1
|
East MP, Sprung RW, Okumu DO, Olivares-Quintero JF, Joisa CU, Chen X, Zhang Q, Erdmann-Gilmore P, Mi Y, Sciaky N, Malone JP, Bhatia S, McCabe IC, Xu Y, Sutcliffe MD, Luo J, Spears PA, Perou CM, Earp HS, Carey LA, Yeh JJ, Spector DL, Gomez SM, Spanheimer PM, Townsend RR, Johnson GL. Quantitative proteomic mass spectrometry of protein kinases to determine dynamic heterogeneity of the human kinome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.614143. [PMID: 39464086 PMCID: PMC11507871 DOI: 10.1101/2024.10.04.614143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The kinome is a dynamic system of kinases regulating signaling networks in cells and dysfunction of protein kinases contributes to many diseases. Regulation of the protein expression of kinases alters cellular responses to environmental changes and perturbations. We configured a library of 672 proteotypic peptides to quantify >300 kinases in a single LC-MS experiment using ten micrograms protein from human tissues including biopsies. This enables absolute quantitation of kinase protein abundance at attomole-femtomole expression levels, requiring no kinase enrichment and less than ten micrograms of starting protein from flash-frozen and formalin fixed paraffin embedded tissues. Breast cancer biopsies, organoids, and cell lines were analyzed using the SureQuant method, demonstrating the heterogeneity of kinase protein expression across and within breast cancer clinical subtypes. Kinome quantitation was coupled with nanoscale phosphoproteomics, providing a feasible method for novel clinical diagnosis and understanding of patient kinome responses to treatment.
Collapse
|
2
|
Rosin NL, Winstone TML, Kelley M, Biernaskie J, Dufour A, Orton DJ. Targeted proteomic approach for quantification of collagen type I and type III in formalin-fixed paraffin-embedded tissue. Sci Rep 2024; 14:17769. [PMID: 39090134 PMCID: PMC11294326 DOI: 10.1038/s41598-024-68377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Collagen is the most abundant protein in mammals and a major structural component of the extracellular matrix (ECM). Changes to ECM composition occur as a result of numerous physiological and pathophysiological causes, and a common means to evaluate these changes is the collagen 3 (Col3) to collagen 1 (Col1) ratio. Current methods to measure the Col3/1 ratio suffer from a lack of specificity and often under- or over-estimate collagen composition and quantity. This manuscript presents a targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) method for quantification of Col3 and Col1 in FFPE tissues. Using surrogate peptides to generate calibration curves, Col3 and Col1 are readily quantified in FFPE tissue sections with high accuracy and precision. The method is applied to several tissue types from both human and reindeer sources, demonstrating its generalizability. In addition, the targeted LC-MS/MS method permits quantitation of the hydroxyprolinated form of Col3, which has significant implications for understanding not only the quantity of Col3 in tissue, but also understanding of the pathophysiology underlying many causes of ECM changes. This manuscript presents a straightforward, accurate, precise, and generalizable method for quantifying the Col3/1 ratio in a variety of tissue types and organisms.
Collapse
Affiliation(s)
- Nicole L Rosin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Tara M L Winstone
- Department of Pathology and Laboratory Medicine, University of Calgary, 3535 Research Rd NW, Room 1E-415, Calgary, AB, T2I 2K8, Canada
| | - Margaret Kelley
- Department of Pathology and Laboratory Medicine, University of Calgary, 3535 Research Rd NW, Room 1E-415, Calgary, AB, T2I 2K8, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Dennis J Orton
- Department of Pathology and Laboratory Medicine, University of Calgary, 3535 Research Rd NW, Room 1E-415, Calgary, AB, T2I 2K8, Canada.
| |
Collapse
|
3
|
Darville LNF, Lockhart JH, Putty Reddy S, Fang B, Izumi V, Boyle TA, Haura EB, Flores ER, Koomen JM. A Fast-Tracking Sample Preparation Protocol for Proteomics of Formalin-Fixed Paraffin-Embedded Tumor Tissues. Methods Mol Biol 2024; 2823:193-223. [PMID: 39052222 PMCID: PMC11648944 DOI: 10.1007/978-1-0716-3922-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Archived tumor specimens are routinely preserved by formalin fixation and paraffin embedding. Despite the conventional wisdom that proteomics might be ineffective due to the cross-linking and pre-analytical variables, these samples have utility for both discovery and targeted proteomics. Building on this capability, proteomics approaches can be used to maximize our understanding of cancer biology and clinical relevance by studying preserved tumor tissues annotated with the patients' medical histories. Proteomics of formalin-fixed paraffin-embedded (FFPE) tissues also integrates with histological evaluation and molecular pathology strategies, so that additional collection of research biopsies or resected tumor aliquots is not needed. The acquisition of data from the same tumor sample also overcomes concerns about biological variation between samples due to intratumoral heterogeneity. However, the protein extraction and proteomics sample preparation from FFPE samples can be onerous, particularly for small (i.e., limited or precious) samples. Therefore, we provide a protocol for a recently introduced kit-based EasyPep method with benchmarking against a modified version of the well-established filter-aided sample preparation strategy using laser-capture microdissected lung adenocarcinoma tissues from a genetically engineered mouse model. This model system allows control over the tumor preparation and pre-analytical variables while also supporting the development of methods for spatial proteomics to examine intratumoral heterogeneity. Data are posted in ProteomeXchange (PXD045879).
Collapse
Affiliation(s)
| | | | | | - Bin Fang
- H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | | | - John M Koomen
- H. Lee Moffitt Cancer Center, Tampa, FL, USA.
- Molecular Oncology/Pathology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
4
|
Phipps WS, Kilgore MR, Kennedy JJ, Whiteaker JR, Hoofnagle AN, Paulovich AG. Clinical Proteomics for Solid Organ Tissues. Mol Cell Proteomics 2023; 22:100648. [PMID: 37730181 PMCID: PMC10692389 DOI: 10.1016/j.mcpro.2023.100648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
The evaluation of biopsied solid organ tissue has long relied on visual examination using a microscope. Immunohistochemistry is critical in this process, labeling and detecting cell lineage markers and therapeutic targets. However, while the practice of immunohistochemistry has reshaped diagnostic pathology and facilitated improvements in cancer treatment, it has also been subject to pervasive challenges with respect to standardization and reproducibility. Efforts are ongoing to improve immunohistochemistry, but for some applications, the benefit of such initiatives could be impeded by its reliance on monospecific antibody-protein reagents and limited multiplexing capacity. This perspective surveys the relevant challenges facing traditional immunohistochemistry and describes how mass spectrometry, particularly liquid chromatography-tandem mass spectrometry, could help alleviate problems. In particular, targeted mass spectrometry assays could facilitate measurements of individual proteins or analyte panels, using internal standards for more robust quantification and improved interlaboratory reproducibility. Meanwhile, untargeted mass spectrometry, showcased to date clinically in the form of amyloid typing, is inherently multiplexed, facilitating the detection and crude quantification of 100s to 1000s of proteins in a single analysis. Further, data-independent acquisition has yet to be applied in clinical practice, but offers particular strengths that could appeal to clinical users. Finally, we discuss the guidance that is needed to facilitate broader utilization in clinical environments and achieve standardization.
Collapse
Affiliation(s)
- William S Phipps
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mark R Kilgore
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
5
|
Venz S, von Bohlen Und Halbach V, Hentschker C, Junker H, Kuss AW, Sura T, Krüger E, Völker U, von Bohlen Und Halbach O, Jensen LR, Hammer E. Global Protein Profiling in Processed Immunohistochemistry Tissue Sections. Int J Mol Sci 2023; 24:11308. [PMID: 37511068 PMCID: PMC10379013 DOI: 10.3390/ijms241411308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Tissue sections, which are widely used in research and diagnostic laboratories and have already been examined by immunohistochemistry (IHC), may subsequently provide a resource for proteomic studies, even though only small amount of protein is available. Therefore, we established a workflow for tandem mass spectrometry-based protein profiling of IHC specimens and characterized defined brain area sections. We investigated the CA1 region of the hippocampus dissected from brain slices of adult C57BL/6J mice. The workflow contains detailed information on sample preparation from brain slices, including removal of antibodies and cover matrices, dissection of region(s) of interest, protein extraction and digestion, mass spectrometry measurement, and data analysis. The Gene Ontology (GO) knowledge base was used for further annotation. Literature searches and Gene Ontology annotation of the detected proteins verify the applicability of this method for global protein profiling using formalin-fixed and embedded material and previously used IHC slides.
Collapse
Affiliation(s)
- Simone Venz
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | | | - Christian Hentschker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Heike Junker
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Andreas Walter Kuss
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Thomas Sura
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | | | - Lars Riff Jensen
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
6
|
Obi EN, Tellock DA, Thomas GJ, Veenstra TD. Biomarker Analysis of Formalin-Fixed Paraffin-Embedded Clinical Tissues Using Proteomics. Biomolecules 2023; 13:biom13010096. [PMID: 36671481 PMCID: PMC9855471 DOI: 10.3390/biom13010096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The relatively recent developments in mass spectrometry (MS) have provided novel opportunities for this technology to impact modern medicine. One of those opportunities is in biomarker discovery and diagnostics. Key developments in sample preparation have enabled a greater range of clinical samples to be characterized at a deeper level using MS. While most of these developments have focused on blood, tissues have also been an important resource. Fresh tissues, however, are difficult to obtain for research purposes and require significant resources for long-term storage. There are millions of archived formalin-fixed paraffin-embedded (FFPE) tissues within pathology departments worldwide representing every possible tissue type including tumors that are rare or very small. Owing to the chemical technique used to preserve FFPE tissues, they were considered intractable to many newer proteomics techniques and primarily only useful for immunohistochemistry. In the past couple of decades, however, researchers have been able to develop methods to extract proteins from FFPE tissues in a form making them analyzable using state-of-the-art technologies such as MS and protein arrays. This review will discuss the history of these developments and provide examples of how they are currently being used to identify biomarkers and diagnose diseases such as cancer.
Collapse
|
7
|
Steiner C, Lescuyer P, Cutler P, Tille JC, Ducret A. Relative Quantification of Proteins in Formalin-Fixed Paraffin-Embedded Breast Cancer Tissue Using Multiplexed Mass Spectrometry Assays. Mol Cell Proteomics 2022; 21:100416. [PMID: 36152753 PMCID: PMC9638817 DOI: 10.1016/j.mcpro.2022.100416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 01/18/2023] Open
Abstract
The identification of clinically relevant biomarkers represents an important challenge in oncology. This problem can be addressed with biomarker discovery and verification studies performed directly in tumor samples using formalin-fixed paraffin-embedded (FFPE) tissues. However, reliably measuring proteins in FFPE samples remains challenging. Here, we demonstrate the use of liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM/MS) as an effective technique for such applications. An LC-MRM/MS method was developed to simultaneously quantify hundreds of peptides extracted from FFPE samples and was applied to the targeted measurement of 200 proteins in 48 triple-negative, 19 HER2-overexpressing, and 20 luminal A breast tumors. Quantitative information was obtained for 185 proteins, including known markers of breast cancer such as HER2, hormone receptors, Ki-67, or inflammation-related proteins. LC-MRM/MS results for these proteins matched immunohistochemistry or chromogenic in situ hybridization data. In addition, comparison of our results with data from the literature showed that several proteins representing potential biomarkers were identified as differentially expressed in triple-negative breast cancer samples. These results indicate that LC-MRM/MS assays can reliably measure large sets of proteins using the analysis of surrogate peptides extracted from FFPE samples. This approach allows to simultaneously quantify the expression of target proteins from various pathways in tumor samples. LC-MRM/MS is thus a powerful tool for the relative quantification of proteins in FFPE tissues and for biomarker discovery.
