1
|
Vittoria M, Saggese A, Di Gregorio Barletta G, Castaldi S, Isticato R, Baccigalupi L, Ricca E. Sporulation efficiency and spore quality in a human intestinal isolate of Bacillus cereus. Res Microbiol 2023; 174:104030. [PMID: 36738815 DOI: 10.1016/j.resmic.2023.104030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Bacteria classified as Bacillus cereus sensu stricto cause two different type of gastrointestinal diseases associated with food poisoning. Outbreaks of this opportunistic pathogen are generally due to the resistance of its spores to heat, pH and desiccation that makes hard their complete inactivation from food products. B. cereus is commonly isolated from a variety of environments, including intestinal samples of infected and healthy people. We report the genomic and physiological characterization of MV19, a human intestinal strain closely related (ANI value of 98.81%) to the reference strain B. cereus ATCC 14579. MV19 cells were able to grow in a range of temperatures between 20 and 44 °C. At the optimal temperature the sporulation process was rapidly induced and mature spores efficiently released, however these appeared structurally and morphologically defective. At the sub-optimal growth temperature of 25 °C sporulation was slow and less efficient but a high total number of fully functional spores was produced. These results indicate that the reduced rapidity and efficiency of sporulation at 25 °C are compensated by a high quality and quantity of released spores, suggesting the relevance of different performances at different growth conditions for the adaptation of this bacterium to diverse environmental niches.
Collapse
Affiliation(s)
- Maria Vittoria
- Department of Biology, Federico II University of Naples, Italy
| | - Anella Saggese
- Department of Biology, Federico II University of Naples, Italy
| | | | | | | | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Italy
| | - Ezio Ricca
- Department of Biology, Federico II University of Naples, Italy.
| |
Collapse
|
2
|
Zeng J, Wang H, Dong M, Tian GB. Clostridioides difficile spore: coat assembly and formation. Emerg Microbes Infect 2022; 11:2340-2349. [PMID: 36032037 PMCID: PMC9542656 DOI: 10.1080/22221751.2022.2119168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Clostridioides difficile (C. difficile) is a Gram-positive, spore-forming, toxin-producing, obligate anaerobic bacterium. C. difficile infection (CDI) is the leading cause of healthcare-associated infective diarrhoea. The infection is mediated by the spore, a metabolically inactive form of C. difficile. The spore coat acts as a physical barrier to defend against chemical insults from hosts and natural environments. The composition of spore coat has already been revealed; therefore, the interactive networks of spore coat proteins and the dynamic process of coat assembly are the keys to design strategies to control and cure CDI. This review gives a brief discussion of the signal processing and transcriptional regulation of C. difficile sporulation initiation. Following the discussion, the spore formation is also introduced. Finally, this review mainly focuses on the spore coat assembly, a poorly understood process in C. difficile, and important proteins that have been studied.
Collapse
Affiliation(s)
- Ji Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Hao Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Min Dong
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| |
Collapse
|
3
|
Paredes-Sabja D, Cid-Rojas F, Pizarro-Guajardo M. Assembly of the exosporium layer in Clostridioides difficile spores. Curr Opin Microbiol 2022; 67:102137. [PMID: 35182899 DOI: 10.1016/j.mib.2022.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
Clostridioides difficile is a Gram-positive, spore-forming obligate anaerobe and a major threat to the healthcare system world-wide. Because of its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. During infection, C. difficile produces spores that can persist in the host and are responsible for disease recurrence and transmission, especially between hospitalized patients. Although the C. difficile spore surface mediates critical interactions with host surfaces, this outermost layer, known as the exosporium, is poorly conserved when compared to members of the Bacillus genus. Notably, the exosporium has been shown to be important for the persistence of C. difficile in the host. In this review, the ultrastructural properties, composition, and morphogenesis of the exosporium will be discussed.
