1
|
Wang C, Zhao X, Zhao L, Wang Y, Jia Y, Zhang X, Ma W. PKCζ phosphorylates VASP to mediate chemotaxis in breast cancer cells. Exp Cell Res 2023; 433:113823. [PMID: 37890607 DOI: 10.1016/j.yexcr.2023.113823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/17/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
Breast carcinoma (BC) is one of the most common malignant cancers in females, and metastasis remains the leading cause of death in these patients. Chemotaxis plays an important role in cancer cell metastasis and the mechanism of breast cancer chemotaxis has become a central issue in contemporary research. PKCζ, a member of the atypical PKC family, has been reported to be an essential component of the EGF-stimulated chemotactic signaling pathway. However, the molecular mechanism through which PKCζ regulates chemotaxis remains unclear. Here, we used a proteomic approach to identify PKCζ-interacting proteins in breast cancer cells and identified VASP as a potential binding partner. Intriguingly, stimulation with EGF enhanced this interaction and induced the translocalization of PKCζ and VASP to the cell membrane. Further experiments showed that PKCζ catalyzes the phosphorylation of VASP at Ser157, which is critical for the biological function of VASP in regulating chemotaxis and actin polymerization in breast cancer cells. Furthermore, in PKCζ knockdown BC cells, the enrichment of VASP at the leading edge was reduced, and its interaction with profilin1 was attenuated, thereby reducing the chemotaxis and overall motility of breast cancer cells after EGF treatment. In functional assays, PKCζ promoted chemotaxis and motility of BC cells through VASP. Our findings demonstrate that PKCζ, a new kinase of VASP, plays an important role in promoting breast cancer metastasis and provides a theoretical basis for expanding new approaches to tumor biotherapy.
Collapse
Affiliation(s)
- Chunqing Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine China
| | - Xiaoqing Zhao
- Department of Clinical Laboratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong China
| | - Liqing Zhao
- Department of Pediatrics, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277000, China
| | - Yunqiu Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine China
| | - Yan Jia
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Xiaofang Zhang
- Department of Clinical Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, China.
| | - Wanshan Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine China.
| |
Collapse
|
2
|
Okura GC, Bharadwaj AG, Waisman DM. Recent Advances in Molecular and Cellular Functions of S100A10. Biomolecules 2023; 13:1450. [PMID: 37892132 PMCID: PMC10604489 DOI: 10.3390/biom13101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
S100A10 (p11, annexin II light chain, calpactin light chain) is a multifunctional protein with a wide range of physiological activity. S100A10 is unique among the S100 family members of proteins since it does not bind to Ca2+, despite its sequence and structural similarity. This review focuses on studies highlighting the structure, regulation, and binding partners of S100A10. The binding partners of S100A10 were collated and summarized.
Collapse
Affiliation(s)
- Gillian C. Okura
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| |
Collapse
|
3
|
Evaluation of affinity-purification coupled to mass spectrometry approaches for capture of short linear motif-based interactions. Anal Biochem 2023; 663:115017. [PMID: 36526023 DOI: 10.1016/j.ab.2022.115017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Low affinity and transient protein-protein interactions, such as short linear motif (SLiM)-based interactions, require dedicated experimental tools for discovery and validation. Here, we evaluated and compared biotinylated peptide pulldown and protein interaction screen on peptide matrix (PRISMA) coupled to mass-spectrometry (MS) using a set of peptides containing interaction motifs. Eight different peptide sequences that engage in interactions with three distinct protein domains (KEAP1 Kelch, MDM2 SWIB, and TSG101 UEV) with a wide range of affinities were tested. We found that peptide pulldown can be an effective approach for SLiM validation, however, parameters such as protein abundance and competitive interactions can prevent the capture of known interactors. The use of tandem peptide repeats improved the capture and preservation of some interactions. When testing PRISMA, it failed to provide comparable results for model peptides that successfully pulled down known interactors using biotinylated peptide pulldown. Overall, in our hands, we find that albeit more laborious, biotin-peptide pulldown was more successful in terms of validation of known interactions. Our results highlight that the tested affinity-capture MS-based methods for validation of SLiM-based interactions from cell lysates are suboptimal, and we identified parameters for consideration for method development.