Collapse
Affiliation(s)
- Carine Steiner
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland,BiOmics and Pathology, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, Switzerland,For correspondence: Carine Steiner
| | - Pierre Lescuyer
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland,Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Paul Cutler
- BiOmics and Pathology, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, Switzerland
| | - Jean-Christophe Tille
- Division of Clinical Pathology, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Axel Ducret
- BiOmics and Pathology, Pharmaceutical Sciences, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, Switzerland
| |
Collapse
|
8
|
López-Cortés R, Vázquez-Estévez S, Fernández JÁ, Núñez C. Proteomics as a Complementary Technique to Characterize Bladder Cancer. Cancers (Basel) 2021; 13:cancers13215537. [PMID: 34771699 PMCID: PMC8582709 DOI: 10.3390/cancers13215537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Although immunohistochemistry is a routine technique in clinics, and genomics has been rapidly incorporated, proteomics is a step behind. This general situation is also the norm in bladder cancer research. This review shows the contributions of proteomics to the molecular classification of bladder cancer, and to the study of histopathology due to tissue insults caused by tumors. Furthermore, the importance of proteomics for understanding the cellular and molecular changes as a consequence of the therapy of bladder cancer cannot be neglected. Abstract Bladder cancer (BC) is the most common tumor of the urinary tract and is conventionally classified as either non-muscle invasive or muscle invasive. In addition, histological variants exist, as organized by the WHO-2016 classification. However, innovations in next-generation sequencing have led to molecular classifications of BC. These innovations have also allowed for the tracing of major tumorigenic pathways and, therefore, are positioned as strong supporters of precision medicine. In parallel, immunohistochemistry is still the clinical reference to discriminate histological layers and to stage BC. Key contributions have been made to enlarge the panel of protein immunomarkers. Moreover, the analysis of proteins in liquid biopsy has also provided potential markers. Notwithstanding, their clinical adoption is still low, with very few approved tests. In this context, mass spectrometry-based proteomics has remained a step behind; hence, we aimed to develop them in the community. Herein, the authors introduce the epidemiology and the conventional classifications to review the molecular classification of BC, highlighting the contributions of proteomics. Then, the advances in mass spectrometry techniques focusing on maintaining the integrity of the biological structures are presented, a milestone for the emergence of histoproteomics. Within this field, the review then discusses selected proteins for the comprehension of the pathophysiological mechanisms of BC. Finally, because there is still insufficient knowledge, this review considers proteomics as an important source for the development of BC therapies.
Collapse
Affiliation(s)
- Rubén López-Cortés
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
| | - Sergio Vázquez-Estévez
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain; (S.V.-E.); (J.Á.F.)
| | - Javier Álvarez Fernández
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain; (S.V.-E.); (J.Á.F.)
| | - Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Correspondence:
| |
Collapse
|
9
|
van Bentum M, Selbach M. An Introduction to Advanced Targeted Acquisition Methods. Mol Cell Proteomics 2021; 20:100165. [PMID: 34673283 PMCID: PMC8600983 DOI: 10.1016/j.mcpro.2021.100165] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 01/13/2023] Open
Abstract
Targeted proteomics via selected reaction monitoring (SRM) or parallel reaction monitoring (PRM) enables fast and sensitive detection of a preselected set of target peptides. However, the number of peptides that can be monitored in conventional targeting methods is usually rather small. Recently, a series of methods has been described that employ intelligent acquisition strategies to increase the efficiency of mass spectrometers to detect target peptides. These methods are based on one of two strategies. First, retention time adjustment-based methods enable intelligent scheduling of target peptide retention times. These include Picky, iRT, as well as spike-in free real-time adjustment methods such as MaxQuant.Live. Second, in spike-in triggered acquisition methods such as SureQuant, Pseudo-PRM, TOMAHAQ, and Scout-MRM, targeted scans are initiated by abundant labeled synthetic peptides added to samples before the run. Both strategies enable the mass spectrometer to better focus data acquisition time on target peptides. This either enables more sensitive detection or a higher number of targets per run. Here, we provide an overview of available advanced targeting methods and highlight their intrinsic strengths and weaknesses and compatibility with specific experimental setups. Our goal is to provide a basic introduction to advanced targeting methods for people starting to work in this field.
Collapse
Affiliation(s)
- Mirjam van Bentum
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Khairil Anwar NA, Mohd Nazri MN, Murtadha AH, Mohd Adzemi ER, Balakrishnan V, Mustaffa KMF, Tengku Din TADAA, Yahya MM, Haron J, Mokshtar NF. Prognostic prospect of soluble programmed cell death ligand-1 in cancer management. Acta Biochim Biophys Sin (Shanghai) 2021; 53:961-978. [PMID: 34180502 DOI: 10.1093/abbs/gmab077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
Aggressive tissue biopsy is commonly unavoidable in the management of most suspected tumor cases to conclusively verify the presence of cancerous cells through histological assessment. The extracted tissue is also immunostained for detection of antigens (tissue tumor markers) of potential prognostic or therapeutic importance to assist in treatment decision. Although liquid biopsies can be a powerful tool for monitoring treatment response, they are still excluded from standard cancer diagnostics, and their utility is still being debated in the scientific community. With a myriad of soluble tissue tumor markers now being discovered, liquid biopsies could completely change the current paradigms of cancer management. Recently, soluble programmed cell death ligand-1 (sPD-L1), which is found in the peripheral blood, i.e. serum and plasma, has shown potential as a pre-therapeutic predictive marker as well as a prognostic biomarker to monitor treatment efficacy. Thus, this review focuses on the emergence of sPD-L1 and promising technologies for its detection in order to support liquid biopsies for future cancer management.
Collapse
Affiliation(s)
- Nur Amira Khairil Anwar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Muhammad Najmi Mohd Nazri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Ahmad Hafiz Murtadha
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Elis Rosliza Mohd Adzemi
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | | | - Maya Mazuwin Yahya
- Breast Cancer Awareness & Research Unit (BestARi), Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Kelantan 16150, Malaysia
| | - Juhara Haron
- Breast Cancer Awareness & Research Unit (BestARi), Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Kelantan 16150, Malaysia
| | - Noor Fatmawati Mokshtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
11
|
García-Vence M, Chantada-Vazquez MDP, Sosa-Fajardo A, Agra R, Barcia de la Iglesia A, Otero-Glez A, García-González M, Cameselle-Teijeiro JM, Nuñez C, Bravo JJ, Bravo SB. Protein Extraction From FFPE Kidney Tissue Samples: A Review of the Literature and Characterization of Techniques. Front Med (Lausanne) 2021; 8:657313. [PMID: 34055835 PMCID: PMC8158658 DOI: 10.3389/fmed.2021.657313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Most tissue biopsies from patients in hospital environments are formalin-fixed and paraffin-embedded (FFPE) for long-term storage. This fixation process produces a modification in the proteins called “crosslinks”, which improves protein stability necessary for their conservation. Currently, these samples are mainly used in clinical practice for performing immunohistochemical analysis, since these modifications do not suppose a drawback for this technique; however, crosslinks difficult the protein extraction process. Accordingly, these modifications make the development of a good protein extraction protocol necessary. Due to the specific characteristics of each tissue, the same extraction buffers or deparaffinization protocols are not equally effective in all cases. Therefore, it is necessary to obtain a specific protocol for each tissue. The present work aims to establish a deparaffinization and protein extraction protocol from FFPE kidney samples to obtain protein enough of high quality for the subsequent proteomic analysis. Different deparaffination, protocols and protein extraction buffers will be tested in FFPE kidney samples. The optimized conditions will be applied in the identification by LC-MS/MS analysis of proteins extracted from 5, 10, and 15 glomeruli obtained through the microdissection of FFPE renal samples.
Collapse
Affiliation(s)
- Maria García-Vence
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Maria Del Pilar Chantada-Vazquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain.,Research Unit, Lucus Augusti University Hospital (HULA), Servizo Galego de Saúde (SERGAS), Lugo, Spain
| | - Ana Sosa-Fajardo
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit, Brussels, Belgium
| | - Rebeca Agra
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Ana Barcia de la Iglesia
- Nephrology Laboratory, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Alfonso Otero-Glez
- Nephrology Service, University Clinical Hospital of Ourense (CHOU), Orense, Spain
| | - Miguel García-González
- Nephrology Laboratory, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - José M Cameselle-Teijeiro
- Department of Pathology, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Santiago, Spain
| | - Cristina Nuñez
- Research Unit, Lucus Augusti University Hospital (HULA), Servizo Galego de Saúde (SERGAS), Lugo, Spain
| | - Juan J Bravo
- Nephrology Service, University Clinical Hospital of Vigo (Alvaro Cunqueiro-CHUVI), Vigo, Spain
| | - Susana B Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| |
Collapse
|
12
|
Jia HZ, Pang X, Peng XJ. Changes of matrix metalloproteinases in the stroma after corneal cross-linking in rabbits. Int J Ophthalmol 2021; 14:26-31. [PMID: 33469480 DOI: 10.18240/ijo.2021.01.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/13/2020] [Indexed: 11/23/2022] Open
Abstract
AIM To observe changes in the content of matrix metalloproteinases (MMPs) in the corneal stroma after corneal cross-linking (CXL) in rabbits, and further explore the corneal pathophysiological process after CXL. METHODS Forty-two rabbits (42 eyes) were randomly divided into seven groups. One group served as the control group, while the other six groups were treated with CXL. The concentrations of MMPs in corneal stroma were evaluated through parallel reaction monitoring at baseline and 3, 7, 15, 30, 90, and 180d after treatment. RESULTS The levels of MMP-2 in the corneal stroma of rabbits were 0.76±0.07, 2.78±1.39, 4.12±0.69, 2.00±0.29, 2.00±0.30, 1.22±0.18, and 1.35±0.18 (10-9 mol/g) at baseline and 3, 7, 15, 30, 90, and 180d after treatment, respectively. The contents of tissue inhibitor of metalloproteinase-1 (TIMP-1) were 1.83±0.26, 7.94±0.58, 6.95±2.64, 3.81±0.48, 3.07±0.92, 1.72±0.19, and 1.69±0.74 (10-9 mol/g), respectively. The ratios of MMP-2/TIMP-1 were 0.42±0.33, 0.36±0.20, 0.62±0.10, 0.54±0.15, 0.68±0.13, 0.71±0.10, and 0.68±0.09, respectively. After CXL, the expression of MMP-2 and TIMP-1 in the rabbit corneal stroma was initially increased and subsequently decreased. The levels of MMP-2 remained higher than those recorded at baseline 180d after treatment, but it was not statistically significant. The levels of TIMP-1 returned to baseline levels at 90d after treatment. The ratio of MMP-2/TIMP-1 started to rise from 7d after CXL. It was significantly higher than that calculated at baseline 30-180d after CXL. The results for MMP-1, -3, -7, -9, -13, and TIMP-2 were negative. CONCLUSION CXL can lead to changes in the content of MMP-2 and TIMP-1 in the rabbit corneal stroma. The ratio of MMP-2/TIMP-1 remains higher versus baseline, indicating that MMP-2 is involved in the corneal pathophysiological process after CXL.