Collapse
Affiliation(s)
- Daniel Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile.
| | - Francisca Cid-Rojas
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
4
|
Insights into the Structure and Protein Composition of Moorella thermoacetica Spores Formed at Different Temperatures. Int J Mol Sci 2022; 23:ijms23010550. [PMID: 35008975 PMCID: PMC8745062 DOI: 10.3390/ijms23010550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
The bacterium Moorella thermoacetica produces the most heat-resistant spores of any spoilage-causing microorganism known in the food industry. Previous work by our group revealed that the resistance of these spores to wet heat and biocides was lower when spores were produced at a lower temperature than the optimal temperature. Here, we used electron microcopy to characterize the ultrastructure of the coat of the spores formed at different sporulation temperatures; we found that spores produced at 55 °C mainly exhibited a lamellar inner coat tightly associated with a diffuse outer coat, while spores produced at 45 °C showed an inner and an outer coat separated by a less electron-dense zone. Moreover, misarranged coat structures were more frequently observed when spores were produced at the lower temperature. We then analyzed the proteome of the spores obtained at either 45 °C or 55 °C with respect to proteins putatively involved in the spore coat, exosporium, or in spore resistance. Some putative spore coat proteins, such as CotSA, were only identified in spores produced at 55 °C; other putative exosporium and coat proteins were significantly less abundant in spores produced at 45 °C. Altogether, our results suggest that sporulation temperature affects the structure and protein composition of M. thermoacetica spores.
Collapse
|
5
|
Kint N, Morvan C, Martin-Verstraete I. Oxygen response and tolerance mechanisms in Clostridioides difficile. Curr Opin Microbiol 2021; 65:175-182. [PMID: 34896836 DOI: 10.1016/j.mib.2021.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 01/11/2023]
Abstract
While the gut is typically thought of as anoxic, there are two intersecting and decreasing oxygen gradients that are observed in the gut: oxygen decreases from the small to the large intestine and from the intestinal epithelium toward the colon lumen. Gut oxygen levels also increase following antibiotic induced-dysbiosis. While dysbiosis favors growth of Clostridioides difficile, the oxygen increase also causes stress to this anaerobic enteropathogen. To circumvent oxygen threat, C. difficile has developed efficient strategies: sporulation, biofilm formation, the rerouting of central metabolism and the production of oxygen detoxification enzymes. Especially, reverse rubrerythrins and flavodiiron proteins involved in oxygen reduction are crucial in C. difficile ability to tolerate and survive the oxygen concentrations encountered in the gastrointestinal tract. Two regulators, σB and PerR, play pivotal role in the mastering of these adaptive responses by controlling the various systems that protect cells from oxidative damages.
Collapse
Affiliation(s)
- Nicolas Kint
- Institut Pasteur, Université de Paris, UMR CNRS 2001, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Claire Morvan
- Institut Pasteur, Université de Paris, UMR CNRS 2001, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université de Paris, UMR CNRS 2001, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France; Institut Universitaire de France, France.
| |
Collapse
|
6
|
The Membrane Proteome of Spores and Vegetative Cells of the Food-Borne Pathogen Bacillus cereus. Int J Mol Sci 2021; 22:ijms222212475. [PMID: 34830357 PMCID: PMC8624511 DOI: 10.3390/ijms222212475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Membrane proteins are fascinating since they play an important role in diverse cellular functions and constitute many drug targets. Membrane proteins are challenging to analyze. The spore, the most resistant form of known life, harbors a compressed inner membrane. This membrane acts not only as a barrier for undesired molecules but also as a scaffold for proteins involved in signal transduction and the transport of metabolites during spore germination and subsequent vegetative growth. In this study, we adapted a membrane enrichment method to study the membrane proteome of spores and cells of the food-borne pathogen Bacillus cereus using quantitative proteomics. Using bioinformatics filtering we identify and quantify 498 vegetative cell membrane proteins and 244 spore inner membrane proteins. Comparison of vegetative and spore membrane proteins showed there were 54 spore membrane-specific and 308 cell membrane-specific proteins. Functional characterization of these proteins showed that the cell membrane proteome has a far larger number of transporters, receptors and proteins related to cell division and motility. This was also reflected in the much higher expression level of many of these proteins in the cellular membrane for those proteins that were in common with the spore inner membrane. The spore inner membrane had specific expression of several germinant receptors and spore-specific proteins, but also seemed to show a preference towards the use of simple carbohydrates like glucose and fructose owing to only expressing transporters for these. These results show the differences in membrane proteome composition and show us the specific proteins necessary in the inner membrane of a dormant spore of this toxigenic spore-forming bacterium to survive adverse conditions.
