1
|
Ban M, Feng W, Hou M, Zhang Z, Cui L. IVF exposure induced intergenerational effects on metabolic phenotype in mice. Reprod Biomed Online 2024; 49:103992. [PMID: 38889592 DOI: 10.1016/j.rbmo.2024.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 04/09/2024] [Indexed: 06/20/2024]
Abstract
RESEARCH QUESTION What is the potential transmission of metabolic phenotype from IVF offspring to the subsequent generation? DESIGN An IVF mouse model was established. The F1 generation mice were produced though IVF or natural mating and the F2 generation was obtained through the mating of F1 generation males with normal females. Their metabolic phenotype, including systemic and hepatic glucolipid metabolism, was examined. RESULTS It was found that IVF F1 males exhibited metabolic changes. Compared with the control group, the IVF F1 generation showed increased body weight, elevated fasting glucose and insulin, and increased serum triglyceride concentrations. IVF F1 mice also showed an increased expression of hepatic lipogenesis and autophagy genes. Moreover, IVF F1 males transmitted some metabolic changes to their own male progeny (IVF F2) in the absence of a dietary challenge. IVF F2 mice had increased peri-epididymal and subcutaneous fat and decreased insulin sensitivity. Under the 'second hit' of a high-fat diet, IVF F2 mice further showed increased hepatic lipid deposition with unaltered autophagy levels. CONCLUSION This research demonstrates the impact of IVF on hepatic glucose-lipid metabolism in two successive generations of offspring, highlighting the need for additional investigation. Enhanced understanding of the mechanisms underlying the transmission of multigenerational effects induced by IVF could potentially lead to the advancement of therapeutic interventions for individuals experiencing infertility.
Collapse
Affiliation(s)
- Miaomiao Ban
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Shandong, China.; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Shandong, China.; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Shandong, China.; Shandong Technology Innovation Center for Reproductive Health, Shandong, China.; Shandong Provincial Clinical Research Center for Reproductive Health, Shandong, China.; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Shandong, China
| | - Wanbing Feng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Shandong, China.; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Shandong, China.; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Shandong, China.; Shandong Technology Innovation Center for Reproductive Health, Shandong, China.; Shandong Provincial Clinical Research Center for Reproductive Health, Shandong, China.; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Shandong, China
| | - Min Hou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Shandong, China.; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Shandong, China.; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Shandong, China.; Shandong Technology Innovation Center for Reproductive Health, Shandong, China.; Shandong Provincial Clinical Research Center for Reproductive Health, Shandong, China.; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Shandong, China
| | - Zhirong Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Shandong, China.; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Shandong, China.; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Shandong, China.; Shandong Technology Innovation Center for Reproductive Health, Shandong, China.; Shandong Provincial Clinical Research Center for Reproductive Health, Shandong, China.; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Shandong, China
| | - Linlin Cui
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Shandong, China.; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Shandong, China.; Shandong Technology Innovation Center for Reproductive Health, Shandong, China.; Shandong Provincial Clinical Research Center for Reproductive Health, Shandong, China.; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Shandong, China.; State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, The Second Hospital, Shandong University, Shandong, China..
| |
Collapse
|
2
|
Sadeghi M, Andani MR, Hajian M, Sanei N, Moradi-Hajidavaloo R, Mahvash N, Jafarpour F, Nasr-Esfahani MH. Developmental competence of IVF and SCNT goat embryos is improved by inhibition of canonical WNT signaling. PLoS One 2023; 18:e0281331. [PMID: 37075045 PMCID: PMC10115261 DOI: 10.1371/journal.pone.0281331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/20/2023] [Indexed: 04/20/2023] Open
Abstract
The specific role of the canonical WNT/β-catenin signaling pathway during the preimplantation development of goat remains unclear. Our objective was to investigate the expression of β-CATENIN, one of the critical components of Wnt signaling pathway, in IVF embryos and compare it with SCNT embryos in goat. In addition, we evaluated the consequence of inhibition of β-catenin using IWR1. Initially, we observed cytoplasmic expression of β-CATENIN in 2 and 8-16 cell stage embryos and membranous expression of β-CATENIN in compact morula and blastocyst stages. Furthermore, while we observed exclusively membranous localization of β-catenin in IVF blastocysts, we observed both membranous and cytoplasmic localization in SCNT blastocysts. We observed that Inhibition of WNT signaling by IWR1 during compact morula to blastocyst transition (from day 4 till day 7 of in vitro culture) increased blastocyst formation rate in both IVF and SCNT embryos. In conclusion, it seems that WNT signaling system has functional role in the preimplantation goat embryos, and inhibition of this pathway during the period of compact morula to blastocyst transition (D4-D7) can improve preimplantation embryonic development.
Collapse
Affiliation(s)
- Marjan Sadeghi
- Department of Biology, Faculty of Science and Technology, ACECR Institute of Higher Education (Isfahan), Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahimi Andani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nafiseh Sanei
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Reza Moradi-Hajidavaloo
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nasrin Mahvash
- Department of Biology, Faculty of Science and Technology, ACECR Institute of Higher Education (Isfahan), Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
3
|
El-Sheikh M, Mesalam A, Khalil AAK, Idrees M, Ahn MJ, Mesalam AA, Kong IK. Downregulation of PI3K/AKT/mTOR Pathway in Juglone-Treated Bovine Oocytes. Antioxidants (Basel) 2023; 12:antiox12010114. [PMID: 36670976 PMCID: PMC9854430 DOI: 10.3390/antiox12010114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
We have previously reported that juglone, a natural compound found in Juglandaceae with a wide range of biological activities, can reduces the developmental competence of bovine oocytes. In the current study, we investigated the possible mechanisms behind the toxicity of juglone and the relationship with PI3K/AKT/mTOR signaling during the in vitro maturation (IVM) of oocytes. Results show that oocyte exposure to juglone was associated with a significant decrease in filamentous actin (F-actin) accumulation. The RT-qPCR showed downregulation of the meiosis progression indicator GSK-3A, oocyte development marker BMP15, mitochondria fusion controlling MFN1, oxidative stress-related OGG1, and histone methylation-related EZH1, EZH2, SUZ12, G9a, and SUV39H2 genes in juglone-treated oocytes. In addition, glycolysis- (PFK1 and GLUT1), ATP synthesis- (ATPase8 and ATP5F1B), and OXPHOS-specific markers (SDHA and SDHD), as well as the oocyte survival regulators (SOD2, VEGF, and MAPK1) significantly decreased upon juglone treatment. Moreover, lower expression of PI3K, AKT, and mTOR was observed at the transcriptional and/or translational level(s). The autophagy markers LC3B and beclin-1 as well as the DNA damage-specific marker 8-OxoG displayed overexpression in juglone-exposed oocytes. Taken together, our results show that administration of juglone during the IVM can reduce the quality and developmental health of bovine oocytes through downregulation of the PI3K/AKT/mTOR pathway and its downstream signaling cascades.