Collapse
Affiliation(s)
- Hong-Zhen Jia
- Department of Ophthalmology, the Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Xu Pang
- Department of Ophthalmology, the Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Xiu-Jun Peng
- Department of Ophthalmology, the Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
13
|
Kuras M, Woldmar N, Kim Y, Hefner M, Malm J, Moldvay J, Döme B, Fillinger J, Pizzatti L, Gil J, Marko-Varga G, Rezeli M. Proteomic Workflows for High-Quality Quantitative Proteome and Post-Translational Modification Analysis of Clinically Relevant Samples from Formalin-Fixed Paraffin-Embedded Archives. J Proteome Res 2020; 20:1027-1039. [PMID: 33301673 DOI: 10.1021/acs.jproteome.0c00850] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Well-characterized archival formalin-fixed paraffin-embedded (FFPE) tissues are of much value for prospective biomarker discovery studies, and protocols that offer high throughput and good reproducibility are essential in proteomics. Therefore, we implemented efficient paraffin removal and protein extraction from FFPE tissues followed by an optimized two-enzyme digestion using suspension trapping (S-Trap). The protocol was then combined with TMTpro 16plex labeling and applied to lung adenocarcinoma patient samples. In total, 9585 proteins were identified, and proteins related to the clinical outcome were detected. Because acetylation is known to play a major role in cancer development, a fast on-trap acetylation protocol was developed for studying endogenous lysine acetylation, which allows identification and localization of the lysine acetylation together with quantitative comparison between samples. We demonstrated that FFPE tissues are equivalent to frozen tissues to study the degree of acetylation between patients. In summary, we present a reproducible sample preparation workflow optimized for FFPE tissues that resolves known proteomic-related challenges. We demonstrate compatibility of the S-Trap with isobaric labeling and for the first time, we prove that it is feasible to study endogenous lysine acetylation stoichiometry in FFPE tissues, contributing to better utility of the existing global tissue archives. The MS proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifiers PXD020157, PXD021986, and PXD021964.
Collapse
Affiliation(s)
- Magdalena Kuras
- Div. Clinical Chemistry, Dept. of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö 20502, Sweden
| | - Nicole Woldmar
- Div. Clinical Protein Science & Imaging, Dept. of Clinical Sciences (Lund) and Dept. of Biomedical Engineering, Lund University, Lund 22100, Sweden.,Laboratory of Molecular Biology and Blood Proteomics - LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Yonghyo Kim
- Div. Clinical Protein Science & Imaging, Dept. of Clinical Sciences (Lund) and Dept. of Biomedical Engineering, Lund University, Lund 22100, Sweden
| | - Max Hefner
- Div. Clinical Protein Science & Imaging, Dept. of Clinical Sciences (Lund) and Dept. of Biomedical Engineering, Lund University, Lund 22100, Sweden
| | - Johan Malm
- Div. Clinical Chemistry, Dept. of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö 20502, Sweden
| | - Judit Moldvay
- Dept. of Pulmonology, National Korányi Institute of Pulmonology, Semmelweis University, Budapest 1085, Hungary
| | - Balázs Döme
- Dept. of Pulmonology, National Korányi Institute of Pulmonology, Semmelweis University, Budapest 1085, Hungary.,Dept. of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest 1085, Hungary.,Div. of Thoracic Surgery, Dept. of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna 1090, Austria
| | - János Fillinger
- Dept. of Pulmonology, National Korányi Institute of Pulmonology, Semmelweis University, Budapest 1085, Hungary.,Dept. of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest 1085, Hungary
| | - Luciana Pizzatti
- Laboratory of Molecular Biology and Blood Proteomics - LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Jeovanis Gil
- Div. Clinical Protein Science & Imaging, Dept. of Clinical Sciences (Lund) and Dept. of Biomedical Engineering, Lund University, Lund 22100, Sweden
| | - György Marko-Varga
- Div. Clinical Protein Science & Imaging, Dept. of Clinical Sciences (Lund) and Dept. of Biomedical Engineering, Lund University, Lund 22100, Sweden
| | - Melinda Rezeli
- Div. Clinical Protein Science & Imaging, Dept. of Clinical Sciences (Lund) and Dept. of Biomedical Engineering, Lund University, Lund 22100, Sweden
| |
Collapse
|
14
|
Zheng N, Taylor K, Gu H, Santockyte R, Wang XT, McCarty J, Adelakun O, Zhang YJ, Pillutla R, Zeng J. Antipeptide Immunocapture with In-Sample Calibration Curve Strategy for Sensitive and Robust LC-MS/MS Bioanalysis of Clinical Protein Biomarkers in Formalin-Fixed Paraffin-Embedded Tumor Tissues. Anal Chem 2020; 92:14713-14722. [PMID: 33047598 DOI: 10.1021/acs.analchem.0c03271] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite huge promises, bioanalysis of protein biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues by liquid chromatography-tandem mass spectrometry (LC-MS/MS) for clinical applications is still very challenging. Here, we describe a sensitive and robust LC-MS/MS assay to quantify clinical protein biomarkers in FFPE tumor sections using automated antipeptide antibody immunocapture followed by in-sample calibration curve (ISCC) strategy with multiple isotopologue reaction monitoring (MIRM) technique. ISCC approach with MIRM of stable isotopically labeled (SIL) peptides eliminated the need for authentic matrices for external calibration curves, overcame the matrix effects, and validated the quantification range in each individual sample. Specifically, after deparaffinization, rehydration, antigen retrieval, and homogenization, the protein analytes in FFPE tumor tissues were spiked with a known concentration of one SIL peptide for each analyte, followed by trypsin digestion and antipeptide immunocapture enrichment prior to MIRM-ISCC-based LC-MS/MS analysis. This approach has been successfully used for sensitive quantification of programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) in 15 representative FFPE tumor samples from lung, colorectal, and head and neck cancer patients. Except for one sample, PD-L1 and PD-1 in all samples were quantifiable using this assay with concentrations of 27.85-798.43 (amol/μg protein) for PD-L1 and 16.96-129.89 (amol/μg protein) for PD-1. These results were generally in agreement with the immunohistochemistry (IHC) data but with some exceptions. This approach demonstrated the feasibility to quantify low abundant protein biomarkers in FFPE tissues with improved sensitivity, specificity, and robustness and showed great potential as an orthogonal analytical approach to IHC for clinical applications.
Collapse
Affiliation(s)
- Naiyu Zheng
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Kristin Taylor
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Huidong Gu
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Rasa Santockyte
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Xi-Tao Wang
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Jean McCarty
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Olufemi Adelakun
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Yan J Zhang
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Renuka Pillutla
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Jianing Zeng
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
15
|
Macklin A, Khan S, Kislinger T. Recent advances in mass spectrometry based clinical proteomics: applications to cancer research. Clin Proteomics 2020; 17:17. [PMID: 32489335 PMCID: PMC7247207 DOI: 10.1186/s12014-020-09283-w] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer biomarkers have transformed current practices in the oncology clinic. Continued discovery and validation are crucial for improving early diagnosis, risk stratification, and monitoring patient response to treatment. Profiling of the tumour genome and transcriptome are now established tools for the discovery of novel biomarkers, but alterations in proteome expression are more likely to reflect changes in tumour pathophysiology. In the past, clinical diagnostics have strongly relied on antibody-based detection strategies, but these methods carry certain limitations. Mass spectrometry (MS) is a powerful method that enables increasingly comprehensive insights into changes of the proteome to advance personalized medicine. In this review, recent improvements in MS-based clinical proteomics are highlighted with a focus on oncology. We will provide a detailed overview of clinically relevant samples types, as well as, consideration for sample preparation methods, protein quantitation strategies, MS configurations, and data analysis pipelines currently available to researchers. Critical consideration of each step is necessary to address the pressing clinical questions that advance cancer patient diagnosis and prognosis. While the majority of studies focus on the discovery of clinically-relevant biomarkers, there is a growing demand for rigorous biomarker validation. These studies focus on high-throughput targeted MS assays and multi-centre studies with standardized protocols. Additionally, improvements in MS sensitivity are opening the door to new classes of tumour-specific proteoforms including post-translational modifications and variants originating from genomic aberrations. Overlaying proteomic data to complement genomic and transcriptomic datasets forges the growing field of proteogenomics, which shows great potential to improve our understanding of cancer biology. Overall, these advancements not only solidify MS-based clinical proteomics' integral position in cancer research, but also accelerate the shift towards becoming a regular component of routine analysis and clinical practice.
Collapse
Affiliation(s)
- Andrew Macklin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Zhang B, Whiteaker JR, Hoofnagle AN, Baird GS, Rodland KD, Paulovich AG. Clinical potential of mass spectrometry-based proteogenomics. Nat Rev Clin Oncol 2019; 16:256-268. [PMID: 30487530 PMCID: PMC6448780 DOI: 10.1038/s41571-018-0135-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer genomics research aims to advance personalized oncology by finding and targeting specific genetic alterations associated with cancers. In genome-driven oncology, treatments are selected for individual patients on the basis of the findings of tumour genome sequencing. This personalized approach has prolonged the survival of subsets of patients with cancer. However, many patients do not respond to the predicted therapies based on the genomic profiles of their tumours. Furthermore, studies pairing genomic and proteomic analyses of samples from the same tumours have shown that the proteome contains novel information that cannot be discerned through genomic analysis alone. This observation has led to the concept of proteogenomics, in which both types of data are leveraged for a more complete view of tumour biology that might enable patients to be more successfully matched to effective treatments than they would using genomics alone. In this Perspective, we discuss the added value of proteogenomics over the current genome-driven approach to the clinical characterization of cancers and summarize current efforts to incorporate targeted proteomic measurements based on selected/multiple reaction monitoring (SRM/MRM) mass spectrometry into the clinical laboratory to facilitate clinical proteogenomics.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Molecular and Human Genetics, Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew N Hoofnagle
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Geoffrey S Baird
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Cell, Development and Cancer Biology, Oregon Health & Sciences University, Portland, OR, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
17
|
Chen YT, Tsai CH, Chen CL, Yu JS, Chang YH. Development of biomarkers of genitourinary cancer using mass spectrometry-based clinical proteomics. J Food Drug Anal 2019; 27:387-403. [PMID: 30987711 PMCID: PMC9296213 DOI: 10.1016/j.jfda.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/23/2022] Open
Abstract
Prostate, bladder and kidney cancer are the three most common types of genitourinary cancer in the world. Of these, prostate and bladder cancers are within the top 10 most common cancers in men. Notably, kidney cancer causes no obvious symptoms in the early stages. To satisfy clinical-management requirements, researchers have developed numerous biomarkers by applying proteomic approaches using clinical serum, urine and tissue specimens, as well as cell and animal models. Through application of biomarker pipeline protocols, including discovery, verification and validation phases, and mass-spectrometric based proteomic platforms coupled with multiplexed quantification assays, these studies have led to recent rapid progress in this area. With improvements in mass-spectrometric based proteomic techniques, numerous promising biomarker candidates and marker panels for various clinical purposes have been proposed. Verification of novel protein biomarker candidates is very resource demanding (e.g. on the clinical and laboratory sides). With the support of national consortia, it is now possible to investigate the future clinical use of such biomarker strategies and assess their cost-effectiveness in personalized medicine.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan,
Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan,
Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan,
Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Linkou Medical Center, Taiwan University, Taoyuan,
Taiwan
- Corresponding author. Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Han Tsai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan,
Taiwan
| | - Chien-Lun Chen
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan,
Taiwan
- College of Medicine, Chang Gung University, Taoyuan,
Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan,
Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan,
Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou,
Taiwan
| | - Ying-Hsu Chang
- Division of Urology, Department of Surgery, LinKou Chang Gung Memorial Hospital, Taoyuan,
Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan,
Taiwan
- Corresponding author. Division of Urology, Department of Surgery, LinKou Chang Gung Memorial Hospital, Taoyuan, Taiwan. E-mail addresses: (Y.-T. Chen), (Y.-H. Chang)
| |
Collapse
|
18
|
Arora A, Somasundaram K. Targeted Proteomics Comes to the Benchside and the Bedside: Is it Ready for Us? Bioessays 2019; 41:e1800042. [PMID: 30734933 DOI: 10.1002/bies.201800042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 11/28/2018] [Indexed: 12/22/2022]
Abstract
While mass spectrometry (MS)-based quantification of small molecules has been successfully used for decades, targeted MS has only recently been used by the proteomics community to investigate clinical questions such as biomarker verification and validation. Targeted MS holds the promise of a paradigm shift in the quantitative determination of proteins. Nevertheless, targeted quantitative proteomics requires improvisation in making sample processing, instruments, and data analysis more accessible. In the backdrop of the genomic era reaching its zenith, certain questions arise: is the proteomic era about to come? If we are at the beginning of a new future for protein quantification, are we prepared to incorporate targeted proteomics at the benchside for basic research and at the bedside for the good of patients? Here, an overview of the knowledge required to perform targeted proteomics as well as its applications is provided. A special emphasis is placed on upcoming areas such as peptidomics, proteoform research, and mass spectrometry imaging, where the utilization of targeted proteomics is expected to bring forth new avenues. The limitations associated with the acceptance of this technique for mainstream usage are also highlighted. Also see the video abstract here https://youtu.be/mieB47B8gZw.
