1
|
Lampe JN. Advances in the Understanding of Protein-Protein Interactions in Drug Metabolizing Enzymes through the Use of Biophysical Techniques. Front Pharmacol 2017; 8:521. [PMID: 28848438 PMCID: PMC5550701 DOI: 10.3389/fphar.2017.00521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/24/2017] [Indexed: 02/01/2023] Open
Abstract
In recent years, a growing appreciation has developed for the importance of protein-protein interactions to modulate the function of drug metabolizing enzymes. Accompanied with this appreciation, new methods and technologies have been designed for analyzing protein-protein interactions both in vitro and in vivo. These technologies have been applied to several classes of drug metabolizing enzymes, including: cytochrome P450's (CYPs), monoamine oxidases (MAOs), UDP-glucuronosyltransferases (UGTs), glutathione S-transferases (GSTs), and sulfotransferases (SULTs). In this review, we offer a brief description and assessment of the impact of many of these technologies to the study of protein-protein interactions in drug disposition. The still expanding list of these techniques and assays has the potential to revolutionize our understanding of how these enzymes carry out their important functions in vivo.
Collapse
Affiliation(s)
- Jed N Lampe
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical CenterKansas City, MO, United States
| |
Collapse
|
2
|
Lemay SG, Laborde C, Renault C, Cossettini A, Selmi L, Widdershoven FP. High-Frequency Nanocapacitor Arrays: Concept, Recent Developments, and Outlook. Acc Chem Res 2016; 49:2355-2362. [PMID: 27643695 DOI: 10.1021/acs.accounts.6b00349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have developed a measurement platform for performing high-frequency AC detection at nanoelectrodes. The system consists of 65 536 electrodes (diameter 180 nm) arranged in a sub-micrometer rectangular array. The electrodes are actuated at frequencies up to 50 MHz, and the resulting AC current response at each separately addressable electrode is measured in real time. These capabilities are made possible by fabricating the electrodes on a complementary metal-oxide-semiconductor (CMOS) chip together with the associated control and readout electronics, thus minimizing parasitic capacitance and maximizing the signal-to-noise ratio. This combination of features offers several advantages for a broad range of experiments. First, in contrast to alternative CMOS-based electrical systems based on field-effect detection, high-frequency operation is sensitive beyond the electrical double layer and can probe entities at a range of micrometers in electrolytes with high ionic strength such as water at physiological salt concentrations. Far from being limited to single- or few-channel recordings like conventional electrochemical impedance spectroscopy, the massively parallel design of the array permits electrically imaging micrometer-scale entities with each electrode serving as a separate pixel. This allows observation of complex kinetics in heterogeneous environments, for example, the motion of living cells on the surface of the array. This imaging aspect is further strengthened by the ability to distinguish between analyte species based on the sign and magnitude of their AC response. Finally, we show here that sensitivity down to the attofarad level combined with the small electrode size permits detection of individual 28 nm diameter particles as they land on the sensor surface. Interestingly, using finite-element methods, it is also possible to calculate accurately the full three-dimensional electric field and current distributions during operation at the level of the Poisson-Nernst-Planck formalism. This makes it possible to validate the interpretation of measurements and to optimize the design of future experiments. Indeed, the complex frequency and spatial dependence of the data suggests that experiments to date have only scratched the surface of the method's capabilities. Future iterations of the hardware will take advantage of the higher frequencies, higher electrode packing densities and smaller electrode sizes made available by continuing advances in CMOS manufacturing. Combined with targeted immobilization of targets at the electrodes, we anticipate that it will soon be possible to realize complex biosensors based on spatial- and time-resolved nanoscale impedance detection.