Collapse
Affiliation(s)
- Marwa El-Sheikh
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre (NRC), Dokki, Cairo 12622, Egypt
| | - Ayman Mesalam
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Atif Ali Khan Khalil
- Department of Pharmacognosy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ahmed Atef Mesalam
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Dokki, Cairo 12622, Egypt
- Correspondence: (A.A.M.); (I.-K.K.)
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Republic of Korea
- Correspondence: (A.A.M.); (I.-K.K.)
| |
Collapse
|
4
|
Chu M, Yao F, Xi G, Yang J, Zhang Z, Yang Q, Tian J, An L. Vitamin C Rescues in vitro Embryonic Development by Correcting Impaired Active DNA Demethylation. Front Cell Dev Biol 2021; 9:784244. [PMID: 34869387 PMCID: PMC8640463 DOI: 10.3389/fcell.2021.784244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
During preimplantation development, a wave of genome-wide DNA demethylation occurs to acquire a hypomethylated genome of the blastocyst. As an essential epigenomic event, postfertilization DNA demethylation is critical to establish full developmental potential. Despite its importance, this process is prone to be disrupted due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF), and thus leading to epigenetic errors. However, since the first case of aberrant DNA demethylation reported in IVF embryos, its underlying mechanism remains unclear and the strategy for correcting this error remains unavailable in the past decade. Thus, understanding the mechanism responsible for DNA demethylation defects, may provide a potential approach for preventing or correcting IVF-associated complications. Herein, using mouse and bovine IVF embryos as the model, we reported that ten-eleven translocation (TET)-mediated active DNA demethylation, an important contributor to the postfertilization epigenome reprogramming, was impaired throughout preimplantation development. Focusing on modulation of TET dioxygenases, we found vitamin C and α-ketoglutarate, the well-established important co-factors for stimulating TET enzymatic activity, were synthesized in both embryos and the oviduct during preimplantation development. Accordingly, impaired active DNA demethylation can be corrected by incubation of IVF embryos with vitamin C, and thus improving their lineage differentiation and developmental potential. Together, our data not only provides a promising approach for preventing or correcting IVF-associated epigenetic errors, but also highlights the critical role of small molecules or metabolites from maternal paracrine in finetuning embryonic epigenomic reprogramming during early development.
Collapse
Affiliation(s)
- Meiqiang Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fusheng Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guangyin Xi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiajun Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenni Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qianying Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Yang Q, Liu J, Wang Y, Zhao W, Wang W, Cui J, Yang J, Yue Y, Zhang S, Chu M, Lyu Q, Ma L, Tang Y, Hu Y, Miao K, Zhao H, Tian J, An L. A proteomic atlas of ligand-receptor interactions at the ovine maternal-fetal interface reveals the role of histone lactylation in uterine remodeling. J Biol Chem 2021; 298:101456. [PMID: 34861240 PMCID: PMC8733267 DOI: 10.1016/j.jbc.2021.101456] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023] Open
Abstract
Well-orchestrated maternal–fetal cross talk occurs via secreted ligands, interacting receptors, and coupled intracellular pathways between the conceptus and endometrium and is essential for successful embryo implantation. However, previous studies mostly focus on either the conceptus or the endometrium in isolation. The lack of integrated analysis impedes our understanding of early maternal–fetal cross talk. Herein, focusing on ligand–receptor complexes and coupled pathways at the maternal–fetal interface in sheep, we provide the first comprehensive proteomic map of ligand–receptor pathway cascades essential for embryo implantation. We demonstrate that these cascades are associated with cell adhesion and invasion, redox homeostasis, and the immune response. Candidate interactions and their physiological roles were further validated by functional experiments. We reveal the physical interaction of albumin and claudin 4 and their roles in facilitating embryo attachment to endometrium. We also demonstrate a novel function of enhanced conceptus glycolysis in remodeling uterine receptivity by inducing endometrial histone lactylation, a newly identified histone modification. Results from in vitro and in vivo models supported the essential role of lactate in inducing endometrial H3K18 lactylation and in regulating redox homeostasis and apoptotic balance to ensure successful implantation. By reconstructing a map of potential ligand–receptor pathway cascades at the maternal–fetal interface, our study presents new concepts for understanding molecular and cellular mechanisms that fine-tune conceptus–endometrium cross talk during implantation. This provides more direct and accurate insights for developing potential clinical intervention strategies to improve pregnancy outcomes following both natural and assisted conception.
Collapse
Affiliation(s)
- Qianying Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Juan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenjing Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Cui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiajun Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuan Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meiqiang Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingji Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lizhu Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yawen Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yupei Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Miao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haichao Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Bo C, Geng X, Zhang J, Sai L, Zhang Y, Yu G, Zhang Z, Liu K, Du Z, Peng C, Jia Q, Shao H. Comparative proteomic analysis of silica-induced pulmonary fibrosis in rats based on tandem mass tag (TMT) quantitation technology. PLoS One 2020; 15:e0241310. [PMID: 33119648 PMCID: PMC7595299 DOI: 10.1371/journal.pone.0241310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Silicosis is a systemic disease characterized by chronic persistent inflammation and incurable pulmonary fibrosis with the underlying molecular mechanisms to be fully elucidated. In this study, we employed tandem mass tag (TMT) based on quantitative proteomics technology to detect differentially expressed proteins (DEPs) in lung tissues of silica-exposed rats. A total of 285 DEPs (145 upregulated and 140 downregulated) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the biological pathway and functional classification of the proteins. Results showed that these DEPs were mainly enriched in the phagosome, lysosome function, complement and the coagulation cascade, glutathione metabolism, focal adhesion and ECM-receptor interactions. To validate the proteomics data, we selected and analyzed the expression trends of six proteins including CD14, PSAP, GM2A, COL1A1, ITGA8 and CLDN5 using parallel reaction monitoring (PRM). The consistent result between PRM and TMT indicated the reliability of our proteomic data. These findings will help to reveal the pathogenesis of silicosis and provide potential therapeutic targets. Data are available via ProteomeXchange with identifier PXD020625.