Collapse
Affiliation(s)
- Anjali Arora
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
19
|
Zhang Q, Salzler R, Dore A, Yang J, Ma D, Olson WC, Liu Y. Multiplex Immuno-Liquid Chromatography-Mass Spectrometry-Parallel Reaction Monitoring (LC-MS-PRM) Quantitation of CD8A, CD4, LAG3, PD1, PD-L1, and PD-L2 in Frozen Human Tissues. J Proteome Res 2018; 17:3932-3940. [PMID: 30277784 DOI: 10.1021/acs.jproteome.8b00605] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The immune status of tumors critically influences their responsiveness to PD1 blockades and other immune-based therapies. Programmed death ligand 1 (PD-L1) immunohistochemistry (IHC) is a clinically validated predictive biomarker of response to checkpoint-inhibitor therapy in a limited number of clinical settings but is poorly predictive in most. With emerging evidence that multiple pathways and immune-checkpoint proteins may coordinately contribute to the adaptive immune resistance, the identification and quantitation of multiple immune markers in tumor tissue could help identify the controlling pathways in a given patient, guide the selection of optimal therapy, and monitor response to treatment. We developed and validated a sensitive and robust immuno-liquid chromatography-parallel reaction monitoring assay to simultaneously quantify the expression levels of six immune markers (CD8A, CD4, LAG3, PD1, PD-L1, and PD-L2) using as little as 1-2 mg of fresh frozen tissue. The lower limit of quantitation ranged from 0.07 ng/mg protein for PD1 to 1.0 ng/mg protein for CD4. The intrabatch accuracy was within -16.6% to 15.0% for all proteins at all concentrations, and the variation ranged from 0.8% to 14.7%, while interbatch accuracy was within -6.3% to 8.6%, and the variation ranged from 1.3% to 12.8%. The validated assay was then applied to quantify all six biomarkers in different tissues and was confirmed to have sufficient sensitivity (0.07-1.00 ng/mg protein) and reproducibility (variation ranged from 4.3 to 12.0%). In an analysis of 26 cervical tumors, CD8A and CD4 were detected in all tumors, followed by PD-L1 in 85%, LAG-3 in 65%, PD1 in 50%, and PD-L2 in 35%. The strongest correlations were observed between CD8A and CD4 ( r = 0.88) and CD8A and LAG-3 ( r = 0.86). PD1 was not significantly correlated with any of the other proteins tested. This method can be applied to survey the immune signatures across tumor types and tailored to incorporate additional markers as needed.
Collapse
Affiliation(s)
- Qian Zhang
- Regeneron Pharmaceuticals , 777 Old Saw Mill River Road , Tarrytown , New York 10591 , United States
| | - Robert Salzler
- Regeneron Pharmaceuticals , 777 Old Saw Mill River Road , Tarrytown , New York 10591 , United States
| | - Anthony Dore
- Regeneron Pharmaceuticals , 777 Old Saw Mill River Road , Tarrytown , New York 10591 , United States
| | - Janice Yang
- Regeneron Pharmaceuticals , 777 Old Saw Mill River Road , Tarrytown , New York 10591 , United States
| | - Dangshe Ma
- Regeneron Pharmaceuticals , 777 Old Saw Mill River Road , Tarrytown , New York 10591 , United States
| | - William C Olson
- Regeneron Pharmaceuticals , 777 Old Saw Mill River Road , Tarrytown , New York 10591 , United States
| | - Yashu Liu
- Regeneron Pharmaceuticals , 777 Old Saw Mill River Road , Tarrytown , New York 10591 , United States
| |
Collapse
|
20
|
Banerjee SL, Dionne U, Lambert JP, Bisson N. Targeted proteomics analyses of phosphorylation-dependent signalling networks. J Proteomics 2018; 189:39-47. [DOI: 10.1016/j.jprot.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 01/18/2023]
|
21
|
Guerin M, Gonçalves A, Toiron Y, Baudelet E, Pophillat M, Granjeaud S, Fourquet P, Jacot W, Tarpin C, Sabatier R, Agavnian E, Finetti P, Adelaide J, Birnbaum D, Ginestier C, Charafe-Jauffret E, Viens P, Bertucci F, Borg JP, Camoin L. Development of parallel reaction monitoring (PRM)-based quantitative proteomics applied to HER2-Positive breast cancer. Oncotarget 2018; 9:33762-33777. [PMID: 30333908 PMCID: PMC6173470 DOI: 10.18632/oncotarget.26031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/04/2018] [Indexed: 02/06/2023] Open
Abstract
Introduction treatments targeting the Human Epidermal Growth Factor Receptor 2 (HER2/ERBB2) have improved the natural history of HER2-positive breast cancer. However, except HER2 protein expression and gene amplification, there is no predictive biomarker to guide the HER2-targeted therapies. We developed Parallel reaction monitoring (PRM) a powerful approach, to quantify and evaluate key proteins involved in the HER2 pathway and/or anti-HER2 treatment sensitivity. Results in BCLs, PRM measurements correlated with western blot immunocytochemistry and transcriptomic data. At baseline, higher expression of HER2, EGFR, PTEN and HER3 but lower expression of phospho-HER2 correlated with trastuzumab sensitivity. Under trastuzumab, PRM demonstrated a decrease in HER2 and an increase in phospho-HER2, which correlated with drug sensitivity. The opposite was observed under lapatinib. HER2 quantification was also correlated with immunohistochemistry in PDXs and clinical breast cancer samples. Discussion in conclusion, PRM-based assay, developed to quantify proteins of the HER2 pathway in breast cancer samples revealed a large magnitude of expression, which may have relevance in terms of treatment sensitivity. Materials and Methods we first evaluated PRM in term of sensitivity, linearity and reproducibility. PRM was then applied to breast cancer cell lines (BCLs) including BCLs exposed to anti-HER2 agents, patient-derived xenografts (PDXs) and frozen breast cancer samples.
Collapse
Affiliation(s)
- Mathilde Guerin
- Institut Paoli-Calmettes, Department of Medical Oncology, Marseille, France.,Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, Marseille, France
| | - Anthony Gonçalves
- Institut Paoli-Calmettes, Department of Medical Oncology, Marseille, France.,Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, Marseille, France.,Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Predictive Oncology Team, Marseille, France
| | - Yves Toiron
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, Marseille, France
| | - Emilie Baudelet
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, Marseille, France
| | - Matthieu Pophillat
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, Marseille, France
| | - Samuel Granjeaud
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, Marseille, France
| | - Patrick Fourquet
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, Marseille, France
| | - William Jacot
- IRCM, INSERM, Institut Régional du Cancer, Department of Medical Oncology, Montpellier, France
| | - Carole Tarpin
- Institut Paoli-Calmettes, Department of Medical Oncology, Marseille, France
| | - Renaud Sabatier
- Institut Paoli-Calmettes, Department of Medical Oncology, Marseille, France.,Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Predictive Oncology Team, Marseille, France
| | - Emilie Agavnian
- Institut Paoli-Calmettes, Department of Anatomo-pathology, Marseille, France
| | - Pascal Finetti
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Predictive Oncology Team, Marseille, France
| | - José Adelaide
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Predictive Oncology Team, Marseille, France
| | - Daniel Birnbaum
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Predictive Oncology Team, Marseille, France
| | - Christophe Ginestier
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Institut Paoli-Calmettes, Department of Anatomo-pathology, Marseille, France.,Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, Marseille, France
| | - Patrice Viens
- Institut Paoli-Calmettes, Department of Medical Oncology, Marseille, France.,Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Predictive Oncology Team, Marseille, France
| | - François Bertucci
- Institut Paoli-Calmettes, Department of Medical Oncology, Marseille, France.,Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Predictive Oncology Team, Marseille, France
| | - Jean-Paul Borg
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, Marseille, France
| | - Luc Camoin
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, Marseille, France
| |
Collapse
|
22
|
Tsai CH, Chen YT, Chang YH, Hsueh C, Liu CY, Chang YS, Chen CL, Yu JS. Systematic verification of bladder cancer-associated tissue protein biomarker candidates in clinical urine specimens. Oncotarget 2018; 9:30731-30747. [PMID: 30112103 PMCID: PMC6089400 DOI: 10.18632/oncotarget.24578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 02/20/2018] [Indexed: 12/29/2022] Open
Abstract
Bladder cancer biomarkers currently approved by the Food and Drug Administration are insufficiently reliable for use in non-invasive clinical diagnosis. Verification/validation of numerous biomarker candidates for BC detection is a crucial bottleneck for novel biomarker development. A multiplexed liquid chromatography multiple-reaction-monitoring mass spectrometry assay of 122 proteins, including 118 up-regulated tissue proteins, two known bladder cancer biomarkers and two housekeeping gene products, was successfully established for protein quantification in clinical urine specimens. Quantification of 122 proteins was performed on a large cohort of urine specimens representing a variety of conditions, including 142 hernia, 126 bladder cancer, 67 hematuria, and 59 urinary tract infection samples. ANXA3 (annexin A3) and HSPE1 (heat shock protein family E member 1), which showed the highest detection frequency in bladder cancer samples, were selected for further validation. Western blotting showed that urinary ANXA3 and HSPE1 protein levels were higher in bladder cancer samples than in hernia samples, and enzyme-linked immunosorbent assays confirmed a higher urinary concentration of HSPE1 in bladder cancer than in hernia, hematuria and urinary tract infection. Immunohistochemical analyses showed significantly elevated levels of HSPE1 in tumor cells compared with non-cancerous bladder epithelial cells, suggesting that HSPE1 could be a useful tumor tissue marker for the specific detection of bladder cancer. Collectively, our findings provide valuable information for future validation of potential biomarkers for bladder cancer diagnosis.