Collapse
|
7
|
Shen A. Clostridioides difficile Spore Formation and Germination: New Insights and Opportunities for Intervention. Annu Rev Microbiol 2021; 74:545-566. [PMID: 32905755 DOI: 10.1146/annurev-micro-011320-011321] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spore formation and germination are essential for the bacterial pathogen Clostridioides difficile to transmit infection. Despite the importance of these developmental processes to the infection cycle of C. difficile, the molecular mechanisms underlying how this obligate anaerobe forms infectious spores and how these spores germinate to initiate infection were largely unknown until recently. Work in the last decade has revealed that C. difficile uses a distinct mechanism for sensing and transducing germinant signals relative to previously characterized spore formers. The C. difficile spore assembly pathway also exhibits notable differences relative to Bacillus spp., where spore formation has been more extensively studied. For both these processes, factors that are conserved only in C. difficile or the related Peptostreptococcaceae family are employed, and even highly conserved spore proteins can have differential functions or requirements in C. difficile compared to other spore formers. This review summarizes our current understanding of the mechanisms controlling C. difficile spore formation and germination and describes strategies for inhibiting these processes to prevent C. difficile infection and disease recurrence.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA;
| |
Collapse
|
8
|
Rosales-Mendoza S, Cervantes-Rincón T, Romero-Maldonado A, Monreal-Escalante E, Nieto-Gómez R. Transgenic plants expressing a Clostridium difficile spore antigen as an approach to develop low-cost oral vaccines. Biotechnol Prog 2021; 37:e3141. [PMID: 33666366 DOI: 10.1002/btpr.3141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 01/05/2023]
Abstract
Gastrointestinal infections caused by Clostridium difficile lead to significant impact in terms of morbidity and mortality, causing from mild symptoms, such as a low-grade fever, watery stools, and minor abdominal cramping as well as more severe symptoms such as bloody diarrhea, pseudomembrane colitis, and toxic megacolon. Vaccination is a viable approach to fight against C. difficile and several efforts in this direction are ongoing. Plants are promising vaccine biofactories offering low cost, enhanced safety, and allow for the formulation of oral vaccines. Herein, the CdeM protein, which is a spore antigen associated with immunoprotection against C. difficile, was selected to begin the development of plant-based vaccine candidates. The vaccine antigen is based in a fusion protein (LTB-CdeM), carrying the CdeM antigen, fused to the carboxi-terminus of the B subunit of the Escherichia coli heat-labile enterotoxin (LTB) as a mucosal immunogenic carrier. LTB-CdeM was produced in plants using a synthetic optimized gene according codon usage and mRNA stability criteria. The obtained transformed tobacco lines produced the LTB-CdeM antigen in the range of 52-90 μg/g dry weight leaf tissues. The antigenicity of the plant-made LTB-CdeM antigen was evidenced by GM1-ELISA and immunogenicity assessment performed in test mice revealed that the LTB-CdeM antigen is orally immunogenic inducing humoral responses against CdeM epitopes. This report constitutes the first step in the development of plant-based vaccines against C. difficile infection.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/metabolism
- Clostridioides difficile/genetics
- Enterotoxins/genetics
- Escherichia coli Proteins/genetics
- Immunoglobulin G/blood
- Mice
- Mice, Inbred BALB C
- Molecular Farming
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Spores, Bacterial/genetics
- Nicotiana/genetics
- Nicotiana/metabolism
- Vaccines, Edible/genetics
- Vaccines, Edible/immunology
- Vaccines, Edible/metabolism
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Tomás Cervantes-Rincón
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Andrea Romero-Maldonado