Collapse
Affiliation(s)
- Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Xiao Geng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Juan Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Yu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Zhenling Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Kai Liu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Cheng Peng
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
- * E-mail: (QJ); (HS)
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
- * E-mail: (QJ); (HS)
| |
Collapse
|
7
|
Liu X, Yu Y, Maha IF, Kong J, Xie X, Yin F. Label-free quantitative proteomics analysis of skin of yellow drum (Nibea albiflora) reveals immune mechanism against Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2020; 101:284-290. [PMID: 32276037 DOI: 10.1016/j.fsi.2020.03.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
To explore the resistance mechanism of locally infected skin of yellow drum (Nibea albiflora) against Cryptocaryon irritans infection, N. albiflora were infected with C. irritans at a median lethal concentration of 2050 theronts/g fish. Then, the skin of the infected group (24 hT and 72 hT) and the control group (24 hC and 72 hC) were sampled at 24 h and 72 h for quantitative proteomics analysis. A total of 643 proteins were identified, of which 61 proteins were significantly affected by interaction between time and infection, 83 and 119 proteins were significantly affected by the infection and time, respectively. In addition, 17, 61, 81 and 45 differentially expressed proteins (DEPs) were obtained from pairwise comparison (24 hT vs 24 hC, 72 hT vs 72 hC, 72 hT vs 24 hT and 72 hC vs 24 hC), respectively. DEPs in 24 hT vs 24 hC and 72 hT vs 72 hC were mainly enriched in Gene Ontology terms (transferase activity, protein folding and isomerase activity) and Kyoto Encyclopedia of Genes and Genomes pathways (biosynthesis of antibiotics, carbon metabolism and Citrate cycle). Among them, enriched DEPs were malate dehydrogenase 2 (MDH2), malate dehydrogenase 1 ab (MDH 1 ab), citrate synthase, etc. Immune-related DEPs such as complement component C3 and Cell division cycle 42 were involved in response to stimulus and signal transduction, etc. Also, DEPs such as collagen, heat shock protein 75 and MDH2 play a role in helping fish skin wounds to heal and provide energy. Furthermore, protein-protein interaction analysis indicated that 18 proteins such as MDH2, MDH 1 ab, complement C3 and collagen were interrelated. In conclusion, this study found that many proteins in N. albiflora contribute to resist against C. irritans and promote fish recovery.
Collapse
Affiliation(s)
- Xiao Liu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| | - Youbin Yu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| | - Ivon F Maha
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| | - Jindong Kong
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| | - Xiao Xie
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China.
| | - Fei Yin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China.
| |
Collapse
|
8
|
Yang Q, Fu W, Wang Y, Miao K, Zhao H, Wang R, Guo M, Wang Z, Tian J, An L. The proteome of IVF-induced aberrant embryo-maternal crosstalk by implantation stage in ewes. J Anim Sci Biotechnol 2020; 11:7. [PMID: 31956410 PMCID: PMC6958772 DOI: 10.1186/s40104-019-0405-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/26/2019] [Indexed: 01/17/2023] Open
Abstract
Background Implantation failure limits the success of in vitro fertilization and embryo transfer (IVF-ET). Well-organized embryo-maternal crosstalk is essential for successful implantation. Previous studies mainly focused on the aberrant development of in vitro fertilized (IVF) embryos. In contrast, the mechanism of IVF-induced aberrant embryo-maternal crosstalk is not well defined. Results In the present study, using ewes as the model, we profiled the proteome that features aberrant IVF embryo-maternal crosstalk following IVF-ET. By comparing in vivo (IVO) and IVF conceptuses, as well as matched endometrial caruncular (C) and intercaruncular (IC) areas, we filtered out 207, 295, and 403 differentially expressed proteins (DEPs) in each comparison. Proteome functional analysis showed that the IVF conceptuses were characterized by the increased abundance of energy metabolism and proliferation-related proteins, and the decreased abundance of methyl metabolism-related proteins. In addition, IVF endometrial C areas showed the decreased abundance of endometrial remodeling and redox homeostasis-related proteins; while IC areas displayed the aberrant abundance of protein homeostasis and extracellular matrix (ECM) interaction-related proteins. Based on these observations, we propose a model depicting the disrupted embryo-maternal crosstalk following IVF-ET: Aberrant energy metabolism and redox homeostasis of IVF embryos, might lead to an aberrant endometrial response to conceptus-derived pregnancy signals, thus impairing maternal receptivity. In turn, the suboptimal uterine environment might stimulate a compensation effect of the IVF conceptuses, which was revealed as enhanced energy metabolism and over-proliferation. Conclusion Systematic proteomic profiling provides insights to understand the mechanisms that underlie the aberrant IVF embryo-maternal crosstalk. This might be helpful to develop practical strategies to prevent implantation failure following IVF-ET.
Collapse
Affiliation(s)
- Qianying Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Wei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yue Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Kai Miao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Haichao Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Rui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Min Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhilong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
9
|
Dietary energy and protein levels influenced the growth performance, ruminal morphology and fermentation and microbial diversity of lambs. Sci Rep 2019; 9:16612. [PMID: 31719633 PMCID: PMC6851105 DOI: 10.1038/s41598-019-53279-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/30/2019] [Indexed: 12/02/2022] Open
Abstract
The aim of the study was to evaluate the ruminal function and microbial community of lamb under different nutrient levels. Sixty-four lambs with similarity body weight were randomly assigned to four groups after weaning off ewe’s milk on the 17th day (6.2 ± 0.2 kg). The lambs of the control group (CON) were fed a basal diet, and the other three groups were subjected to a diet of decreased protein (PR), digestible energy (ER) or both of them at 20% (BR) of basal diet. The decrease of dietary protein or energy level decreased the average daily gain, ruminal weight and mucosal thickness of lambs (P < 0.05). The total volatile fatty acid (TVFA), acetate and propionate concentration of the CON group were significantly higher than that of the other three groups. The dietary protein and energy level affected the microbial diversity, and low energy level increased the relative abundance of phyla of Fibrobacteres, whereas at the genus level, increased the relative abundance of Butyrivibrio and Prevotellaceae. Under different dietary energy and protein levels, 14 genera exhibited significant correlation with ruminal fermentation. These findings supplied new perspective for the understanding of the dietary effect on ruminal microbial community interactions and are of great significance for establishing the optimal nutrient supply strategy for lambs.
Collapse
|
10
|
Azizi E, Ghaffari Novin M, Naji M, Amidi F, Shams Mofarahe Z. Does in vitro fertilization affect the expression of miRNAs and their biogenesis pathway in preimplantation mouse embryos? Birth Defects Res 2019; 112:62-70. [PMID: 31609063 DOI: 10.1002/bdr2.1599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Accepted: 09/18/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND In vitro fertilization (IVF) is a well-accepted procedure which has been utilized for the treatment of infertile patients. As embryos at early stages of development are very vulnerable, the IVF conditions may influence genetic and epigenetic regulation of preimplantation mouse embryo. METHODS We assessed the effect of IVF on the expression of developmental and implantation related miRNAs (miR-21, miR-93, miR-24, and let-7a), their common presumptive target (Stat3), and miRNA biogenesis pathway genes (Drosha, Dgcr8, Exportin-5, Dicer, and Ago2). in vivo 8-cell and blastocysts were compared to IVF embryos. Expression levels of miRNAs, Stat3, and miRNA biogenesis pathway genes were evaluated by qRT-PCR in in vivo (n = 8) and IVF (n = 4) embryos. RESULTS The expression levels of let-7a and Stat3 were significantly reduced in IVF blastocyst when compared with in vivo (p = .004 and p = .009, respectively). Nevertheless, the IVF procedure did not influence the expression levels of miRNA biogenesis pathway components in 8-cell and blastocyst embryos. CONCLUSIONS Downregulation of let-7a and developmental related transcription factor, Stat3, in IVF mouse blastocysts may affect preimplantation development and implantation of embryos. Moreover, the genes of the miRNA biogenesis pathway were not changed in preimplantation mouse embryos through the IVF procedure.