Collapse
Affiliation(s)
- Cheng-Han Tsai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ting Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Nephrology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Ying-Hsu Chang
- Division of Urology, Department of Surgery, LinKou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuen Hsueh
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Pathology, Chang Gung Memorial Hospital, Linkou, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Chung-Yi Liu
- Division of Urology, Department of Surgery, LinKou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology - Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chien-Lun Chen
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| |
Collapse
|
23
|
Bateman NW, Conrads TP. Recent advances and opportunities in proteomic analyses of tumour heterogeneity. J Pathol 2018; 244:628-637. [PMID: 29344964 DOI: 10.1002/path.5036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 01/27/2023]
Abstract
Solid tumour malignancies comprise a highly variable admixture of tumour and non-tumour cellular populations, forming a complex cellular ecosystem and tumour microenvironment. This tumour heterogeneity is not incidental, and is known to correlate with poor patient prognosis for many cancer types. Indeed, non-malignant cell populations, such as vascular endothelial and immune cells, are known to play key roles supporting and, in some cases, driving aggressive tumour biology, and represent targets of emerging therapeutics, such as antiangiogenesis and immune checkpoint inhibitors. The biochemical interplay between these cellular populations and how they contribute to molecular tumour heterogeneity remains enigmatic, particularly from the perspective of the tumour proteome. This review focuses on recent advances in proteomic methods, namely imaging mass spectrometry, single-cell proteomic techniques, and preanalytical sample processing, that are uniquely positioned to enable detailed analysis of discrete cellular populations within tumours to improve our understanding of tumour proteomic heterogeneity. This review further emphasizes the opportunity afforded by the application of these techniques to the analysis of tumour heterogeneity in formalin-fixed paraffin-embedded archival tumour tissues, as these represent an invaluable resource for retrospective analyses that is now routinely accessible, owing to recent technological and methodological advances in tumour tissue proteomics. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA.,The John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Thomas P Conrads
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA.,The John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA.,Inova Schar Cancer Institute, Inova Center for Personalized Health, Falls Church, VA, USA
| |
Collapse
|
24
|
Chen Y, Britton D, Wood ER, Brantley S, Fournier M, Wloch M, Williams VL, Johnson J, Magliocco A, Pike I, Koomen JM. Quantification of Breast Cancer Protein Biomarkers at Different Expression Levels in Human Tumors. Methods Mol Biol 2018; 1788:251-268. [PMID: 29243084 PMCID: PMC7771335 DOI: 10.1007/7651_2017_113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Liquid chromatography-selected reaction monitoring (LC-SRM) mass spectrometry has developed into a versatile tool for quantification of proteins with a wide range of applications in basic science, translational research, and clinical patient assessment. This strategy uniquely complements traditional pathology approaches, like hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC). The multiplexing capabilities offered by mass spectrometry are currently unmatched by other techniques. However, quantification of biomarkers in tissue specimens without the other data obtained from H&E-stained slides or IHC, including tumor cellularity or percentage of positively stained cells inter alia, may not provide as much information that is needed to fully understand tumor biology or properly assess the patient. Therefore, additional characterization of the tissue proteome is needed, which in turn requires the ability to assess protein markers across a wide range of expression levels from a single sample. This protocol provides an example of multiplexed analysis in breast tumor tissue quantifying specific biomarkers, specifically estrogen receptor, progesterone receptor, and the HER2 receptor tyrosine kinase, in combination with other proteins that can report on tissue content and other aspects of tumor biology.
Collapse
Affiliation(s)
- Yi Chen
- Molecular Oncology/Proteomics SRB3, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Elizabeth R Wood
- Molecular Oncology/Proteomics SRB3, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Michelle Fournier
- Molecular Oncology/Proteomics SRB3, Moffitt Cancer Center, Tampa, FL, USA
| | - Marek Wloch
- Molecular Oncology/Proteomics SRB3, Moffitt Cancer Center, Tampa, FL, USA
| | - Vonetta L Williams
- Molecular Oncology/Proteomics SRB3, Moffitt Cancer Center, Tampa, FL, USA
| | - Joseph Johnson
- Molecular Oncology/Proteomics SRB3, Moffitt Cancer Center, Tampa, FL, USA
| | - Anthony Magliocco
- Molecular Oncology/Proteomics SRB3, Moffitt Cancer Center, Tampa, FL, USA
| | - Ian Pike
- Proteome Sciences, plc, Cobham, UK
| | - John M Koomen
- Molecular Oncology/Proteomics SRB3, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
25
|
Chen Y, Britton D, Wood ER, Brantley S, Magliocco A, Pike I, Koomen JM. Quantitative proteomics of breast tumors: Tissue quality assessment to clinical biomarkers. Proteomics 2017; 17. [PMID: 28127872 DOI: 10.1002/pmic.201600335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/11/2016] [Accepted: 01/23/2017] [Indexed: 01/07/2023]
Abstract
Liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM) is not only a proven tool for clinical chemistry, but also a versatile method to enhance the capability to quantify biomarkers for tumor biology research. As the treatment of cancer continues to evolve, the ability to assess multiple biomarkers to assign cancer phenotypes based on the genetic background and the signaling of the individual tumor becomes paramount to our ability to treat the patient. In breast cancer, the American Society of Clinical Oncology has defined biomarkers for patient assessment to guide selection of therapy: estrogen receptor, progesterone receptor, and the HER2/Neu receptor tyrosine kinase; therefore, these proteins were selected for LC-SRM assay development. Detailed molecular characterization of these proteins is necessary for patient treatment, so expression and phosphorylation assays have been developed and applied. In addition, other LC-SRM assays were developed to further evaluate tumor biology (e.g. Ki-67 for proliferation and vimentin for tumor aggressiveness related to the epithelial-to-mesenchymal transition). These measurements combined with biomarkers for tissue quality and histological content are implemented in a three-tier multiplexed assay platform, which is translated from cell line models into frozen tumor tissues banked from breast cancer patients.
Collapse
Affiliation(s)
- Yi Chen
- Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | | | - Ian Pike
- Proteome Sciences plc., Cobham, UK
| | - John M Koomen
- Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA.,Chemical Biology and Molecular Medicine, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
26
|
Morales-Betanzos CA, Lee H, Gonzalez Ericsson PI, Balko JM, Johnson DB, Zimmerman LJ, Liebler DC. Quantitative Mass Spectrometry Analysis of PD-L1 Protein Expression, N-glycosylation and Expression Stoichiometry with PD-1 and PD-L2 in Human Melanoma. Mol Cell Proteomics 2017; 16:1705-1717. [PMID: 28546465 PMCID: PMC5629259 DOI: 10.1074/mcp.ra117.000037] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 01/05/2023] Open
Abstract
Quantitative assessment of key proteins that control the tumor-immune interface is one of the most formidable analytical challenges in immunotherapeutics. We developed a targeted MS platform to quantify programmed cell death-1 (PD-1), programmed cell death 1 ligand 1 (PD-L1), and programmed cell death 1 ligand 2 (PD-L2) at fmol/microgram protein levels in formalin fixed, paraffin-embedded sections from 22 human melanomas. PD-L1 abundance ranged 50-fold, from ∼0.03 to 1.5 fmol/microgram protein and the parallel reaction monitoring (PRM) data were largely concordant with total PD-L1-positive cell content, as analyzed by immunohistochemistry (IHC) with the E1L3N antibody. PD-1 was measured at levels up to 20-fold lower than PD-L1, but the abundances were not significantly correlated (r2 = 0.062, p = 0.264). PD-1 abundance was weakly correlated (r2 = 0.3057, p = 0.009) with the fraction of lymphocytes and histiocytes in sections. PD-L2 was measured from 0.03 to 1.90 fmol/microgram protein and the ratio of PD-L2 to PD-L1 abundance ranged from 0.03 to 2.58. In 10 samples, PD-L2 was present at more than half the level of PD-L1, which suggests that PD-L2, a higher affinity PD-1 ligand, is sufficiently abundant to contribute to T-cell downregulation. We also identified five branched mannose and N-acetylglucosamine glycans at PD-L1 position N192 in all 22 samples. Extent of PD-L1 glycan modification varied by ∼10-fold and the melanoma with the highest PD-L1 protein abundance and most abundant glycan modification yielded a very low PD-L1 IHC estimate, thus suggesting that N-glycosylation may affect IHC measurement and PD-L1 function. Additional PRM analyses quantified immune checkpoint/co-regulator proteins LAG3, IDO1, TIM-3, VISTA, and CD40, which all displayed distinct expression independent of PD-1, PD-L1, and PD-L2. Targeted MS can provide a next-generation analysis platform to advance cancer immuno-therapeutic research and diagnostics.
Collapse
Affiliation(s)
- Carlos A Morales-Betanzos
- From the ‡Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Hyoungjoo Lee
- From the ‡Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Paula I Gonzalez Ericsson
- §Hematology/Oncology Division, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Justin M Balko
- §Hematology/Oncology Division, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Douglas B Johnson
- §Hematology/Oncology Division, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Lisa J Zimmerman
- From the ‡Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Daniel C Liebler
- From the ‡Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee;
| |
Collapse
|
27
|
Codreanu SG, Hoeksema MD, Slebos RJC, Zimmerman LJ, Rahman SMJ, Li M, Chen SC, Chen H, Eisenberg R, Liebler DC, Massion PP. Identification of Proteomic Features To Distinguish Benign Pulmonary Nodules from Lung Adenocarcinoma. J Proteome Res 2017; 16:3266-3276. [PMID: 28731711 DOI: 10.1021/acs.jproteome.7b00245] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We hypothesized that distinct protein expression features of benign and malignant pulmonary nodules may reveal novel candidate biomarkers for the early detection of lung cancer. We performed proteome profiling by liquid chromatography-tandem mass spectrometry to characterize 34 resected benign lung nodules, 24 untreated lung adenocarcinomas (ADCs), and biopsies of bronchial epithelium. Group comparisons identified 65 proteins that differentiate nodules from ADCs and normal bronchial epithelium and 66 proteins that differentiate ADCs from nodules and normal bronchial epithelium. We developed a multiplexed parallel reaction monitoring (PRM) assay to quantify a subset of 43 of these candidate biomarkers in an independent cohort of 20 benign nodules, 21 ADCs, and 20 normal bronchial biopsies. PRM analyses confirmed significant nodule-specific abundance of 10 proteins including ALOX5, ALOX5AP, CCL19, CILP1, COL5A2, ITGB2, ITGAX, PTPRE, S100A12, and SLC2A3 and significant ADC-specific abundance of CEACAM6, CRABP2, LAD1, PLOD2, and TMEM110-MUSTN1. Immunohistochemistry analyses for seven selected proteins performed on an independent set of tissue microarrays confirmed nodule-specific expression of ALOX5, ALOX5AP, ITGAX, and SLC2A3 and cancer-specific expression of CEACAM6. These studies illustrate the value of global and targeted proteomics in a systematic process to identify and qualify candidate biomarkers for noninvasive molecular diagnosis of lung cancer.