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Ricardo Nieto-Gómez
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
9
|
Beskrovnaya P, Sexton DL, Golmohammadzadeh M, Hashimi A, Tocheva EI. Structural, Metabolic and Evolutionary Comparison of Bacterial Endospore and Exospore Formation. Front Microbiol 2021; 12:630573. [PMID: 33767680 PMCID: PMC7985256 DOI: 10.3389/fmicb.2021.630573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Sporulation is a specialized developmental program employed by a diverse set of bacteria which culminates in the formation of dormant cells displaying increased resilience to stressors. This represents a major survival strategy for bacteria facing harsh environmental conditions, including nutrient limitation, heat, desiccation, and exposure to antimicrobial compounds. Through dispersal to new environments via biotic or abiotic factors, sporulation provides a means for disseminating genetic material and promotes encounters with preferable environments thus promoting environmental selection. Several types of bacterial sporulation have been characterized, each involving numerous morphological changes regulated and performed by non-homologous pathways. Despite their likely independent evolutionary origins, all known modes of sporulation are typically triggered by limited nutrients and require extensive membrane and peptidoglycan remodeling. While distinct modes of sporulation have been observed in diverse species, two major types are at the forefront of understanding the role of sporulation in human health, and microbial population dynamics and survival. Here, we outline endospore and exospore formation by members of the phyla Firmicutes and Actinobacteria, respectively. Using recent advances in molecular and structural biology, we point to the regulatory, genetic, and morphological differences unique to endo- and exospore formation, discuss shared characteristics that contribute to the enhanced environmental survival of spores and, finally, cover the evolutionary aspects of sporulation that contribute to bacterial species diversification.
Collapse
Affiliation(s)
| | | | | | | | - Elitza I. Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Farag MA, Mesak MA, Saied DB, Ezzelarab NM. Uncovering the dormant food hazards, a review of foodborne microbial spores' detection and inactivation methods with emphasis on their application in the food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Freitas C, Plannic J, Isticato R, Pelosi A, Zilhão R, Serrano M, Baccigalupi L, Ricca E, Elsholz AKW, Losick R, O. Henriques A. A protein phosphorylation module patterns the Bacillus subtilis spore outer coat. Mol Microbiol 2020; 114:934-951. [PMID: 32592201 PMCID: PMC7821199 DOI: 10.1111/mmi.14562] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 06/17/2020] [Indexed: 01/09/2023]
Abstract
Assembly of the Bacillus subtilis spore coat involves over 80 proteins which self-organize into a basal layer, a lamellar inner coat, a striated electrodense outer coat and a more external crust. CotB is an abundant component of the outer coat. The C-terminal moiety of CotB, SKRB , formed by serine-rich repeats, is polyphosphorylated by the Ser/Thr kinase CotH. We show that another coat protein, CotG, with a central serine-repeat region, SKRG , interacts with the C-terminal moiety of CotB and promotes its phosphorylation by CotH in vivo and in a heterologous system. CotG itself is phosphorylated by CotH but phosphorylation is enhanced in the absence of CotB. Spores of a strain producing an inactive form of CotH, like those formed by a cotG deletion mutant, lack the pattern of electrondense outer coat striations, but retain the crust. In contrast, deletion of the SKRB region, has no major impact on outer coat structure. Thus, phosphorylation of CotG by CotH is a key factor establishing the structure of the outer coat. The presence of the cotB/cotH/cotG cluster in several species closely related to B. subtilis hints at the importance of this protein phosphorylation module in the morphogenesis of the spore surface layers.