Collapse
Affiliation(s)
- Elham Azizi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Infertility and Reproductive Health Research Center (IRHRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Naji
- Urology and Nephrology Research Center (UNRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Eddhif B, Lange J, Guignard N, Batonneau Y, Clarhaut J, Papot S, Geffroy-Rodier C, Poinot P. Study of a novel agent for TCA precipitated proteins washing - comprehensive insights into the role of ethanol/HCl on molten globule state by multi-spectroscopic analyses. J Proteomics 2018; 173:77-88. [DOI: 10.1016/j.jprot.2017.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/10/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
|
12
|
Ren L, Zhang C, Tao L, Hao J, Tan K, Miao K, Yu Y, Sui L, Wu Z, Tian J, An L. High-resolution profiles of gene expression and DNA methylation highlight mitochondrial modifications during early embryonic development. J Reprod Dev 2017; 63:247-261. [PMID: 28367907 PMCID: PMC5481627 DOI: 10.1262/jrd.2016-168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Well-organized mitochondrial functions and dynamics are critical for early embryonic development and are operated via a large number of mitochondria-related genes (MtGs) encoded by both the nuclear and the mitochondrial genome.
However, the mechanisms underlying mitochondrial modifications during the critical window between blastocyst implantation and postimplantation organogenesis are poorly understood. Herein, we performed high-resolution dynamic
profiling of MtGs to acquire a more detailed understanding of mitochondrial modifications during early development. Our data suggest that the resumption of mitochondrial mass growth is not only facilitated by increased
mitochondrial biogenesis and mitochondrial DNA (mtDNA) replication, but also by the appropriate balance between mitochondrial fission and fusion. In addition, increased levels of reactive oxygen species (ROS) resulting from
enhanced mitochondrial functions may be the critical inducer for activating the glutathione (GSH)-based stress response system in early embryos. The appropriate balance between the mitochondrial stress response and apoptosis
appears to be significant for cell differentiation and early organogenesis. Furthermore, we found that most MtGs undergo de novo promoter methylation, which may have functional consequences on mitochondrial
functions and dynamics during early development. We also report that mtDNA methylation can be observed as early as soon after implantation. DNMT1, the predominant enzyme for maintaining DNA methylation, localized to the
mitochondria and bound to mtDNA by the implantation stage. Our study provides a new insight into the involvement of mitochondria in early mammalian embryogenesis. We also propose that the epigenetic modifications during early
development are significant for modulating mitochondrial functions and dynamics.
Collapse
Affiliation(s)
- Likun Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Chao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Li Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jing Hao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Kun Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Kai Miao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Yong Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Linlin Sui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Zhonghong Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
13
|
Wang B, Pfeiffer MJ, Drexler HCA, Fuellen G, Boiani M. Proteomic Analysis of Mouse Oocytes Identifies PRMT7 as a Reprogramming Factor that Replaces SOX2 in the Induction of Pluripotent Stem Cells. J Proteome Res 2016; 15:2407-21. [PMID: 27225728 DOI: 10.1021/acs.jproteome.5b01083] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The reprogramming process that leads to induced pluripotent stem cells (iPSCs) may benefit from adding oocyte factors to Yamanaka's reprogramming cocktail (OCT4, SOX2, KLF4, with or without MYC; OSK(M)). We previously searched for such facilitators of reprogramming (the reprogrammome) by applying label-free LC-MS/MS analysis to mouse oocytes, producing a catalog of 28 candidates that are (i) able to robustly access the cell nucleus and (ii) shared between mature mouse oocytes and pluripotent embryonic stem cells. In the present study, we hypothesized that our 28 reprogrammome candidates would also be (iii) abundant in mature oocytes, (iv) depleted after the oocyte-to-embryo transition, and (v) able to potentiate or replace the OSKM factors. Using LC-MS/MS and isotopic labeling methods, we found that the abundance profiles of the 28 proteins were below those of known oocyte-specific and housekeeping proteins. Of the 28 proteins, only arginine methyltransferase 7 (PRMT7) changed substantially during mouse embryogenesis and promoted the conversion of mouse fibroblasts into iPSCs. Specifically, PRMT7 replaced SOX2 in a factor-substitution assay, yielding iPSCs. These findings exemplify how proteomics can be used to prioritize the functional analysis of reprogrammome candidates. The LC-MS/MS data are available via ProteomeXchange with identifier PXD003093.