Collapse
Affiliation(s)
- Simona G Codreanu
- Department of Biochemistry, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | | | - Robbert J C Slebos
- Department of Biochemistry, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Lisa J Zimmerman
- Department of Biochemistry, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | | | - Ming Li
- Department of Biostatistics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Sheau-Chiann Chen
- Center for Quantitative Sciences, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Heidi Chen
- Department of Biostatistics, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Rosana Eisenberg
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Daniel C Liebler
- Department of Biochemistry, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Pierre P Massion
- Department of Cancer Biology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States.,Veterans Affairs, Tennessee Valley Healthcare System , Nashville, Tennessee 37212, United States
| |
Collapse
|
28
|
Pedersen MH, Hood BL, Beck HC, Conrads TP, Ditzel HJ, Leth-Larsen R. Downregulation of antigen presentation-associated pathway proteins is linked to poor outcome in triple-negative breast cancer patient tumors. Oncoimmunology 2017. [PMID: 28638726 DOI: 10.1080/2162402x.2017.1305531] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype with varying disease outcomes. Tumor-infiltrating lymphocytes (TILs) are frequent in TNBC and have been shown to correlate with outcome, suggesting an immunogenic component in this subtype. However, other factors intrinsic to the cancer cells may also influence outcome. To identify proteins and molecular pathways associated with recurrence in TNBC, 34 formalin-fixed paraffin-embedded (FFPE) primary TNBC tumors were investigated by global proteomic profiling using mass spectrometry. Approximately, half of the patients were lymph node-negative and remained free of local or distant metastasis within 10 y follow-up, while the other half developed distant metastasis. Proteomic profiling identified >4,000 proteins, of which 63 exhibited altered expression in primary tumors of recurrence versus recurrence-free patients. Importantly, downregulation of proteins in the major histocompatibility complex (MHC) class I antigen presentation pathways were enriched, including TAP1, TAP2, CALR, HLA-A, ERAP1 and TAPBP, and were associated with significantly shorter recurrence-free and overall survival. In addition, proteins involved in cancer cell proliferation and growth, including GBP1, RAD23B, WARS and STAT1, also exhibited altered expression in primary tumors of recurrence versus recurrence-free patients. The association between the antigen-presentation pathway and outcome were validated in a second sample set of 10 primary TNBC tumors and corresponding metastases using proteomics and in a large public gene expression database of 249 TNBC and 580 basal-like breast cancer cases. Our study demonstrates that downregulation of antigen presentation is a key mechanism for TNBC cells to avoid immune surveillance, allowing continued growth and spread.
Collapse
Affiliation(s)
- Martin H Pedersen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Brian L Hood
- Womens Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Henry Jackson Foundation for the Advancement of Military Medicine, Annandale, VA, USA
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Thomas P Conrads
- Womens Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Henry Jackson Foundation for the Advancement of Military Medicine, Annandale, VA, USA
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Oncology, Odense University Hospital, Odense C, Denmark
| | - Rikke Leth-Larsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
29
|
Faria SS, Morris CFM, Silva AR, Fonseca MP, Forget P, Castro MS, Fontes W. A Timely Shift from Shotgun to Targeted Proteomics and How It Can Be Groundbreaking for Cancer Research. Front Oncol 2017; 7:13. [PMID: 28265552 PMCID: PMC5316539 DOI: 10.3389/fonc.2017.00013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/17/2017] [Indexed: 01/10/2023] Open
Abstract
The fact that cancer is a leading cause of death all around the world has naturally sparked major efforts in the pursuit of novel and more efficient biomarkers that could better serve as diagnostic tools, prognostic predictors, or therapeutical targets in the battle against this type of disease. Mass spectrometry-based proteomics has proven itself as a robust and logical alternative to the immuno-based methods that once dominated the field. Nevertheless, intrinsic limitations of classic proteomic approaches such as the natural gap between shotgun discovery-based methods and clinically applicable results have called for the implementation of more direct, hypothesis-based studies such as those made available through targeted approaches, that might be able to streamline biomarker discovery and validation as a means to increase survivability of affected patients. In fact, the paradigm shifting potential of modern targeted proteomics applied to cancer research can be demonstrated by the large number of advancements and increasing examples of new and more useful biomarkers found during the course of this review in different aspects of cancer research. Out of the many studies dedicated to cancer biomarker discovery, we were able to devise some clear trends, such as the fact that breast cancer is the most common type of tumor studied and that most of the research for any given type of cancer is focused on the discovery diagnostic biomarkers, with the exception of those that rely on samples other than plasma and serum, which are generally aimed toward prognostic markers. Interestingly, the most common type of targeted approach is based on stable isotope dilution-selected reaction monitoring protocols for quantification of the target molecules. Overall, this reinforces that notion that targeted proteomics has already started to fulfill its role as a groundbreaking strategy that may enable researchers to catapult the number of viable, effective, and validated biomarkers in cancer clinical practice.
Collapse
Affiliation(s)
- Sara S Faria
- Mastology Program, Federal University of Uberlandia (UFU) , Uberlandia , Brazil
| | - Carlos F M Morris
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Adriano R Silva
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Micaella P Fonseca
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Patrice Forget
- Department of Anesthesiology and Perioperative Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit of Brussel , Brussels , Belgium
| | - Mariana S Castro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| | - Wagner Fontes
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília , Brazil
| |
Collapse
|
30
|
Multiplexed Liquid Chromatography-Multiple Reaction Monitoring Mass Spectrometry Quantification of Cancer Signaling Proteins. Methods Mol Biol 2017; 1647:19-45. [PMID: 28808993 DOI: 10.1007/978-1-4939-7201-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Quantitative evaluation of protein expression across multiple cancer-related signaling pathways (e.g., Wnt/β-catenin, TGF-β, receptor tyrosine kinases (RTK), MAP kinases, NF-κB, and apoptosis) in tumor tissues may enable the development of a molecular profile for each individual tumor that can aid in the selection of appropriate targeted cancer therapies. Here, we describe the development of a broadly applicable protocol to develop and implement quantitative mass spectrometry assays using cell line models and frozen tissue specimens from colon cancer patients. Cell lines are used to develop peptide-based assays for protein quantification, which are incorporated into a method based on SDS-PAGE protein fractionation, in-gel digestion, and liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM/MS). This analytical platform is then applied to frozen tumor tissues. This protocol can be broadly applied to the study of human disease using multiplexed LC-MRM assays.
Collapse
|
31
|
Ostasiewicz P, Wiśniewski J. A Protocol for Large-Scale Proteomic Analysis of Microdissected Formalin Fixed and Paraffin Embedded Tissue. Methods Enzymol 2017; 585:159-176. [DOI: 10.1016/bs.mie.2016.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Chinello C, L'imperio V, Stella M, Smith AJ, Bovo G, Grasso A, Grasso M, Raimondo F, Pitto M, Pagni F, Magni F. The proteomic landscape of renal tumors. Expert Rev Proteomics 2016; 13:1103-1120. [PMID: 27748142 DOI: 10.1080/14789450.2016.1248415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is the most fatal of the common urologic cancers, with approximately 35% of patients dying within 5 years following diagnosis. Therefore, there is a need for non-invasive markers that are capable of detecting and determining the severity of small renal masses at an early stage in order to tailor treatment and follow-up. Proteomic studies have proved to be very useful in the study of tumors. Areas covered: In this review, we will detail the current knowledge obtained by the different proteomic approaches, focusing on MS-based strategies, used to investigate RCC biology in order to identify diagnostic, prognostic and predictive biomarkers on tissue, cultured cells and biological fluids. Expert commentary: Currently, no reliable biomarkers or targets for RCC have been translated into the clinical setting. Moreover, despite the efforts of proteomics and other -omics disciplines, only a small number of them have been observed as shared targets between the different analytical platforms and biological specimens. The difficulty to define a specific molecular pattern for RCC and its subtypes highlights a peculiar profile and a heterogeneity that must be taken into account in future studies.
Collapse
Affiliation(s)
- Clizia Chinello
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Vincenzo L'imperio
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Martina Stella
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Andrew James Smith
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Giorgio Bovo
- b Pathology unit , San Gerardo Hospital , Monza , Italy
| | - Angelica Grasso
- c Department of Specialistic Surgical Sciences, Urology unit , Ospedale Maggiore Policlinico Foundation , Milano , Italy
| | - Marco Grasso
- d Department of Urology , San Gerardo Hospital , Monza , Italy
| | - Francesca Raimondo
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Marina Pitto
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Fabio Pagni
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Fulvio Magni
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| |
Collapse
|
33
|
Kennedy JJ, Whiteaker JR, Schoenherr RM, Yan P, Allison K, Shipley M, Lerch M, Hoofnagle AN, Baird GS, Paulovich AG. Optimized Protocol for Quantitative Multiple Reaction Monitoring-Based Proteomic Analysis of Formalin-Fixed, Paraffin-Embedded Tissues. J Proteome Res 2016; 15:2717-28. [PMID: 27462933 DOI: 10.1021/acs.jproteome.6b00245] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite a clinical, economic, and regulatory imperative to develop companion diagnostics, precious few new biomarkers have been successfully translated into clinical use, due in part to inadequate protein assay technologies to support large-scale testing of hundreds of candidate biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues. Although the feasibility of using targeted, multiple reaction monitoring mass spectrometry (MRM-MS) for quantitative analyses of FFPE tissues has been demonstrated, protocols have not been systematically optimized for robust quantification across a large number of analytes, nor has the performance of peptide immuno-MRM been evaluated. To address this gap, we used a test battery approach coupled to MRM-MS with the addition of stable isotope-labeled standard peptides (targeting 512 analytes) to quantitatively evaluate the performance of three extraction protocols in combination with three trypsin digestion protocols (i.e., nine processes). A process based on RapiGest buffer extraction and urea-based digestion was identified to enable similar quantitation results from FFPE and frozen tissues. Using the optimized protocols for MRM-based analysis of FFPE tissues, median precision was 11.4% (across 249 analytes). There was excellent correlation between measurements made on matched FFPE and frozen tissues, both for direct MRM analysis (R(2) = 0.94) and immuno-MRM (R(2) = 0.89). The optimized process enables highly reproducible, multiplex, standardizable, quantitative MRM in archival tissue specimens.
Collapse
Affiliation(s)
- Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, Washington 98109, United States
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, Washington 98109, United States
| | - Regine M Schoenherr
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, Washington 98109, United States
| | - Ping Yan
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, Washington 98109, United States
| | - Kimberly Allison
- Department of Pathology, Stanford University , Stanford, California 94305 United States
| | - Melissa Shipley
- Department of Laboratory Medicine, University of Washington , Seattle, Washington 98195 United States
| | - Melissa Lerch
- Department of Laboratory Medicine, University of Washington , Seattle, Washington 98195 United States
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington , Seattle, Washington 98195 United States
| | - Geoffrey Stuart Baird
- Department of Laboratory Medicine, University of Washington , Seattle, Washington 98195 United States
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, Washington 98109, United States
| |
Collapse
|
34
|
Hutton JE, Wang X, Zimmerman LJ, Slebos RJC, Trenary IA, Young JD, Li M, Liebler DC. Oncogenic KRAS and BRAF Drive Metabolic Reprogramming in Colorectal Cancer. Mol Cell Proteomics 2016; 15:2924-38. [PMID: 27340238 DOI: 10.1074/mcp.m116.058925] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming, in which altered utilization of glucose and glutamine supports rapid growth, is a hallmark of most cancers. Mutations in the oncogenes KRAS and BRAF drive metabolic reprogramming through enhanced glucose uptake, but the broader impact of these mutations on pathways of carbon metabolism is unknown. Global shotgun proteomic analysis of isogenic DLD-1 and RKO colon cancer cell lines expressing mutant and wild type KRAS or BRAF, respectively, failed to identify significant differences (at least 2-fold) in metabolic protein abundance. However, a multiplexed parallel reaction monitoring (PRM) strategy targeting 73 metabolic proteins identified significant protein abundance increases of 1.25-twofold in glycolysis, the nonoxidative pentose phosphate pathway, glutamine metabolism, and the phosphoserine biosynthetic pathway in cells with KRAS G13D mutations or BRAF V600E mutations. These alterations corresponded to mutant KRAS and BRAF-dependent increases in glucose uptake and lactate production. Metabolic reprogramming and glucose conversion to lactate in RKO cells were proportional to levels of BRAF V600E protein. In DLD-1 cells, these effects were independent of the ratio of KRAS G13D to KRAS wild type protein. A study of 8 KRAS wild type and 8 KRAS mutant human colon tumors confirmed the association of increased expression of glycolytic and glutamine metabolic proteins with KRAS mutant status. Metabolic reprogramming is driven largely by modest (<2-fold) alterations in protein expression, which are not readily detected by the global profiling methods most commonly employed in proteomic studies. The results indicate the superiority of more precise, multiplexed, pathway-targeted analyses to study functional proteome systems. Data are available through MassIVE Accession MSV000079486 at ftp://MSV000079486@massive.ucsd.edu.