Collapse
Affiliation(s)
- Carolina Freitas
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- Present address:
Department of EcophysiologyMax‐Planck Institute for Terrestrial MicrobiologyKarl‐von‐Frisch‐Str. 10MarburgD‐35043Germany
| | - Jarnaja Plannic
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- University of LjubljanaLjubljanaSlovenia
| | | | | | - Rita Zilhão
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
- Departamento de Biologia VegetalUniversidade de LisboaLisboaPortugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| | | | - Ezio Ricca
- Department of BiologyUniversity Federico IINaplesItaly
| | - Alexander K. W. Elsholz
- Biological LaboratoriesHarvard UniversityCambridgeMAUSA
- Present address:
Max Planck Unit for the Science of PathogensCharitèplatz 1Berlin10117Germany
| | | | - Adriano O. Henriques
- Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
12
|
Visualization of Germination Proteins in Putative Bacillus cereus Germinosomes. Int J Mol Sci 2020; 21:ijms21155198. [PMID: 32707970 PMCID: PMC7432890 DOI: 10.3390/ijms21155198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
Bacillus cereus can survive in the form of spores for prolonged periods posing a serious problem for the manufacture of safe shelf-stable foods of optimal quality. Our study aims at increasing knowledge of B. cereus spores focusing primarily on germination mechanisms to develop novel milder food preservation strategies. Major features of B. cereus spores are a core with the genetic material encased by multiple protective layers, an important one being the spores′ inner membrane (IM), the location of many important germination proteins. To study mechanisms involved in germination of B. cereus spores, we have examined the organization of germinant receptors (GRs) in spores′ IM. Previous studies have indicated that in spores of B.cereus ATCC 14579 the L-alanine responsive GR, GerR, plays a major role in the germination process. In our study, the location of the GerR GR subunit, GerRB, in spores was examined as a C-terminal SGFP2 fusion protein expressed under the control of the gerR operon′s promoter. Our results showed that: (i) the fluorescence maxima and integrated intensity in spores with plasmid-borne expression of GerRB-SGFP2 were significantly higher than in wild-type spores; (ii) western blot analysis confirmed the expression of the GerRB-SGFP2 fusion protein in spores; and (iii) fluorescence microscopy visualized GerRB-SGFP2 specific bright foci in ~30% of individual dormant spores if only GerRB-SGFP2 was expressed, but, noticeably, in ~85% of spores upon co-expression with GerRA and GerRC. Our data corroborates the notion that co-expression of GR subunits improves their stability. Finally, all spores displayed bright fluorescent foci upon expression of GerD-mScarlet-I under the control of the gerD promoter. We termed all fluorescent foci observed germinosomes, the term used for the IM foci of GRs in Bacillus subtilis spores. Our data are the first evidence for the existence of germinosomes in B. cereus spores.
Collapse
|
13
|
Architecture and Self-Assembly of Clostridium sporogenes and Clostridium botulinum Spore Surfaces Illustrate a General Protective Strategy across Spore Formers. mSphere 2020; 5:5/4/e00424-20. [PMID: 32611700 PMCID: PMC7333573 DOI: 10.1128/msphere.00424-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria such as those causing botulism and anthrax survive harsh conditions and spread disease as spores. Distantly related species have similar spore architectures with protective proteinaceous layers aiding adhesion and targeting. The structures that confer these common properties are largely unstudied, and the proteins involved can be very dissimilar in sequence. We identify CsxA as a cysteine-rich protein that self-assembles in a two-dimensional lattice enveloping the spores of several Clostridium species. We show that apparently unrelated cysteine-rich proteins from very different species can self-assemble to form remarkably similar and robust structures. We propose that diverse cysteine-rich proteins identified in the genomes of a broad range of spore formers may adopt a similar strategy for assembly. Spores, the infectious agents of many Firmicutes, are remarkably resilient cell forms. Even distant relatives can have similar spore architectures although some display unique features; they all incorporate protective proteinaceous envelopes. We previously found that Bacillus spores can achieve these protective properties through extensive disulfide cross-linking of