Collapse
Affiliation(s)
- Bingyuan Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing 100193, China
| | - Martin J Pfeiffer
- Max Planck Institute for Molecular Biomedicine , Röntgenstraße 20, 48149 Münster, Germany
| | - Hannes C A Drexler
- Max Planck Institute for Molecular Biomedicine , Bioanalytical Mass Spectrometry Facility, Röntgenstraße 20, 48149 Münster, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine , Röntgenstraße 20, 48149 Münster, Germany
| |
Collapse
|
14
|
Tan K, Zhang Z, Miao K, Yu Y, Sui L, Tian J, An L. Dynamic integrated analysis of DNA methylation and gene expression profiles in in vivo and in vitro fertilized mouse post-implantation extraembryonic and placental tissues. Mol Hum Reprod 2016; 22:485-98. [PMID: 27090932 DOI: 10.1093/molehr/gaw028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/30/2016] [Indexed: 01/02/2023] Open
Abstract
STUDY HYPOTHESIS How does in vitro fertilization (IVF) alter promoter DNA methylation patterns and its subsequent effects on gene expression profiles during placentation in mice? STUDY FINDING IVF-induced alterations in promoter DNA methylation might have functional consequences in a number of biological processes and functions during IVF placentation, including actin cytoskeleton organization, hematopoiesis, vasculogenesis, energy metabolism and nutrient transport. WHAT IS KNOWN ALREADY During post-implantation embryonic development, both embryonic and extraembryonic tissues undergo de novo DNA methylation, thereby establishing a global DNA methylation pattern, and influencing gene expression profiles. Embryonic and placental tissues of IVF conceptuses can have aberrant morphology and functions, resulting in adverse pregnancy outcomes such as pregnancy loss, low birthweight, and long-term health effects. To date, the IVF-induced global profiling of DNA methylation alterations, and their functional consequences on aberrant gene expression profiles in IVF placentas have not been systematically studied. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Institute for Cancer Research mice (6 week-old females and 8-9 week-old males) were used to generate in vivo fertilization (IVO) and IVF blastocysts. After either IVO and development (IVO group as control) or in vitro fertilization and culture (IVF group), blastocysts were collected and transferred to pseudo-pregnant recipient mice. Extraembryonic (ectoplacental cone and extraembryonic ectoderm) and placental tissues from both groups were sampled at embryonic day (E) 7.5 (IVO, n = 822; IVF, n = 795) and E10.5 (IVO, n = 324; IVF, n = 278), respectively. The collected extraembryonic (E7.5) and placental tissues (E10.5) were then used for high-throughput RNA sequencing (RNA-seq) and methylated DNA immunoprecipitation sequencing (MeDIP-seq). The main dysfunctions indicated by bioinformatic analyses were further validated using molecular detection, and morphometric and phenotypic analyses. MAIN RESULTS AND THE ROLE OF CHANCE Dynamic functional profiling of high-throughput data, together with molecular detection, and morphometric and phenotypic analyses, showed that differentially expressed genes dysregulated by DNA methylation were functionally involved in: (i) actin cytoskeleton disorganization in IVF extraembryonic tissues, which may impair allantois or chorion formation, and chorioallantoic fusion; (ii) disturbed hematopoiesis and vasculogenesis, which may lead to abnormal placenta labyrinth formation and thereby impairing nutrition transport in IVF placentas; (iii) dysregulated energy and amino acid metabolism, which may cause placental dysfunctions, leading to delayed embryonic development or even lethality; (iv) disrupted genetic information processing, which can further influence gene transcriptional and translational processes. LIMITATIONS, REASONS FOR CAUTION Findings in mouse placental tissues may not be fully representative of human placentas. Further studies are necessary to confirm these findings and determine their clinical significance. WIDER IMPLICATIONS OF THE FINDINGS Our study is the first to provide the genome-wide analysis of gene expression dysregulation caused by DNA methylation during IVF placentation. Systematic understanding of the molecular mechanisms implicated in IVF placentation can be useful for the improvement of existing assisted conception systems to prevent these IVF-associated safety concerns. STUDY FUNDING AND COMPETING INTERESTS This work was supported by grants from the National Natural Science Foundation of China (No. 31472092), and the National High-Tech R&D Program (Nos. 2011|AA100303, 2013AA102506). There was no conflict of interest.
Collapse
Affiliation(s)
- Kun Tan
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Zhenni Zhang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Kai Miao
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yong Yu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Linlin Sui
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Jianhui Tian
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Lei An
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
15
|
Wei X, Xiaoling Z, Kai M, Rui W, Jing X, Min G, Zhonghong W, Jianhui T, Xinyu Z, Lei A. Characterization and comparative analyses of transcriptomes for in vivo and in vitro produced peri-implantation conceptuses and endometria from sheep. J Reprod Dev 2016; 62:279-87. [PMID: 26946921 PMCID: PMC4919292 DOI: 10.1262/jrd.2015-064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
An increasing number of reports indicate that in vitro fertilization (IVF) is highly
associated with long‑term side effects on embryonic and postnatal development, and can sometimes result in
embryonic implant failure. While high‑throughput gene expression analysis has been used to explore the
mechanisms underlying IVF-induced side effects on embryonic development, little is known about the effects of
IVF on conceptus–endometrial interactions during the peri-implantation period. Using sheep as a model, we
performed a comparative transcriptome analysis between in vivo (IVO; in vivo
fertilized followed by further development in the uterus) and in vitro produced (IVP; IVF
with further culture in the incubator) conceptuses, and the caruncular and intercaruncular areas of the ovine
endometrium. We identified several genes that were differentially expressed between the IVO and IVP groups on
day 17, when adhesion between the trophoblast and the uterine luminal epithelium begins in sheep. By
performing Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis, we found that, in the conceptus, differentially expressed genes (DEGs) were associated mainly with
functions relating to cell binding and the cell cycle. In the endometrial caruncular area, DEGs were involved
in cell adhesion/migration and apoptosis, and in the intercaruncular area, they were significantly enriched in
pathways of signal transduction and transport. Thus, these DEGs are potential candidates for further exploring
the mechanism underlying IVF/IVP-induced embryonic implant failure that occurs due to a loss of interaction
between the conceptus and endometrium during the peri-implantation period.
Collapse
Affiliation(s)
- Xia Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Sciences and Technology, China Agricultural University, Beijing 100094, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yu S, Yan C, Yang X, He S, Liu J, Qin C, Huang C, Lu Y, Tian Z, Jia L. Pharmacoproteomic analysis reveals that metapristone (RU486 metabolite) intervenes E-cadherin and vimentin to realize cancer metastasis chemoprevention. Sci Rep 2016; 6:22388. [PMID: 26932781 PMCID: PMC4773818 DOI: 10.1038/srep22388] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/10/2016] [Indexed: 12/28/2022] Open
Abstract
Metapristone is the most predominant biological active metabolite of mifepristone, and being developed as a novel cancer metastasis chemopreventive agent by us. Despite its prominent metastasis chemopreventive effect, the underlying mechanism remains elusive. Our study, for the first time, demonstrated that metapristone had the ability to prevent breast cancer cells from migration, invasion, and interfere with their adhesion to endothelial cells. To explore the underlying mechanism of metapristone, we employed the iTRAQ technique to assess the effect of metapristone on MDA-MB-231 cells. In total, 5,145 proteins were identified, of which, 311 proteins showed significant differences in metapristone-treated cells compared to the control group (P-value < 0.05). Bioinformatic analysis showed many differentially expressed proteins (DEPs) functionally associated with post-translational modification, chaperones, translation, transcription, replication, signal transduction, etc. Importantly, many of the DEPs, such as E-cadherin, vimentin, TGF-β receptor I/II, smad2/3, β-catenin, caveolin, and dystroglycan were associated with TGF-β and Wnt signaling pathways, which were also linked to epithelial-to-mesenchymal transition (EMT) process. Further validation of the epithelial marker "E-caderin" and mesenchymal marker "vimetin" were carried out using immunoblot and immunofluorescence. These results have revealed a novel mechanism that metapristone-mediated metastasis chemoprevention is through intervening the EMT-related signaling pathways.
