcripts showed a higher accumulation in induced leaf tissues at early time points. In general, proteins having role in defense and damage repair were upregulated while those involved in photosynthesis appeared downregulated. Thus metabolic reconfiguration to balance defense and tolerance was evident in the stress-induced leaves.
Collapse
Affiliation(s)
- Neha S Mahajan
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Manasi Mishra
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Vaijayanti A Tamhane
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India.
| |
Collapse
|
13
|
Dawkar VV, Chikate YR, Lomate PR, Dholakia BB, Gupta VS, Giri AP. Molecular Insights into Resistance Mechanisms of Lepidopteran Insect Pests against Toxicants. J Proteome Res 2013; 12:4727-37. [DOI: 10.1021/pr400642p] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Vishal V. Dawkar
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Yojana R. Chikate
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Purushottam R. Lomate
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Bhushan B. Dholakia
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Vidya S. Gupta
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Ashok P. Giri
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| |
Collapse
|
14
|
Konus M, Koy C, Mikkat S, Kreutzer M, Zimmermann R, Iscan M, Glocker MO. Molecular adaptations of Helicoverpa armigera midgut tissue under pyrethroid insecticide stress characterized by differential proteome analysis and enzyme activity assays. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:152-62. [DOI: 10.1016/j.cbd.2013.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 12/20/2022]
|
15
|
Chikate YR, Tamhane VA, Joshi RS, Gupta VS, Giri AP. Differential protease activity augments polyphagy in Helicoverpa armigera. INSECT MOLECULAR BIOLOGY 2013; 22:258-72. [PMID: 23432026 DOI: 10.1111/imb.12018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Helicoverpa armigera (Lepidoptera: Noctuidae) and other polyphagous agricultural pests are extending their plant host range and emerging as serious agents in restraining crop productivity. Dynamic regulation, coupled with a diversity of digestive and detoxifying enzymes, play a crucial role in the adaptation of polyphagous insects. To investigate the functional intricacy of serine proteases in the development and polyphagy of H. armigera, we profiled the expression of eight trypsin-like and four chymotrypsin-like phylogenetically diverse mRNAs from different life stages of H. armigera reared on nutritionally distinct host plants. These analyses revealed diet- and stage-specific protease expression patterns. The trypsins expressed showed structural variations, which might result in differential substrate specificity and interaction with inhibitors. Protease profiles in the presence of inhibitors and their mass spectrometric analyses revealed insight into their differential activity. These findings emphasize the differential expression of serine proteases and their consequences for digestive physiology in promoting polyphagy in H. armigera.
Collapse
Affiliation(s)
- Y R Chikate
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | | | | | | | | |
Collapse
|
16
|
Celorio-Mancera MDLP, Sundmalm SM, Vogel H, Rutishauser D, Ytterberg AJ, Zubarev RA, Janz N. Chemosensory proteins, major salivary factors in caterpillar mandibular glands. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:796-805. [PMID: 22885177 DOI: 10.1016/j.ibmb.2012.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/19/2012] [Accepted: 07/24/2012] [Indexed: 06/01/2023]
Abstract
Research in the field of insect-host plant interactions has indicated that constituents of insect saliva play an important role in digestion and affect host chemical defense responses. However, most efforts have focused on studying the composition and function of regurgitant or saliva produced in the labial glands. Acknowledging the need for understanding the role of the mandibular glands in herbivory, we sought to make a qualitative and semi-quantitative comparison of soluble luminal protein fractions between mandibular and labial glands of Vanessa gonerilla butterfly larvae. Amylase and lysozyme were inspected as possible major enzymatic activities in the mandibular glands aiding in pre-digestion and antimicrobial defense. Although detected, neither of these enzymatic activities was prominent in the luminal protein preparation of a particular type of gland. Proteins isolated from the glands were identified by mass spectrometry and by searching an EST-library database generated for four other nymphalid butterfly species, in addition to the public NCBI database. The identified proteins were also quantified from the data using "Quanty", an in-house program. The proteomic analysis detected chemosensory proteins as the most abundant luminal proteins in the mandibular glands. In comparison to these proteins, the relative amounts of amylase and lysozyme were much lower in both gland types. Therefore, we speculate that the primary role of the mandibular glands in Lepidopteran larvae is chemoreception which may include the detection of microorganisms on plant surfaces, host plant recognition and communication with conspecifics.
Collapse
|