self-assembled arrays of cysteine-rich proteins. We predicted that this could be a mechanism employed by spore formers in general, even those from other genera. Here, we tested this by revealing in nanometer detail how the outer envelope (exosporium) in Clostridium sporogenes (surrogate for C. botulinum group I), and in other clostridial relatives, forms a hexagonally symmetric semipermeable array. A cysteine-rich protein, CsxA, when expressed in Escherichia coli, self-assembles into a highly thermally stable structure identical to that of the native exosporium. Like the exosporium, CsxA arrays require harsh “reducing” conditions for disassembly. We conclude that in vivo, CsxA self-organizes into a highly resilient, disulfide cross-linked array decorated with additional protein appendages enveloping the forespore. This pattern is remarkably similar to that in Bacillus spores, despite a lack of protein homology. In both cases, intracellular disulfide formation is favored by the high lattice symmetry. We have identified cysteine-rich proteins in many distantly related spore formers and propose that they may adopt a similar strategy for intracellular assembly of robust protective structures. IMPORTANCE Bacteria such as those causing botulism and anthrax survive harsh conditions and spread disease as spores. Distantly related species have similar spore architectures with protective proteinaceous layers aiding adhesion and targeting. The structures that confer these common properties are largely unstudied, and the proteins involved can be very dissimilar in sequence. We identify CsxA as a cysteine-rich protein that self-assembles in a two-dimensional lattice enveloping the spores of several Clostridium species. We show that apparently unrelated cysteine-rich proteins from very different species can self-assemble to form remarkably similar and robust structures. We propose that diverse cysteine-rich proteins identified in the genomes of a broad range of spore formers may adopt a similar strategy for assembly.
Collapse
|
14
|
Amon JD, Yadav AK, Ramirez-Guadiana FH, Meeske AJ, Cava F, Rudner DZ. SwsB and SafA Are Required for CwlJ-Dependent Spore Germination in Bacillus subtilis. J Bacteriol 2020; 202:e00668-19. [PMID: 31871031 PMCID: PMC7043669 DOI: 10.1128/jb.00668-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
When Bacillus subtilis spores detect nutrients, they exit dormancy through the processes of germination and outgrowth. A key step in germination is the activation of two functionally redundant cell wall hydrolases (SleB and CwlJ) that degrade the specialized cortex peptidoglycan that surrounds the spore. How these enzymes are regulated remains poorly understood. To identify additional factors that affect their activity, we used transposon sequencing to screen for synthetic germination defects in spores lacking SleB or CwlJ. Other than the previously characterized protein YpeB, no additional factors were found to be specifically required for SleB activity. In contrast, our screen identified SafA and YlxY (renamed SwsB) in addition to the known factors GerQ and CotE as proteins required for CwlJ function. SafA is a member of the spore's proteinaceous coat and we show that, like GerQ and CotE, it is required for accumulation and retention of CwlJ in the dormant spore. SwsB is broadly conserved among spore formers, and we show that it is required for CwlJ to efficiently degrade the cortex during germination. Intriguingly, SwsB resembles polysaccharide deacetylases, and its putative catalytic residues are required for its role in germination. However, we find no chemical signature of its activity on the spore cortex or in vitro While the precise, mechanistic role of SwsB remains unknown, we explore and discuss potential activities.IMPORTANCE Spore formation in Bacillus subtilis has been studied for over half a century, and virtually every step in this developmental process has been characterized in molecular detail. In contrast, how spores exit dormancy remains less well understood. A key step in germination is the degradation of the specialized cell wall surrounding the spore called the cortex. Two enzymes (SleB and CwlJ) specifically target this protective layer, but how they are regulated and whether additional factors promote their activity are unknown. Here, we identified the coat protein SafA and a conserved but uncharacterized protein YlxY as additional factors required for CwlJ-dependent degradation of the cortex. Our analysis provides a more complete picture of this essential step in the exit from dormancy.