Collapse
Affiliation(s)
- Suhong Yu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Cuicui Yan
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Xingtian Yang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Sudang He
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Jian Liu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Chongtao Qin
- School of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou Fujian, 350108, China
| | - Chuanzhong Huang
- Internal Oncology Laboratory, Fujian Provincial Key Laboratory of Translational Medicine Oncology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, 350002, China
| | - Yusheng Lu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Zhongping Tian
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| |
Collapse
|
17
|
Song S, Hooiveld GJ, Zhang W, Li M, Zhao F, Zhu J, Xu X, Muller M, Li C, Zhou G. Comparative Proteomics Provides Insights into Metabolic Responses in Rat Liver to Isolated Soy and Meat Proteins. J Proteome Res 2016; 15:1135-42. [DOI: 10.1021/acs.jproteome.5b00922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shangxin Song
- Key
Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory
of Animal Products Processing, MOA; Jiang Synergetic Innovation Center
of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Guido J. Hooiveld
- Nutrition,
Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen 6703 HD, The Netherlands
| | - Wei Zhang
- Key
Laboratory of Human Functional Genomics Jiangsu Province, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Mengjie Li
- Key
Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory
of Animal Products Processing, MOA; Jiang Synergetic Innovation Center
of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fan Zhao
- Key
Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory
of Animal Products Processing, MOA; Jiang Synergetic Innovation Center
of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jing Zhu
- Key
Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory
of Animal Products Processing, MOA; Jiang Synergetic Innovation Center
of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xinglian Xu
- Key
Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory
of Animal Products Processing, MOA; Jiang Synergetic Innovation Center
of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Michael Muller
- Norwich
Medical School, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Chunbao Li
- Key
Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory
of Animal Products Processing, MOA; Jiang Synergetic Innovation Center
of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Guanghong Zhou
- Key
Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory
of Animal Products Processing, MOA; Jiang Synergetic Innovation Center
of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
18
|
Zhang X, Chen Y, Pan J, Liu X, Chen H, Zhou X, Yuan Z, Wang X, Mo D. iTRAQ-based quantitative proteomic analysis reveals the distinct early embryo myofiber type characteristics involved in landrace and miniature pig. BMC Genomics 2016; 17:137. [PMID: 26911206 PMCID: PMC4766617 DOI: 10.1186/s12864-016-2464-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/12/2016] [Indexed: 01/11/2023] Open
Abstract
Background Pig (Sus scrofa) is a major source of dietary proteins for human consumption and is becoming a valuable model in agricultural and biomedical research. The recently developed isobaric tag for relative and absolute quantitation (iTRAQ) method allows sensitive and accurate protein quantification. Here, we performed the first iTRAQ-based quantitative proteomic analyses of Landrace (LR) and Wuzhishan (WZS) pig longissimus dorsi muscle tissues during early embryonic development. Results The iTRAQ-based early embryonic longissimus dorsi muscle study of LR and WZS ranging from 21 to 42 days post coitus (dpc) identified a total of 4431 proteins from17,214 peptides, which were matched with 36,4025 spectra at a false discovery rate of 5 %. In both WZS and LR, the largest amount of differentially expressed proteins (DEPs) were found between 28 and 35 dpc. 252 breed-DEPs were selected by GO analysis, including 8 myofibrillar proteins. Only MYHCI/IIA mRNA were detected due to early embryonic stages, and significantly higher expression of them were found in WZS during these 4 stages. MYHCI was first found in WZS at 28 dpc and expressed in both breeds at later stages, while MYHCII protein was not detected until 35 dpc in both breeds. Thus, 33 myogenic breed-DEPs selected from last two stages were analyzed by STRING, which showed that some myofibrillar proteins (MYH1, TPM4, MYH10, etc.) and functional proteins (CSRP2, CASQ2, OTC, etc.), together with candidate myogenic proteins (H3F3A, HDGFRP2, etc.), probably participate in the regulatory network of myofiber formation. Conclusion Our iTRAQ-based early embryonic longissimus dorsi muscle study of LR and WZS provides new data on the in vivo muscle development distinctions during early embryonic development, which contributes to the improved understanding in the regulation mechanism of early myogenesis in agricultural animals. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2464-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xumeng Zhang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Jinchun Pan
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, Guangdong, China.
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Hu Chen
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Xingyu Zhou
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Zhuning Yuan
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Xilong Wang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, Guangdong, China.
| | - Delin Mo
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
19
|
Xu Y, Guo N, Dou D, Ran X, Ma X, Kuang H. Proteomics Study on Nonallergic Hypersensitivity Induced by Compound 4880 and Ovalbumin. PLoS One 2016; 11:e0148262. [PMID: 26829397 PMCID: PMC4734762 DOI: 10.1371/journal.pone.0148262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/16/2016] [Indexed: 01/25/2023] Open
Abstract
Nonallergic hypersensitivity reaction (NHR) accounts for more than 77% of all immune-mediated immediate hypersensitivity reactions and has become a serious threat to public health. Here, proteomics was used to study the NHR mechanism of two typical substances, the compound 4880 and ovalbumin. Twelve different proteins were suggested as potential biomarkers for examining the NHR mechanism, and our results revealed that the mechanism mainly encompassed 2 processes, i.e., generation and effect processes. The generation process could be classified as direct stimulation, complement (classical and alternative), coagulation, kallikrein-kinin, and integrated pathways. Thus glutathione peroxidase 1, terminal complement complex (complement factor 4d and Bb), coagulation 13, kininogen-1, and IgE could be used as candidate biomarkers for the indication of the corresponding pathways respectively, the proteins were further confirmed by ELISA. And the effect process was mainly composed of histamine as well as proteins such as DCD and MYLPF, which could be used as important indices for the symptoms of NHR. Our study differs from previous studies in that C4880 was found to not only be involved in the direct stimulation pathway, but also in the activated complement and kallikrein-kinin pathways through the coagulation pathway. We also report for the first time that ovalbumin-induced NHR could be a combination of the coagulation, classical complement, and integrated pathways.