Collapse
|
4
|
Martin APJ, Jacquemyn M, Lipecka J, Chhuon C, Aushev VN, Meunier B, Singh MK, Carpi N, Piel M, Codogno P, Hergovich A, Parrini MC, Zalcman G, Guerrera IC, Daelemans D, Camonis JH. STK38 kinase acts as XPO1 gatekeeper regulating the nuclear export of autophagy proteins and other cargoes. EMBO Rep 2019; 20:e48150. [PMID: 31544310 PMCID: PMC6832005 DOI: 10.15252/embr.201948150] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/15/2019] [Accepted: 09/03/2019] [Indexed: 01/19/2023] Open
Abstract
STK38 (also known as NDR1) is a Hippo pathway serine/threonine protein kinase with multifarious functions in normal and cancer cells. Using a context-dependent proximity-labeling assay, we identify more than 250 partners of STK38 and find that STK38 modulates its partnership depending on the cellular context by increasing its association with cytoplasmic proteins upon nutrient starvation-induced autophagy and with nuclear ones during ECM detachment. We show that STK38 shuttles between the nucleus and the cytoplasm and that its nuclear exit depends on both XPO1 (aka exportin-1, CRM1) and STK38 kinase activity. We further uncover that STK38 modulates XPO1 export activity by phosphorylating XPO1 on serine 1055, thus regulating its own nuclear exit. We expand our model to other cellular contexts by discovering that XPO1 phosphorylation by STK38 regulates also the nuclear exit of Beclin1 and YAP1, key regulator of autophagy and transcriptional effector, respectively. Collectively, our results reveal STK38 as an activator of XPO1, behaving as a gatekeeper of nuclear export. These observations establish a novel mechanism of XPO1-dependent cargo export regulation by phosphorylation of XPO1's C-terminal auto-inhibitory domain.
Collapse
Affiliation(s)
- Alexandre PJ Martin
- ART GroupInserm U830ParisFrance
- Institut CurieCentre de RechercheParis Sciences et Lettres Research UniversityParisFrance
| | - Maarten Jacquemyn
- Laboratory of Virology and ChemotherapyKU Leuven Department of Microbiology, Immunology and TransplantationRega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| | - Joanna Lipecka
- Inserm U894Center of Psychiatry and NeuroscienceParisFrance
- Université Paris DescartesSorbonne Paris CitéParisFrance
| | - Cerina Chhuon
- Université Paris DescartesSorbonne Paris CitéParisFrance
- Proteomics Platform 3P5‐NeckerUniversité Paris Descartes ‐ Structure Fédérative de Recherche NeckerINSERM US24/CNRS UMS3633ParisFrance
| | | | - Brigitte Meunier
- ART GroupInserm U830ParisFrance
- Institut CurieCentre de RechercheParis Sciences et Lettres Research UniversityParisFrance
| | - Manish K Singh
- ART GroupInserm U830ParisFrance
- Institut CurieCentre de RechercheParis Sciences et Lettres Research UniversityParisFrance
| | - Nicolas Carpi
- Institut CurieCentre de RechercheParis Sciences et Lettres Research UniversityParisFrance
- CNRSUMR 144ParisFrance
| | - Matthieu Piel
- Institut CurieCentre de RechercheParis Sciences et Lettres Research UniversityParisFrance
- CNRSUMR 144ParisFrance
| | - Patrice Codogno
- Université Paris DescartesSorbonne Paris CitéParisFrance
- Inserm U1151/CNRS UMR 8253Institut Necker Enfants‐MaladesParisFrance
| | | | - Maria Carla Parrini
- ART GroupInserm U830ParisFrance
- Institut CurieCentre de RechercheParis Sciences et Lettres Research UniversityParisFrance
| | - Gerard Zalcman
- ART GroupInserm U830ParisFrance
- Institut CurieCentre de RechercheParis Sciences et Lettres Research UniversityParisFrance
- Sorbonne Paris CitéUniversité Paris DiderotParisFrance
| | - Ida Chiara Guerrera
- Université Paris DescartesSorbonne Paris CitéParisFrance
- Proteomics Platform 3P5‐NeckerUniversité Paris Descartes ‐ Structure Fédérative de Recherche NeckerINSERM US24/CNRS UMS3633ParisFrance
| | - Dirk Daelemans
- Laboratory of Virology and ChemotherapyKU Leuven Department of Microbiology, Immunology and TransplantationRega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| | - Jacques H Camonis
- ART GroupInserm U830ParisFrance
- Institut CurieCentre de RechercheParis Sciences et Lettres Research UniversityParisFrance
| |
Collapse
|
5
|
Zhang X, Zhu G, Su X, Li H, Wu W. Nucleolar localization signal and histone methylation reader function is required for SPIN1 to promote rRNA gene expression. Biochem Biophys Res Commun 2018; 505:325-332. [PMID: 30249398 DOI: 10.1016/j.bbrc.2018.09.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/15/2018] [Indexed: 01/07/2023]
Abstract
Spindlin1 (SPIN1), a histone modification reader protein, was enriched in the cell nucleolus and facilitated rRNA expression. However, how SPIN1 localizes to the nucleolus and its functional role in rRNA gene expression remain unresolved. Here, we identified a nucleolar localization signal in the N-terminal region of SPIN1 that is essential for its enrichment and function in the nucleolus. We also discovered that, in addition to its H3K4me3 recognizing activity, the H3R8me2a-recognizing capacity of SPIN1 is also indispensable for stimulating rRNA expression. Chromatin immunoprecipitation results indicated that SPIN1 is required for the association or assembly of selective factor 1 (SL1) complex, probably facilitating the initiation of rDNA transcription through its H3 K4me3-R8me2a reader function.