Collapse
Affiliation(s)
- Jeremy D Amon
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Akhilesh K Yadav
- Laboratory for Molecular Infection Medicine, Department of Molecular Biology, Umeå University, Umeå, Sweden
- Analytical Chemistry Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | | | - Alexander J Meeske
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Aubry A, Zou W, Vinogradov E, Williams D, Chen W, Harris G, Zhou H, Schur MJ, Gilbert M, Douce GR, Logan SM. In vitro Production and Immunogenicity of a Clostridium Difficile Spore-Specific BclA3 Glycopeptide Conjugate Vaccine. Vaccines (Basel) 2020; 8:vaccines8010073. [PMID: 32046000 PMCID: PMC7157674 DOI: 10.3390/vaccines8010073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract: The BclA3 glycoprotein is a major component of the exosporangial layer of Clostridium difficile spores and in this study we demonstrate that this glycoprotein is a major spore surface associated antigen. Here, we confirm the role of SgtA glycosyltransferase (SgtA GT) in BclA3 glycosylation and recapitulate this process by expressing and purifying SgtA GT fused to MalE, the maltose binding protein from Escherichia coli. In vitro assays using the recombinant enzyme and BclA3 synthetic peptides demonstrated that SgtA GT was responsible for the addition of β-O-linked GlcNAc to threonine residues of each synthetic peptide. These peptide sequences were selected from the central, collagen repeat region of the BclA3 protein. Following optimization of SgtA GT activity, we generated sufficient glycopeptide (10 mg) to allow conjugation to KLH (keyhole limpet hemocyanin) protein. Glycosylated and unglycosylated versions of these conjugates were then used as antigens to immunize rabbits and mice. Immune responses to each of the conjugates were examined by Enzyme Linked Immunosorbent Assay ELISA. Additionally, the BclA3 conjugated peptide and glycopeptide were used as antigens in an ELISA assay with serum raised against formalin-killed spores. Only the glycopeptide was recognized by anti-spore polyclonal immune serum demonstrating that the glycan moiety is a predominant spore-associated surface antigen. To determine whether antibodies to these peptides could modify persistence of spores within the gut, animals immunized intranasally with either the KLH-glycopeptide or KLH-peptide conjugate in the presence of cholera toxin, were challenged with R20291 spores. Although specific antibodies were raised to both antigens, immunization did not provide any protection against acute or recurrent disease.
Collapse
Affiliation(s)
- Annie Aubry
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Wei Zou
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Evguenii Vinogradov
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Dean Williams
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Wangxue Chen
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Greg Harris
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Hongyan Zhou
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Melissa J. Schur
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Michel Gilbert
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Gillian R. Douce
- Institute of Infection, Immunity, Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, UK;
| | - Susan M. Logan
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
- Correspondence: ; Tel.: +613-990-0839
| |
Collapse
|
16
|
Begyn K, Kim TD, Heyndrickx M, Michiels C, Aertsen A, Rajkovic A, Devlieghere F. Directed evolution by UV-C treatment of Bacillus cereus spores. Int J Food Microbiol 2019; 317:108424. [PMID: 31790956 DOI: 10.1016/j.ijfoodmicro.2019.108424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/02/2019] [Accepted: 11/03/2019] [Indexed: 12/23/2022]
Abstract
Bacterial endospores are exposed to a broad variety of sublethal and lethal stresses in the food production chain. Generally, these stresses will not completely eliminate the existing spore populations, and thus constitute a selection pressure on the spores. One stress that is frequently used in the food production chains to disinfect (food) contact surfaces is UV-C. At a wavelength of 254 nm, UV-C has germicidal properties. The aim of this research is to investigate the impact of UV-C stress on the evolution of endospore recalcitrance and germination in B. cereus. A directed evolution experiment was set up in which B. cereus was repeatedly subjected to a cycle of sporulation, sporicidal UV-C treatment, germination and outgrowth. We show here that three independent lineages of UV-C cycled B. cereus spores reproducibly acquired a 30-fold or higher increase in UV-C resistance at 164 mJ/cm2. Surprisingly, the UV-C resistant spores of the clones isolated from each of the lineages also became significantly more sensitive to wet heat as a normally non-lethal heat treatment at 70 °C for 15 min resulted in an average 1.8 log cfu/mL reduction. From time-lapse phase contrast microscopy analysis, UV-C resistant mutant spores also showed a distinctive heterogeneity in refractility and a severe germination defect compared to the wild type. However, UV-C resistance of the corresponding vegetative cells was not altered. In conclusion, this work shows that UV-C resistance of endospores is an adaptive trait that can readily be improved, although at an apparent cost for heat resistance and germination efficiency. As such, these results provide novel insights in the evolvability of, and correlation between, some endospore properties.