Collapse
Affiliation(s)
- Yubin Xu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
- * E-mail: (DQD); (HXK)
| | - Xiaoku Ran
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Xiande Ma
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Haixue Kuang
- College of pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- * E-mail: (DQD); (HXK)
| |
Collapse
|
20
|
de Waal E, Vrooman LA, Fischer E, Ord T, Mainigi MA, Coutifaris C, Schultz RM, Bartolomei MS. The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model. Hum Mol Genet 2015; 24:6975-85. [PMID: 26401051 PMCID: PMC4654053 DOI: 10.1093/hmg/ddv400] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/24/2015] [Accepted: 09/21/2015] [Indexed: 12/14/2022] Open
Abstract
Assisted reproductive technologies (ART) are associated with several complications including low birth weight, abnormal placentation and increased risk for rare imprinting disorders. Indeed, experimental studies demonstrate ART procedures independent of existing infertility induce epigenetic perturbations in the embryo and extraembryonic tissues. To test the hypothesis that these epigenetic perturbations persist and result in adverse outcomes at term, we assessed placental morphology and methylation profiles in E18.5 mouse concepti generated by in vitro fertilization (IVF) in two different genetic backgrounds. We also examined embryo transfer (ET) and superovulation procedures to ascertain if they contribute to developmental and epigenetic effects. Increased placental weight and reduced fetal-to-placental weight ratio were observed in all ART groups when compared with naturally conceived controls, demonstrating that non-surgical embryo transfer alone can impact placental development. Furthermore, superovulation further induced overgrowth of the placental junctional zone. Embryo transfer and superovulation defects were limited to these morphological changes, as we did not observe any differences in epigenetic profiles. IVF placentae, however, displayed hypomethylation of imprinting control regions of select imprinted genes and a global reduction in DNA methylation levels. Although we did not detect significant differences in DNA methylation in fetal brain or liver samples, rare IVF concepti displayed very low methylation and abnormal gene expression from the normally repressed allele. Our findings suggest that individual ART procedures cumulatively increase placental morphological abnormalities and epigenetic perturbations, potentially causing adverse neonatal and long-term health outcomes in offspring.
Collapse
Affiliation(s)
| | | | | | - Teri Ord
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA and
| | - Monica A Mainigi
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA and
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA and
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
21
|
Ren L, Wang Z, An L, Zhang Z, Tan K, Miao K, Tao L, Cheng L, Zhang Z, Yang M, Wu Z, Tian J. Dynamic comparisons of high-resolution expression profiles highlighting mitochondria-related genes between in vivo and in vitro fertilized early mouse embryos. Hum Reprod 2015; 30:2892-911. [PMID: 26385791 DOI: 10.1093/humrep/dev228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Does in vitro fertilization (IVF) induce comprehensive and consistent changes in gene expression associated with mitochondrial biogenesis and function in mouse embryos from the pre- to post-implantation stage? SUMMARY ANSWER IVF-induced consistent mitochondrial dysfunction in early mouse embryos by altering the expression of a number of mitochondria-related genes. WHAT IS KNOWN ALREADY Although IVF is generally safe and successful for the treatment of human infertility, there is increasing evidence that those conceived by IVF suffer increased health risks. The mitochondrion is a multifunctional organelle that plays a crucial role in early development. We hypothesized that mitochondrial dysfunction is associated with increased IVF-induced embryonic defects and risks in offspring. STUDY DESIGN, SIZE, DURATION After either IVF and development (IVO groups as control) or IVF and culture (IVF groups), blastocysts were collected and transferred to pseudo-pregnant recipient mice. Both IVO and IVF embryos were sampled at E3.5, E7.5 and E10.5, and the expression profiles of mitochondria-related genes from the pre- to post-implantation stage were compared. PARTICIPANTS/MATERIALS, SETTING, METHODS ICR mice (5- to 6-week-old males and 8- to 9-week-old females) were used to generate IVO and IVF blastocysts. Embryo day (E) 3.5 blastocysts were transferred to pseudo-pregnant recipient mice. Both IVO and IVF embryos were sampled at E3.5, E7.5 and E10.5 for generating transcriptome data. Mitochondria-related genes were filtered for dynamic functional profiling. Mitochondrial dysfunctions indicated by bioinformatic analysis were further validated using cytological and molecular detection, morphometric and phenotypic analysis and integrated analysis with other high-throughput data. MAIN RESULTS AND THE ROLE OF CHANCE A total of 806, 795 and 753 mitochondria-related genes were significantly (P < 0.05) dysregulated in IVF embryos at E3.5, E7.5 and E10.5, respectively. Dynamic functional profiling, together with cytological and molecular investigations, indicated that IVF-induced mitochondrial dysfunctions mainly included: (i) inhibited mitochondrial biogenesis and impaired maintenance of DNA methylation of mitochondria-related genes during the post-implantation stage; (ii) dysregulated glutathione/glutathione peroxidase (GSH/Gpx) system and increased mitochondria-mediated apoptosis; (iii) disturbed mitochondrial β-oxidation, oxidative phosphorylation and amino acid metabolism; and (iv) disrupted mitochondrial transmembrane transport and membrane organization. We also demonstrated that some mitochondrial dysfunctions in IVF embryos, including impaired mitochondrial biogenesis, dysregulated GSH homeostasis and reactive oxygen species-induced apoptosis, can be rescued by treatment with melatonin, a mitochondria-targeted antioxidant, during in vitro culture. LIMITATIONS, REASONS FOR CAUTION Findings in mouse embryos and fetuses may not be fully transferable to humans. Further studies are needed to confirm these findings and to determine their clinical significance better. WIDER IMPLICATIONS OF THE FINDINGS The present study provides a new insight in understanding the mechanism of IVF-induced aberrations during embryonic development and the increased health risks in the offspring. In addition, we highlighted the possibility of improving existing IVF systems by modulating mitochondrial functions.
Collapse
Affiliation(s)
- Likun Ren
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhuqing Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhennan Zhang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Kun Tan
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Kai Miao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Li Tao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Linghua Cheng
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhenni Zhang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Mingyao Yang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhonghong Wu
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian District, Beijing 100193, China
| |
Collapse
|
22
|
Huan P, Wang H, Liu B. A Label-Free Proteomic Analysis on Competent Larvae and Juveniles of the Pacific Oyster Crassostrea gigas. PLoS One 2015; 10:e0135008. [PMID: 26247880 PMCID: PMC4527670 DOI: 10.1371/journal.pone.0135008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/17/2015] [Indexed: 11/19/2022] Open
Abstract
Current understandings on the molecular mechanisms underlying bivalve metamorphosis are still fragmentary, and a comprehensive description is required. In this study, using a large-scale label-free proteomic approach, we described and compared the proteomes of competent larvae (CL) and juveniles (JU) of the Pacific oyster, Crassostrea gigas. A total of 788 proteins were identified: 392 in the CL proteome and 636 in the JU proteome. Gene Ontology analysis of the proteome from each sample revealed active metabolic processes in both stages. Further quantitative analyses revealed 117 proteins that were differentially expressed between the two samples. These proteins were divided into eight groups: cytoskeleton and cell adhesion, protein synthesis and degradation, immunity and stress response, development of particular tissues, signal regulation, metabolism and energy supply, transport, and other proteins. A certification experiment using real-time PCR assay confirmed 20 of 30 examined genes exhibited the same trends at the mRNA and protein levels. The differentially expressed proteins may play roles in tissue remodeling, signal transduction, and organ development during and after metamorphosis. Novel roles were proposed for some differentially expressed proteins, such as chymotrypsin. The results of this work provide an overview of metamorphosis and post-metamorphosis development of C. gigas at the protein level. Future studies on the functions of the differentially expressed proteins will help to obtain a more in-depth understanding of bivalve metamorphosis.