Collapse
Affiliation(s)
- Xiaolei Zhang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guixin Zhu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaonan Su
- Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Haitao Li
- Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Wei Wu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Zhang J, Yang X, Wang H, Zhao B, Wu X, Su L, Xie S, Wang Y, Li J, Liu J, Liu M, Han F, He T, Zhang W, Tao K, Hu D. PKCζ as a promising therapeutic target for TNFα-induced inflammatory disorders in chronic cutaneous wounds. Int J Mol Med 2017; 40:1335-1346. [PMID: 28949382 PMCID: PMC5627866 DOI: 10.3892/ijmm.2017.3144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Protein kinase Cζ (PKCζ) is a member of the atypical protein kinase C family. Its roles in macrophages or skin-resident keratinocytes have not been fully evaluated. In this study, we provide evidence that PKCζ mediates lipopolysaccharide (LPS)-induced tumor necrosis factor α (TNFα) gene expression in the mouse macrophage cell line, RAW264.7. TNFα has been proven to be one of the main culprits of chronic wounds and impaired acute wounds, which are characterized by excessive inflammation, enhanced proteolysis and reduced matrix deposition. Among the multiple effects of TNFα on keratinocytes, the induction of chemokines which are indispensable factors involved in the massive infiltration of various inflammatory cells into skin lesions serves as a crucial mechanism. In the present study, we found that PKCζ inhibitor or its specific siRNA inhibited the TNFα-induced upregulation in the levels of the chemokines, interleukin (IL)-8, monocyte chemotactic protein-1 (MCP-1) and intercellular cell adhesion molecule-1 (ICAM-1) in HaCaT keratinocytes. Moreover, under a disrupted inflammatory environment, activated keratinocytes can synthesize large amounts of matrix metalloproteinases (MMP), which has a negative effect on tissue remodeling. We discovered that TNFα promoted the expression of MMP9 in a PKCζ-dependent manner. Further experiments revealed that nuclear factor-κB (NF-κB) was a key downstream molecule of PKCζ. In addition, as shown in vitro, PKCζ was not involved in the TNFα-induced decrease in HaCaT cell migration and proliferation. In vivo experiments demonstrated that TNFα-induced wound closure impairment and inflammatory disorders were significantly attenuated in the PKCζ inhibitor group. On the whole, our findings suggest that PKCζ is a crucial regulator in LPS- or TNFα-induced inflammatory responses in RAW264.7 cells and HaCaT keratinocytes, and that PKCζ/NF-κB signaling may be a potential target for interventional therapy for TNFα-induced skin inflammatory injury.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bin Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xue Wu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Songtao Xie
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jun Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Mengdong Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fu Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ke Tao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
7
|
Qin G, Dang M, Gao H, Wang H, Luo F, Chen R. Deciphering the protein–protein interaction network regulating hepatocellular carcinoma metastasis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [DOI: 10.1016/j.bbapap.2017.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Wang Y, He J, Zhang S, Yang Q, Wang B, Liu Z, Wu X. Knockdown of Immature Colon Carcinoma Transcript 1 Inhibits Proliferation and Promotes Apoptosis of Non-Small Cell Lung Cancer Cells. Technol Cancer Res Treat 2016; 16:559-569. [PMID: 27413166 DOI: 10.1177/1533034616657977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Non-small cell lung cancer, as the most frequent type lung cancer, has lower survival rate of 5 years, despite improvements in surgery and chemotherapy. Previous studies showed immature colon carcinoma transcript 1 is closely related to tumorigenesis of human cancer cells. In the present study, we found immature colon carcinoma transcript 1 was overexpressed in lung cancer tissues using Oncomine database mining, and the biological effect of immature colon carcinoma transcript 1 was investigated in non-small cell lung cancer cell lines 95D and A549. Lentivirus-mediated RNA interference was used to knock down immature colon carcinoma transcript 1 expression in 95D and A549 cells in vitro, and the knockdown efficiency was determined using quantitative real-time polymerase chain reaction and Western blot assay. Knockdown of immature colon carcinoma transcript 1 significantly suppressed non-small cell lung cancer cell proliferation and colony formation ability confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay. Flow cytometry was applied to measure cell cycle arrest, and the result showed the cell cycle arrested in G2/M phase in 95D cells and arrested in G0/G1 phase in A549 cells. Furthermore, we measured the levels of cell cycle-associated proteins by Western blot analysis and found immature colon carcinoma transcript 1 -mediated cell proliferation inhibition appeared due to downregulation of cell cycle activator cyclin D1 and upregulation of cell cycle inhibitor p21. In addition, immature colon carcinoma transcript 1 silencing significantly induced non-small cell lung cancer cell apoptosis by annexin V/7-amino-actinomycin D double-staining assay. All our data suggest that immature colon carcinoma transcript 1 may play an important role for non-small cell lung cancer cell proliferation and could be a potential molecular target for diagnosing and treating human non-small cell lung cancer.