Collapse
Affiliation(s)
- Serge G. Lemay
- MESA+
Institute for Nanotechnology, University of Twente, PO Box 217, 7500
AE Enschede, The Netherlands
| | - Cecilia Laborde
- MESA+
Institute for Nanotechnology, University of Twente, PO Box 217, 7500
AE Enschede, The Netherlands
| | - Christophe Renault
- MESA+
Institute for Nanotechnology, University of Twente, PO Box 217, 7500
AE Enschede, The Netherlands
| | - Andrea Cossettini
- DPIA, University of Udine, Via delle Scienze 206, Udine 33100, Italy
| | - Luca Selmi
- DPIA, University of Udine, Via delle Scienze 206, Udine 33100, Italy
| | - Frans P. Widdershoven
- NXP Semiconductors, Global Technology Innovation, High Tech Campus 46, 5656 AE Eindhoven, The Netherlands
| |
Collapse
|
3
|
Nicolini C, Bragazzi N, Peshkova E. Nanogenomics and nanoproteomics for personalized nanotheranostics for oral and colorectal cancer. Per Med 2015; 13:9-11. [PMID: 29749864 DOI: 10.2217/pme.15.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Claudio Nicolini
- Fondazione ELBA Nicolini, Pradalunga, Largo Redaelli 7, Bergamo 24100, Italy.,Biophysics & Nanobiotechnologies Laboratory, Via Antonio Pastore 3, Genoa 16132, Italy
| | - Nicola Bragazzi
- Fondazione ELBA Nicolini, Pradalunga, Largo Redaelli 7, Bergamo 24100, Italy.,Biophysics & Nanobiotechnologies Laboratory, Via Antonio Pastore 3, Genoa 16132, Italy
| | - Evgeniya Peshkova
- Fondazione ELBA Nicolini, Pradalunga, Largo Redaelli 7, Bergamo 24100, Italy.,Biophysics & Nanobiotechnologies Laboratory, Via Antonio Pastore 3, Genoa 16132, Italy
| |
Collapse
|
4
|
Bragazzi NL, Amicizia D, Panatto D, Tramalloni D, Valle I, Gasparini R. Quartz-Crystal Microbalance (QCM) for Public Health: An Overview of Its Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:149-211. [PMID: 26572979 DOI: 10.1016/bs.apcsb.2015.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanobiotechnologies, from the convergence of nanotechnology and molecular biology and postgenomics medicine, play a major role in the field of public health. This overview summarizes the potentiality of piezoelectric sensors, and in particular, of quartz-crystal microbalance (QCM), a physical nanogram-sensitive device. QCM enables the rapid, real time, on-site detection of pathogens with an enormous burden in public health, such as influenza and other respiratory viruses, hepatitis B virus (HBV), and drug-resistant bacteria, among others. Further, it allows to detect food allergens, food-borne pathogens, such as Escherichia coli and Salmonella typhimurium, and food chemical contaminants, as well as water-borne microorganisms and environmental contaminants. Moreover, QCM holds promises in early cancer detection and screening of new antiblastic drugs. Applications for monitoring biohazards, for assuring homeland security, and preventing bioterrorism are also discussed.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Daniela Amicizia
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Donatella Panatto
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Daniela Tramalloni
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Ivana Valle
- SSD "Popolazione a rischio," Health Prevention Department, Local Health Unit ASL3 Genovese, Genoa, Italy
| | - Roberto Gasparini
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy.
| |
Collapse
|
5
|
Schartner J, Hoeck N, Güldenhaupt J, Mavarani L, Nabers A, Gerwert K, Kötting C. Chemical Functionalization of Germanium with Dextran Brushes for Immobilization of Proteins Revealed by Attenuated Total Reflection Fourier Transform Infrared Difference Spectroscopy. Anal Chem 2015; 87:7467-75. [PMID: 26102158 DOI: 10.1021/acs.analchem.5b01823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein immobilization studied by attenuated total reflection Fourier transform infrared (ATR-FT-IR) difference spectroscopy is an emerging field enabling the study of proteins at atomic detail. Gold or glass surfaces are frequently used for protein immobilization. Here, we present an alternative method for protein immobilization on germanium. Because of its high refractive index and broad spectral window germanium is the best material for ATR-FT-IR spectroscopy of thin layers. So far, this technique was mainly used for protein monolayers, which lead to a limited signal-to-noise ratio. Further, undesired protein-protein interactions can occur in a dense layer. Here, the germanium surface was functionalized with thiols and stepwise a dextran brush was generated. Each step was monitored by ATR-FT-IR spectroscopy. We compared a 70 kDa dextran with a 500 kDa dextran regarding the binding properties. All surfaces were characterized by atomic force microscopy, revealing thicknesses between 40 and 110 nm. To analyze the capability of our system we utilized N-Ras on mono-NTA (nitrilotriacetic acid) functionalized dextran, and the amount of immobilized Ras corresponded to several monolayers. The protein stability and loading capacity was further improved by means of tris-NTA for immobilization. Small-molecule-induced changes were revealed with an over 3 times higher signal-to-noise ratio compared to monolayers. This improvement may allow the observation of very small and so far hidden changes in proteins upon stimulus. Furthermore, we immobilized green fluorescent protein (GFP) and mCherry simultaneously enabling an analysis of the surface by fluorescence microscopy. The absence of a Förster resonance energy transfer (FRET) signal demonstrated a large protein-protein distance, indicating an even distribution of the protein within the dextran.