Collapse
Affiliation(s)
| | | | - Lisa J Zimmerman
- From the ‡Department of Biochemistry, ¶Jim Ayers Institute for Precancer Detection and Diagnosis
| | - Robbert J C Slebos
- From the ‡Department of Biochemistry, ¶Jim Ayers Institute for Precancer Detection and Diagnosis
| | | | - Jamey D Young
- ‖Chemical & Biomolecular Engineering, **Molecular Physiology & Biophysics
| | - Ming Li
- ‡‡Department of Biostatistics, Vanderbilt University, Nashville, Tennessee 37232
| | - Daniel C Liebler
- From the ‡Department of Biochemistry, ¶Jim Ayers Institute for Precancer Detection and Diagnosis,
| |
Collapse
|
35
|
Kim HJ, Lin D, Lee HJ, Li M, Liebler DC. Quantitative Profiling of Protein Tyrosine Kinases in Human Cancer Cell Lines by Multiplexed Parallel Reaction Monitoring Assays. Mol Cell Proteomics 2015; 15:682-91. [PMID: 26631510 DOI: 10.1074/mcp.o115.056713] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine kinases (PTKs) play key roles in cellular signal transduction, cell cycle regulation, cell division, and cell differentiation. Dysregulation of PTK-activated pathways, often by receptor overexpression, gene amplification, or genetic mutation, is a causal factor underlying numerous cancers. In this study, we have developed a parallel reaction monitoring-based assay for quantitative profiling of 83 PTKs. The assay detects 308 proteotypic peptides from 54 receptor tyrosine kinases and 29 nonreceptor tyrosine kinases in a single run. Quantitative comparisons were based on the labeled reference peptide method. We implemented the assay in four cell models: 1) a comparison of proliferating versus epidermal growth factor-stimulated A431 cells, 2) a comparison of SW480Null (mutant APC) and SW480APC (APC restored) colon tumor cell lines, and 3) a comparison of 10 colorectal cancer cell lines with different genomic abnormalities, and 4) lung cancer cell lines with either susceptibility (11-18) or acquired resistance (11-18R) to the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib. We observed distinct PTK expression changes that were induced by stimuli, genomic features or drug resistance, which were consistent with previous reports. However, most of the measured expression differences were novel observations. For example, acquired resistance to erlotinib in the 11-18 cell model was associated not only with previously reported up-regulation of MET, but also with up-regulation of FLK2 and down-regulation of LYN and PTK7. Immunoblot analyses and shotgun proteomics data were highly consistent with parallel reaction monitoring data. Multiplexed parallel reaction monitoring assays provide a targeted, systems-level profiling approach to evaluate cancer-related proteotypes and adaptations. Data are available through Proteome eXchange Accession PXD002706.
Collapse
Affiliation(s)
- Hye-Jung Kim
- From the ‡Jim Ayers Institute for Precancer Detection and Diagnosis and Departments of §Biochemistry and
| | - De Lin
- From the ‡Jim Ayers Institute for Precancer Detection and Diagnosis and Departments of §Biochemistry and
| | - Hyoung-Joo Lee
- From the ‡Jim Ayers Institute for Precancer Detection and Diagnosis and Departments of §Biochemistry and
| | - Ming Li
- ¶Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Daniel C Liebler
- From the ‡Jim Ayers Institute for Precancer Detection and Diagnosis and Departments of §Biochemistry and
| |
Collapse
|
36
|
Pernikářová V, Bouchal P. Targeted proteomics of solid cancers: from quantification of known biomarkers towards reading the digital proteome maps. Expert Rev Proteomics 2015; 12:651-67. [PMID: 26456120 DOI: 10.1586/14789450.2015.1094381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The concept of personalized medicine includes novel protein biomarkers that are expected to improve the early detection, diagnosis and therapy monitoring of malignant diseases. Tissues, biofluids, cell lines and xenograft models are the common sources of biomarker candidates that require verification of clinical value in independent patient cohorts. Targeted proteomics - based on selected reaction monitoring, or data extraction from data-independent acquisition based digital maps - now represents a promising mass spectrometry alternative to immunochemical methods. To date, it has been successfully used in a high number of studies answering clinical questions on solid malignancies: breast, colorectal, prostate, ovarian, endometrial, pancreatic, hepatocellular, lung, bladder and others. It plays an important role in functional proteomic experiments that include studying the role of post-translational modifications in cancer progression. This review summarizes verified biomarker candidates successfully quantified by targeted proteomics in this field and directs the readers who plan to design their own hypothesis-driven experiments to appropriate sources of methods and knowledge.
Collapse
Affiliation(s)
- Vendula Pernikářová
- a Masaryk University , Faculty of Science, Department of Biochemistry , Kotlářská 2, 61137 Brno , Czech Republic
| | - Pavel Bouchal
- a Masaryk University , Faculty of Science, Department of Biochemistry , Kotlářská 2, 61137 Brno , Czech Republic.,b Masaryk Memorial Cancer Institute , Regional Centre for Applied Molecular Oncology , Žlutý kopec 7, 65653 Brno , Czech Republic
| |
Collapse
|
37
|
Proteins from formalin-fixed paraffin-embedded prostate cancer sections that predict the risk of metastatic disease. Clin Proteomics 2015; 12:24. [PMID: 26388710 PMCID: PMC4574128 DOI: 10.1186/s12014-015-9096-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/09/2015] [Indexed: 02/02/2023] Open
Abstract
Background Prostate cancer is the most frequently diagnosed cancer in men and the third leading cause of cancer related deaths among men living in developed countries. Biomarkers that predict disease outcome at the time of initial diagnosis would substantially aid disease management. Results Proteins extracted from formalin-fixed paraffin-embedded tissue were identified using nanoflow liquid chromatography-MALDI MS/MS or after separation by one- or two-dimensional electrophoresis. The proteomics data have been deposited to the ProteomeXchange with identifier PXD000963. A list of potential biomarker candidates, based on proposed associations with prostate cancer, was derived from the 320 identified proteins. Candidate biomarkers were then examined by multiplexed Western blotting of archival specimens from men with premetastatic disease and subsequent disease outcome data. Annexin A2 provided the best prediction of risk of metastatic disease (log-rank Chi squared p = 0. 025). A tumor/control tissue >2-fold relative abundance increase predicted early biochemical failure, while <2-fold change predicted late or no biochemical failure. Conclusions This study confirms the potential for use of archival FFPE specimens in the search for prognostic biomarkers for prostate cancer and suggests that annexin A2 abundance in diagnostic biopsies is predictive for metastatic potential. Protein profiling each cancer may lead to an overall reduction in mortality from metastatic prostate cancer as well as reduced treatment associated morbidity. Electronic supplementary material The online version of this article (doi:10.1186/s12014-015-9096-3) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Ebhardt HA, Root A, Sander C, Aebersold R. Applications of targeted proteomics in systems biology and translational medicine. Proteomics 2015; 15:3193-208. [PMID: 26097198 PMCID: PMC4758406 DOI: 10.1002/pmic.201500004] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/27/2015] [Accepted: 06/09/2015] [Indexed: 01/28/2023]
Abstract
Biological systems are composed of numerous components of which proteins are of particularly high functional significance. Network models are useful abstractions for studying these components in context. Network representations display molecules as nodes and their interactions as edges. Because they are difficult to directly measure, functional edges are frequently inferred from suitably structured datasets consisting of the accurate and consistent quantification of network nodes under a multitude of perturbed conditions. For the precise quantification of a finite list of proteins across a wide range of samples, targeted proteomics exemplified by selected/multiple reaction monitoring (SRM, MRM) mass spectrometry has proven useful and has been applied to a variety of questions in systems biology and clinical studies. Here, we survey the literature of studies using SRM-MS in systems biology and clinical proteomics. Systems biology studies frequently examine fundamental questions in network biology, whereas clinical studies frequently focus on biomarker discovery and validation in a variety of diseases including cardiovascular disease and cancer. Targeted proteomics promises to advance our understanding of biological networks and the phenotypic significance of specific network states and to advance biomarkers into clinical use.
Collapse
Affiliation(s)
- H Alexander Ebhardt
- Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Alex Root
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY, USA
| | - Chris Sander
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Sun W, Sun J, Zou L, Shen K, Zhong D, Zhou D, Sun W, Li J. The Successful Diagnosis and Typing of Systemic Amyloidosis Using A Microwave-Assisted Filter-Aided Fast Sample Preparation Method and LC/MS/MS Analysis. PLoS One 2015; 10:e0127180. [PMID: 25984759 PMCID: PMC4436214 DOI: 10.1371/journal.pone.0127180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/12/2015] [Indexed: 12/21/2022] Open
Abstract
Laser microdissection followed by mass spectrometry has been successfully used for amyloid typing. However, sample contamination can interfere with proteomic analysis, and overnight digestion limits the analytical throughput. Moreover, current quantitative analysis methods are based on the spectrum count, which ignores differences in protein length and may lead to misdiagnoses. Here, we developed a microwave-assisted filter-aided sample preparation (maFASP) method that can efficiently remove contaminants with a 10-kDa cutoff ultrafiltration unit and can accelerate the digestion process with the assistance of a microwave. Additionally, two parameters (P- and D-scores) based on the exponentially modified protein abundance index were developed to define the existence of amyloid deposits and those causative proteins with the greatest abundance. Using our protocol, twenty cases of systemic amyloidosis that were well-typed according to clinical diagnostic standards (training group) and another twenty-four cases without subtype diagnoses (validation group) were analyzed. Using this approach, sample preparation could be completed within four hours. We successfully subtyped 100% of the cases in the training group, and the diagnostic success rate in the validation group was 91.7%. This maFASP-aided proteomic protocol represents an efficient approach for amyloid diagnosis and subtyping, particularly for serum-contaminated samples.
Collapse
Affiliation(s)
- Weiyi Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China; Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Sun
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Zou
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Kaini Shen
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Dingrong Zhong
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
40
|
Steiner C, Ducret A, Tille JC, Thomas M, McKee TA, Rubbia-Brandt L, Scherl A, Lescuyer P, Cutler P. Applications of mass spectrometry for quantitative protein analysis in formalin-fixed paraffin-embedded tissues. Proteomics 2014; 14:441-51. [PMID: 24339433 PMCID: PMC4265304 DOI: 10.1002/pmic.201300311] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/04/2013] [Accepted: 11/11/2013] [Indexed: 12/12/2022]
Abstract
Proteomic analysis of tissues has advanced in recent years as instruments and methodologies have evolved. The ability to retrieve peptides from formalin-fixed paraffin-embedded tissues followed by shotgun or targeted proteomic analysis is offering new opportunities in biomedical research. In particular, access to large collections of clinically annotated samples should enable the detailed analysis of pathologically relevant tissues in a manner previously considered unfeasible. In this paper, we review the current status of proteomic analysis of formalin-fixed paraffin-embedded tissues with a particular focus on targeted approaches and the potential for this technique to be used in clinical research and clinical diagnosis. We also discuss the limitations and perspectives of the technique, particularly with regard to application in clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Carine Steiner
- Division of Laboratory Medicine, Geneva University Hospital, Geneva, Switzerland; Human Protein Sciences Department, University of Geneva, Geneva, Switzerland; Translational Technologies and Bioinformatics, Pharma Research and Early Development, F. Hoffmann-La Roche AG, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Solier C, Langen H. Antibody-based proteomics and biomarker research - current status and limitations. Proteomics 2014; 14:774-83. [PMID: 24520068 DOI: 10.1002/pmic.201300334] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/08/2013] [Accepted: 12/16/2013] [Indexed: 11/09/2022]
Abstract
Antibody-based proteomics play a very important role in biomarker discovery and validation, facilitating the high-throughput evaluation of candidate markers. Most proteomics-driven discovery is nowadays based on the use of MS. MS has many advantages, including its suitability for hypothesis-free biomarker discovery, since information on protein content of a sample is not required prior to analysis. However, MS presents one main caveat which is the limited sensitivity in complex samples, especially for body fluids, where protein expression covers a huge dynamic range. Antibody-based technologies remain the main solution to address this challenge since they reach higher sensitivity. In this article, we review the benefits and limitations of antibody-based proteomics in preclinical and clinical biomarker research for discovery and validation in body fluids and tissue. The combination of antibodies and MS, utilizing the best of both worlds, opens new avenues in biomarker research.