Collapse
Affiliation(s)
- Yiling Wang
- 1 Department of Thoracic Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| | - Jiantao He
- 1 Department of Thoracic Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| | - Shenghui Zhang
- 1 Department of Thoracic Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| | - Qingbo Yang
- 1 Department of Thoracic Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| | - Bo Wang
- 1 Department of Thoracic Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| | - Zhiyu Liu
- 1 Department of Thoracic Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| | - Xintian Wu
- 1 Department of Thoracic Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| |
Collapse
|
9
|
Chen R, Xiao M, Gao H, Chen Y, Li Y, Liu Y, Zhang N. Identification of a novel mitochondrial interacting protein of C1QBP using subcellular fractionation coupled with CoIP-MS. Anal Bioanal Chem 2016; 408:1557-64. [DOI: 10.1007/s00216-015-9228-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/03/2015] [Accepted: 11/27/2015] [Indexed: 12/22/2022]
|
10
|
Wang Z, Xu D, Gao Y, Liu Y, Ren J, Yao Y, Yin L, Chen J, Gan S, Cui X. Immature Colon Carcinoma Transcript 1 Is Essential for Prostate Cancer Cell Viability and Proliferation. Cancer Biother Radiopharm 2015; 30:278-84. [PMID: 26186090 DOI: 10.1089/cbr.2014.1728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer is the second leading cause of cancer-related death among men in the United States. More recently, immature colon carcinoma transcript 1 (ICT1) has been reported to be overexpressed in various kinds of cancer cells. However, the role of ICT1 in human prostate cancer has not yet been determined. The authors selected two ICT1-specific short hairpin RNA (shRNA) sequences to block its endogenous expression in human androgen-independent prostate cancer cell lines DU145 and PC-3. Decreased ICT1 expression by either specific shRNA significantly inhibited cell viability and proliferation. Moreover, compared to controls, ICT1-silenced cells were more inclined to redistribute in the G2/M phase, leading to cell cycle arrest. Flow cytometry and Annexin V-APC/7-AAD double staining confirmed that knockdown of ICT1 increased late apoptotic cells. Furthermore, they found that ICT1 knockdown restricting G2-M transition may be partly through suppression of CDK1 and Cyclin B1. Knockdown of ICT1 induced apoptosis through activation of poly ADP-ribose polymerase and caspase 3, upregulation of Bax expression, and downregulation of Bcl-2 expression in DU145 cells. In conclusion, this study highlights the crucial role of ICT1 in promoting prostate cancer cell proliferation in vitro. The depletion of ICT1 by lentivirus-mediated shRNA or small molecular inhibitor may provide a novel therapeutic approach for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Zhijun Wang
- Department of Urology, Changzheng Hospital, The Second Military Medical University , Shanghai, China
| | - Danfeng Xu
- Department of Urology, Changzheng Hospital, The Second Military Medical University , Shanghai, China
| | - Yi Gao
- Department of Urology, Changzheng Hospital, The Second Military Medical University , Shanghai, China
| | - Yushan Liu
- Department of Urology, Changzheng Hospital, The Second Military Medical University , Shanghai, China
| | - Jizhong Ren
- Department of Urology, Changzheng Hospital, The Second Military Medical University , Shanghai, China
| | - Yacheng Yao
- Department of Urology, Changzheng Hospital, The Second Military Medical University , Shanghai, China
| | - Lei Yin
- Department of Urology, Changzheng Hospital, The Second Military Medical University , Shanghai, China
| | - Jie Chen
- Department of Urology, Changzheng Hospital, The Second Military Medical University , Shanghai, China
| | - Sishun Gan
- Department of Urology, Changzheng Hospital, The Second Military Medical University , Shanghai, China
| | - Xingang Cui
- Department of Urology, Changzheng Hospital, The Second Military Medical University , Shanghai, China
| |
Collapse
|
11
|
Maryáš J, Faktor J, Dvořáková M, Struhárová I, Grell P, Bouchal P. Proteomics in investigation of cancer metastasis: Functional and clinical consequences and methodological challenges. Proteomics 2014; 14:426-40. [DOI: 10.1002/pmic.201300264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/16/2013] [Accepted: 10/04/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Josef Maryáš