Collapse
Affiliation(s)
- Jonas Schartner
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Nina Hoeck
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Jörn Güldenhaupt
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Laven Mavarani
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Andreas Nabers
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Klaus Gerwert
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Carsten Kötting
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| |
Collapse
|
6
|
Antosiewicz A, Senkara E, Cieśla J. Quartz crystal microbalance with dissipation and microscale thermophoresis as tools for investigation of protein complex formation between thymidylate synthesis cycle enzymes. Biosens Bioelectron 2014; 64:36-42. [PMID: 25189098 DOI: 10.1016/j.bios.2014.08.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 01/21/2023]
Abstract
Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) play essential role in DNA synthesis, repair and cell division by catalyzing two subsequent reactions in thymidylate biosynthesis cycle. The lack of either enzyme leads to thymineless death of the cell, therefore inhibition of the enzyme activity is a common and successful tool in cancer chemotherapy and treatment of other diseases. However, the detailed mechanism of thymidylate synthesis cycle, especially the interactions between cycle enzymes and its role remain unknown. In this paper we are the first to show that human TS and DHFR enzymes form a strong complex which might be essential for DNA synthesis. Using two unique biosensor techniques, both highly sensitive to biomolecular interactions, namely quartz crystal microbalance with dissipation monitoring (QCM-D) and microscale thermophoresis (MST) we have been able to determine DHFR-TS binding kinetic parameters such as the Kd value being below 10 µM (both methods), k(on) = 0.46 × 10(4) M(-1) s(-1) and k(off) = 0.024 s(-1) (QCM-D). We also calculated Gibbs free energy as in the order of -30 kJ/mol and DHFR/TS molar ratio pointing to binding of 6 DHFR monomers per 1 TS dimer (both methods). Moreover, our data from MST analysis have pointed to positive binding cooperativity in TS-DHFR complex formation. The results obtained with both methods are comparable and complementary.
Collapse
Affiliation(s)
- Anna Antosiewicz
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Elżbieta Senkara
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Joanna Cieśla
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
7
|
Kilb N, Burger J, Roth G. Protein microarray generation by in situ protein expression from template DNA. Eng Life Sci 2014. [DOI: 10.1002/elsc.201300052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Normann Kilb
- Laboratory for Microarray Copying, Centre for Biological Systems Analysis (ZBSA) University of Freiburg Freiburg Germany
| | - Jürgen Burger
- Laboratory for Microarray Copying, Centre for Biological Systems Analysis (ZBSA) University of Freiburg Freiburg Germany
- Laboratory for MEMS Applications, Department of Microsystems Engineering—IMTEK University of Freiburg Freiburg Germany
| | - Günter Roth
- Laboratory for Microarray Copying, Centre for Biological Systems Analysis (ZBSA) University of Freiburg Freiburg Germany
- BIOSS—Centre for Biological Signalling Studies University of Freiburg Freiburg Germany
| |
Collapse
|
8
|
Bragazzi NL, Pechkova E, Nicolini C. Proteomics and Proteogenomics Approaches for Oral Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:125-62. [DOI: 10.1016/b978-0-12-800453-1.00004-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Pechkova E, Bragazzi NL, Nicolini C. Advances in nanocrystallography as a proteomic tool. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:163-91. [PMID: 24985772 DOI: 10.1016/b978-0-12-800453-1.00005-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In order to overcome the difficulties and hurdles too much often encountered in crystallizing a protein with the conventional techniques, our group has introduced the innovative Langmuir-Blodgett (LB)-based crystallization, as a major advance in the field of both structural and functional proteomics, thus pioneering the emerging field of the so-called nanocrystallography or nanobiocrystallography. This approach uniquely combines protein crystallography and nanotechnologies within an integrated, coherent framework that allows one to obtain highly stable protein crystals and to fully characterize them at a nano- and subnanoscale. A variety of experimental techniques and theoretical/semi-theoretical approaches, ranging from atomic force microscopy, circular dichroism, Raman spectroscopy and other spectroscopic methods, microbeam grazing-incidence small-angle X-ray scattering to in silico simulations, bioinformatics, and molecular dynamics, has been exploited in order to study the LB-films and to investigate the kinetics and the main features of LB-grown crystals. When compared to classical hanging-drop crystallization, LB technique appears strikingly superior and yields results comparable with crystallization in microgravity environments. Therefore, the achievement of LB-based crystallography can have a tremendous impact in the field of industrial and clinical/therapeutic applications, opening new perspectives for personalized medicine. These implications are envisaged and discussed in the present contribution.
Collapse
Affiliation(s)
- Eugenia Pechkova
- Nanobiotechnology and Biophysics Laboratories (NBL), Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Nanoworld Institute Fondazione ELBA Nicolini (FEN), Pradalunga, Bergamo, Italy
| | - Nicola Luigi Bragazzi
- Nanobiotechnology and Biophysics Laboratories (NBL), Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Nanoworld Institute Fondazione ELBA Nicolini (FEN), Pradalunga, Bergamo, Italy; School of Public Health, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Claudio Nicolini
- Nanobiotechnology and Biophysics Laboratories (NBL), Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Nanoworld Institute Fondazione ELBA Nicolini (FEN), Pradalunga, Bergamo, Italy; Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|