Collapse
Affiliation(s)
- Corinne Solier
- Translational Technologies and Bioinformatics, Pharma Research and Early Development, F. Hoffmann-La Roche AG, Basel, Switzerland
| | | |
Collapse
|
42
|
Gustafsson OJR, Arentz G, Hoffmann P. Proteomic developments in the analysis of formalin-fixed tissue. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:559-80. [PMID: 25315853 DOI: 10.1016/j.bbapap.2014.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/22/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
Retrospective proteomic studies, including those which aim to elucidate the molecular mechanisms driving cancer, require the assembly and characterization of substantial patient tissue cohorts. The difficulty of maintaining and accessing native tissue archives has prompted the development of methods to access archives of formalin-fixed tissue. Formalin-fixed tissue archives, complete with patient meta data, have accumulated for decades, presenting an invaluable resource for these retrospective studies. This review presents the current knowledge concerning formalin-fixed tissue, with descriptions of the mechanisms of formalin fixation, protein extraction, top-down proteomics, bottom-up proteomics, quantitative proteomics, phospho- and glycoproteomics as well as imaging mass spectrometry. Particular attention has been given to the inclusion of proteomic investigations of archived tumour tissue. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Ove J R Gustafsson
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005
| | - Georgia Arentz
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005
| | - Peter Hoffmann
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005.
| |
Collapse
|
43
|
Abstract
Multiplexed protein analysis using an antibody-DNA barcoding approach could accelerate early detection and monitoring of cancer biomarkers in patient samples (Ullal et al., this issue).
Collapse
Affiliation(s)
- Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
44
|
Prasad B, Unadkat JD. Optimized approaches for quantification of drug transporters in tissues and cells by MRM proteomics. AAPS J 2014; 16:634-48. [PMID: 24752720 PMCID: PMC4070263 DOI: 10.1208/s12248-014-9602-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/29/2014] [Indexed: 01/12/2023] Open
Abstract
Drug transporter expression in tissues (in vivo) usually differs from that in cell lines used to measure transporter activity (in vitro). Therefore, quantification of transporter expression in tissues and cell lines is important to develop scaling factor for in vitro to in vivo extrapolation (IVIVE) of transporter-mediated drug disposition. Since traditional immunoquantification methods are semiquantitative, targeted proteomics is now emerging as a superior method to quantify proteins, including membrane transporters. This superiority is derived from the selectivity, precision, accuracy, and speed of analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring (MRM) mode. Moreover, LC-MS/MS proteomics has broader applicability because it does not require selective antibodies for individual proteins. There are a number of recent research and review papers that discuss the use of LC-MS/MS for transporter quantification. Here, we have compiled from the literature various elements of MRM proteomics to provide a comprehensive systematic strategy to quantify drug transporters. This review emphasizes practical aspects and challenges in surrogate peptide selection, peptide qualification, peptide synthesis and characterization, membrane protein isolation, protein digestion, sample preparation, LC-MS/MS parameter optimization, method validation, and sample analysis. In particular, bioinformatic tools used in method development and sample analysis are discussed in detail. Various pre-analytical and analytical sources of variability that should be considered during transporter quantification are highlighted. All these steps are illustrated using P-glycoprotein (P-gp) as a case example. Greater use of quantitative transporter proteomics will lead to a better understanding of the role of drug transporters in drug disposition.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, P.O. Box 357610, Seattle, Washington, 98195, USA,
| | | |
Collapse
|
45
|
Application of molecular technologies for phosphoproteomic analysis of clinical samples. Oncogene 2014; 34:805-14. [PMID: 24608425 DOI: 10.1038/onc.2014.16] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/21/2014] [Accepted: 01/21/2014] [Indexed: 12/17/2022]
Abstract
The integration of small kinase inhibitors and monoclonal antibodies into oncological practice has opened a new paradigm for treating cancer patients. As proteins are the direct targets of the new generations of targeted therapeutics, many of which are kinase/enzymatic inhibitors, there is an increasing interest in developing technologies capable of monitoring post-translational changes of the human proteome for the identification of new predictive, prognostic and therapeutic biomarkers. It is well known that the vast majority of the activation/deactivation of these drug targets is driven by phosphorylation. This review provides a description of the main proteomic platforms (planar and bead array, reverse phase protein microarray, phosphoflow, AQUA and mass spectrometry) that have successfully been used for measuring changes in phosphorylation level of drug targets and downstream substrates using clinical specimens. Major emphasis was given to the strengths and weaknesses of the different platforms and to the major barriers that are associated with the analysis of the phosphoproteome. Finally, a number of examples of application of the above-mentioned technologies in the clinical setting are reported.
Collapse
|
46
|
Kim HK, Green JE. Predictive biomarker candidates for the response of gastric cancer to targeted and cytotoxic agents. Pharmacogenomics 2014; 15:375-84. [PMID: 24533716 PMCID: PMC7670597 DOI: 10.2217/pgs.13.250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer is the second most common cause of cancer death worldwide. Recent development of targeted agents provides clinicians with additional systemic treatment options to conventional cytotoxic agents. Predictive markers are undoubtedly important for guiding the appropriate use of targeted and cytotoxic agents. Currently, however, HER2 is the only predictive biomarker validated for gastric cancer. In this review, candidate predictive markers for response to other targeted agents and cytotoxic chemotherapeutic agents are discussed.
Collapse
Affiliation(s)
- Hark Kyun Kim
- Center for Gastric Cancer, National Cancer Center, Goyang, 410-769, Republic of Korea.
| | | |
Collapse
|
47
|
Cole KD, He HJ, Wang L. Breast cancer biomarker measurements and standards. Proteomics Clin Appl 2014; 7:17-29. [PMID: 23341234 DOI: 10.1002/prca.201200075] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 12/23/2022]
Abstract
Cancer is a heterogeneous disease characterized by changes in the levels and activities of important cellular proteins, including oncogenes and tumor suppressors. Genetic mutations cause changes in protein activity and protein expression levels that result in the altered metabolism, proliferation, and metastasis seen in cancer cells. The identification of the critical biochemical changes in cancer has led to advances in its detection and treatment. An important example of this is the measurement of human epidermal growth factor receptor 2 (HER2), where increased expression occurs in approximately 20-30% of breast cancer tumors. HER2 is a member of the epidermal growth factor receptor family and is an important biomarker expressed on the cell surface. Measurement of the HER2 levels in tumor cells provides diagnostic, prognostic, and treatment information, because a targeted therapeutic is available. The most common methods to measure HER2 levels are immunohistochemistry and in situ hybridization assays. The accurate and reliable measurements of the specific changes in protein biomarkers for detection and treatment of cancer are important challenges. This review is focused on efforts to improve the quantitation and reliability of cancer biomarkers by using standards and reference materials.
Collapse
Affiliation(s)
- Kenneth D Cole
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | | | | |
Collapse
|
48
|
Beretov J, Wasinger VC, Graham PH, Millar EK, Kearsley JH, Li Y. Proteomics for breast cancer urine biomarkers. Adv Clin Chem 2014; 63:123-67. [PMID: 24783353 DOI: 10.1016/b978-0-12-800094-6.00004-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the survival of breast cancer (BC) patients has increased over the last two decades due to improved screening programs and postoperative adjuvant systemic therapies, many patients die from metastatic relapse. Current biomarkers used in the clinic are not useful for the early detection of BC, or monitoring its progression, and have limited value in predicting response to treatment. The development of proteomic techniques has sparked new searches for novel protein markers for many diseases including BC. Proteomic techniques allow for a high-throughput analysis of samples with the visualization and quantification of thousands of potential protein and peptide markers. Human urine is one of the most interesting and useful biofluids for routine testing and provides an excellent resource for the discovery of novel biomarkers, with the advantage over tissue biopsy samples due to the ease and less invasive nature of collection. In this review, we summarize the results from studies where urine was used as a source for BC biomarker research and discuss urine sample preparation, its advantage, challenges, and limitation. We focus on the gel-based proteomic approaches as well as the recent development of quantitative techniques in BC urine biomarker detection. Finally, the future use of modern proteomic techniques in BC biomarker identification will be discussed.
Collapse
|
49
|
Giusti L, Lucacchini A. Proteomic studies of formalin-fixed paraffin-embedded tissues. Expert Rev Proteomics 2013; 10:165-77. [PMID: 23573783 DOI: 10.1586/epr.13.3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue specimens represent a valuable informational resource of histologically characterized specimens for proteomic studies. In this article, the authors review the advancement performed in the field of FFPE proteomics focusing on formaldehyde treatment and on strategies addressed to obtain the best recovery in the protein/peptide extraction. A variety of approaches have been used to characterize protein tissue extracts, and many efforts have been performed demonstrating the comparability between fresh/frozen and FFPE proteomes. Finally, the authors report and discuss the large numbers of works aimed at developing new strategies and sophisticated platforms in the analysis of FFPE samples to validate known potential biomarkers and to discover new ones.
Collapse
Affiliation(s)
- Laura Giusti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | | |
Collapse
|
50
|
Semba RD, Enghild JJ, Venkatraman V, Dyrlund TF, Van Eyk JE. The Human Eye Proteome Project: perspectives on an emerging proteome. Proteomics 2013; 13:2500-11. [PMID: 23749747 PMCID: PMC3978387 DOI: 10.1002/pmic.201300075] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/26/2013] [Accepted: 05/15/2013] [Indexed: 12/22/2022]
Abstract
There are an estimated 285 million people with visual impairment worldwide, of whom 39 million are blind. The pathogenesis of many eye diseases remains poorly understood. The human eye is currently an emerging proteome that may provide key insight into the biological pathways of disease. We review proteomic investigations of the human eye and present a catalogue of 4842 nonredundant proteins identified in human eye tissues and biofluids to date. We highlight the need to identify new biomarkers for eye diseases using proteomics. Recent advances in proteomics do now allow the identification of hundreds to thousands of proteins in tissues and fluids, characterization of various PTMs and simultaneous quantification of multiple proteins. To facilitate proteomic studies of the eye, the Human Eye Proteome Project (HEPP) was organized in September 2012. The HEPP is one of the most recent components of the Biology/Disease-driven Human Proteome Project (B/D-HPP) whose overarching goal is to support the broad application of state-of-the-art measurements of proteins and proteomes by life scientists studying the molecular mechanisms of biological processes and human disease. The large repertoire of investigative proteomic tools has great potential to transform vision science and enhance understanding of physiology and disease processes that affect sight.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|