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Jakub Faktor
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Monika Dvořáková
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Iva Struhárová
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Peter Grell
- Department of Comprehensive Cancer Care; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| |
Collapse
|
12
|
Zhang X, Zhang F, Guo L, Wang Y, Zhang P, Wang R, Zhang N, Chen R. Interactome analysis reveals that C1QBP (complement component 1, q subcomponent binding protein) is associated with cancer cell chemotaxis and metastasis. Mol Cell Proteomics 2013; 12:3199-209. [PMID: 23924515 DOI: 10.1074/mcp.m113.029413] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complement component 1, q subcomponent binding protein (C1QBP/p32/HABP1) is a ubiquitously expressed and multicompartmental cellular protein involved in various biological processes. In order to further understand its biological functions, we conducted proteomics analysis of its interactome in this study. An improved sample preparation and mass spectrometric identification strategy was developed combining high-speed centrifugation, formaldehyde labeling, and two-dimensional reverse-phase liquid chromatography. Using this approach, we identified 187 interacting proteins and constructed a highly connected interacting network for C1QBP. Moreover, we explored the interaction between C1QBP and protein kinase C ζ, a key regulator of cell polarity and migration. The results indicated that C1QBP regulated the activity of protein kinase C ζ and modulated EGF-induced cancer cell chemotaxis. In addition, C1QBP was required for breast cancer metastasis in a severe combined immunodeficiency mouse model. Furthermore, C1QBP was observed to be overexpressed in breast cancer tissues, and its expression level was closely linked with distant metastasis and TNM stages. In summary, C1QBP was identified as a novel regulator of cancer metastasis that may serve as a therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhou X, Xue L, Hao L, Liu S, Zhou F, Xiong H, Qi X, Lin D, Shao S. Proteomics-based identification of tumor relevant proteins in lung adenocarcinoma. Biomed Pharmacother 2013; 67:621-7. [PMID: 23916545 DOI: 10.1016/j.biopha.2013.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/17/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lung cancer has the highest mortality rate among malignant tumors. Proteomics is a powerful tool to identify protein biomarkers. The identification of protein biomarkers associated with lung adenocarcinoma would have significance for making prognoses and designing targeted therapies. METHODS In our study, we applied a two-dimensional difference gel electrophoresis approach coupled to a matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis for the identification of proteins differentially expressed between lung adenocarcinoma and the paired normal bronchial epithelial tissues derived from seven patients (four of them developed distant metastasis after operation). In addition, we chose two candidate proteins and examine their expression levels in lung adenocarcinoma and adjacent normal tissues using immunohistochemistry methods, and their expression levels in serum of patients and healthy donors by ELISA. RESULT In this study, 173 proteins were found to be differentially expressed (ratio>1.5 or<-1.5, P≤0.05), and 22 of them were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Thirteen proteins were at lower levels in the lung adenocarcinoma group, while nine proteins were at higher abundance. Immunohistochemistry analysis confirmed the expression levels of the two candidate proteins. The differential expression of the candidate secreted protein in serum from lung adenocarcinoma samples and healthy controls was showed by ELISA. CONCLUSION Our results demonstrated a differential protein expression pattern for lung adenocarcinoma compared with the paired normal bronchial epithelial tissues. Further functional validation of candidate proteins is ongoing and might provide new insights in lung adenocarcinoma.
Collapse
Affiliation(s)
- Xin Zhou
- Key Laboratory for Proteomics of Liaoning Province, Dalian Medical University, Dalian, Liaoning, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|