Collapse
Affiliation(s)
- Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Hongxia Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail:
| |
Collapse
|
23
|
Guo J, Liu Z, Sun H, Huang Y, Albrecht E, Zhao R, Yang X. Lipopolysaccharide challenge significantly influences lipid metabolism and proteome of white adipose tissue in growing pigs. Lipids Health Dis 2015; 14:68. [PMID: 26152344 PMCID: PMC4493945 DOI: 10.1186/s12944-015-0067-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/26/2015] [Indexed: 12/11/2022] Open
Abstract
Background White adipose tissue is recognized as a highly active organ, which is closely related to a large number of physiological and metabolic processes besides storing triglycerides. However, little is known regarding the response of adipose tissue to acute inflammation. Therefore, in this study we employed growing pigs to investigate the changes of lipid metabolism and proteome in white adipose tissue after lipopolysaccharide (LPS) stimulation as a model for bacterial infection. Methods The expression of lipid metabolism and inflammation related genes was determined by quantitative real-time polymerase chain reaction. Label-free proteomics analysis was used to investigate changes of the protein profile in white adipose tissue and western blot was used to verify changes of selected adipokines. Results The results indicated that LPS significantly increased the expression of toll-like receptor (TLR) 2/4 pathway-related genes and pro-inflammatory factors. Lipid metabolism related genes, including acetyl-CoA carboxylase 1 (ACACA), fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD), uncoupling protein 2 (UCP2), and 11 β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), were down-regulated and the lipolytic enzyme activity was decreased after LPS injection. Proteome analysis revealed 47 distinct proteins with > 2-fold changes. The down-regulation of two proteins (cAMP-dependent protein kinase type II-alpha regulatory subunit and β-tubulin) has been verified by western blot analysis. In addition, the abundance of two adipokines (adiponectin and zinc-α2-glycoprotein) was significantly increased after LPS injection. Conclusion In conclusion, LPS challenge can cause acute inflammation in white adipose tissue. Concurrently, lipid metabolism was significantly suppressed and the abundance of several proteins changed in white adipose tissue. The results provide new clues to understand the adipose dysfunction during inflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12944-015-0067-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Guo
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Zhiqing Liu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Hailin Sun
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yanping Huang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
24
|
Tan K, An L, Wang SM, Wang XD, Zhang ZN, Miao K, Sui LL, He SZ, Nie JZ, Wu ZH, Tian JH. Actin Disorganization Plays a Vital Role in Impaired Embryonic Development of In Vitro-Produced Mouse Preimplantation Embryos. PLoS One 2015; 10:e0130382. [PMID: 26076347 PMCID: PMC4468147 DOI: 10.1371/journal.pone.0130382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/19/2015] [Indexed: 02/04/2023] Open
Abstract
Assisted reproductive technology (ART) is being increasingly applied to overcome infertility. However, the in vitro production process, the main procedure of ART, can lead to aberrant embryonic development and health-related problems in offspring. Understanding the mechanisms underlying the ART-induced side effects is important to improve the ART process. In this study, we carried out comparative transcriptome profiling between in vivo- (IVO) and in vitro- produced (IVP) mouse blastocysts. Our results suggested that aberrant actin organization might be a major factor contributing to the impaired development of IVP embryos. To test this, we examined the effect of actin disorganization on the development of IVP preimplantation embryos. Specific disruption of actin organization by cytochalasin B (CB) indicated that well-organized actin is essential for in vitro embryonic development. Supplementing the culture medium with 10–9 M melatonin, a cytoskeletal modulator in adult somatic cells, significantly reversed the disrupted expression patterns of genes related to actin organization, including Arhgef2, Bcl2, Coro2b, Flnc, and Palld. Immunofluorescence analysis showed that melatonin treatment of IVP embryos significantly improved the distribution and organization of actin filaments (F-actin) from the 8-cell stage onwards. More importantly, we found that melatonin alleviated the CB-mediated aberrant F-actin distribution and organization and rescued CB-induced impaired embryonic development. This is the first study to indicate that actin disorganization is implicated in impaired development of IVP embryos during the preimplantation stage. We also demonstrated that improving actin organization is a promising strategy to optimize existing IVP systems.
Collapse
Affiliation(s)
- Kun Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Shu-Min Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xiao-Dong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhen-Ni Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Kai Miao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Lin-Lin Sui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Shu-Zhi He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jing-Zhou Nie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhong-Hong Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jian-Hui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
25
|
Sui L, An L, Tan K, Wang Z, Wang S, Miao K, Ren L, Tao L, He S, Yu Y, Nie J, Liu Q, Xing L, Wu Z, Hou Z, Tian J. Dynamic proteomic profiles of in vivo- and in vitro-produced mouse postimplantation extraembryonic tissues and placentas. Biol Reprod 2014; 91:155. [PMID: 25320150 DOI: 10.1095/biolreprod.114.124248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As the interface between the mother and the developing fetus, the placenta is believed to play an important role in assisted reproductive technology (ART)-induced aberrant intrauterine and postnatal development. However, the mechanisms underlying aberrant placentation remain unclear, especially during extraembryonic tissue development and early stages of placental formation. Using a mouse model, this investigation provides the first comparative proteomic analysis of in vivo (IVO) and in vitro-produced (IVP) extraembryonic tissues and placentas after IVO fertilization and development, or in vitro fertilization and culture, respectively. We identified 165 and 178 differentially expressed proteins (DEPs) between IVO and IVP extraembryonic tissues and placentas on Embryonic Day 7.5 (E7.5) and E10.5, respectively. Many DEPs were functionally associated with genetic information processing, such as impaired de novo DNA methylation, as well as posttranscriptional, translational and posttranslational dysregulation. These novel findings were further confirmed by global hypomethylation, and a lower level of correlation was found between the transcriptome and proteome in the IVP groups. In addition, numerous DEPs were involved in energy and amino acid metabolism, cytoskeleton organization and transport, and vasculogenesis and angiogenesis. These disturbed processes and pathways are likely to be associated with embryonic intrauterine growth restriction, an enlarged placenta, and impaired labyrinth morphogenesis. This study provides a direct and comprehensive reference for the further exploration of the placental mechanisms that underlie ART-induced developmental aberrations.
Collapse
Affiliation(s)
- Linlin Sui
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Kun Tan
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Zhuqing Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Shumin Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Kai Miao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Likun Ren
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Li Tao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Shuzhi He
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Yong Yu
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Jinzhou Nie
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Qian Liu
- BGI Tech Solutions Co., Ltd., Beishan Industrial Zone, Shenzhen, China
| | - Lei Xing
- BGI Tech Solutions Co., Ltd., Beishan Industrial Zone, Shenzhen, China
| | - Zhonghong Wu
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Zhuocheng Hou
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| |
Collapse
|