Collapse
Affiliation(s)
- Katrien Begyn
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tom Dongmin Kim
- Laboratory of Food Microbiology, Department of Microbial and Molecular systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Marc Heyndrickx
- ILVO - Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science, Unit - Food Safety, Melle, Belgium; Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chris Michiels
- Laboratory of Food Microbiology, Department of Microbial and Molecular systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium; Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium.
| | - Andreja Rajkovic
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
17
|
Abhyankar W, Zheng L, Brul S, de Koster CG, de Koning LJ. Vegetative Cell and Spore Proteomes of Clostridioides difficile Show Finite Differences and Reveal Potential Protein Markers. J Proteome Res 2019; 18:3967-3976. [PMID: 31557040 PMCID: PMC6832669 DOI: 10.1021/acs.jproteome.9b00413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Indexed: 12/22/2022]
Abstract
Clostridioides difficile-associated infection (CDI) is a health-care-associated infection caused, as the name suggests, by obligate anaerobic pathogen C. difficile and thus mainly transmitted via highly resistant endospores from one person to the other. In vivo, the spores need to germinate into cells prior to establishing an infection. Bile acids and glycine, both available in sufficient amounts inside the human host intestinal tract, serve as efficient germinants for the spores. It is therefore, for better understanding of C. difficile virulence, crucial to study both the cell and spore states with respect to their genetic, metabolic, and proteomic composition. In the present study, mass spectrometric relative protein quantification, based on the 14N/15N peptide isotopic ratios, has led to quantification of over 700 proteins from combined spore and cell samples. The analysis has revealed that the proteome turnover between a vegetative cell and a spore for this organism is moderate. Additionally, specific cell and spore surface proteins, vegetative cell proteins CD1228, CD3301 and spore proteins CD2487, CD2434, and CD0684 are identified as potential protein markers for C. difficile infection.
Collapse
Affiliation(s)
- Wishwas
R. Abhyankar
- Department
of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department
of Mass Spectrometry of Bio-Macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Linli Zheng
- Department
of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department
of Mass Spectrometry of Bio-Macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Department
of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Chris G. de Koster
- Department
of Mass Spectrometry of Bio-Macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Leo J. de Koning
- Department
of Mass Spectrometry of Bio-Macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
18
|
Shen A, Edwards AN, Sarker MR, Paredes-Sabja D. Sporulation and Germination in Clostridial Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.GPP3-0017-2018. [PMID: 31858953 PMCID: PMC6927485 DOI: 10.1128/microbiolspec.gpp3-0017-2018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
As obligate anaerobes, clostridial pathogens depend on their metabolically dormant, oxygen-tolerant spore form to transmit disease. However, the molecular mechanisms by which those spores germinate to initiate infection and then form new spores to transmit infection remain poorly understood. While sporulation and germination have been well characterized in Bacillus subtilis and Bacillus anthracis, striking differences in the regulation of these processes have been observed between the bacilli and the clostridia, with even some conserved proteins exhibiting differences in their requirements and functions. Here, we review our current understanding of how clostridial pathogens, specifically Clostridium perfringens, Clostridium botulinum, and Clostridioides difficile, induce sporulation in response to environmental cues, assemble resistant spores, and germinate metabolically dormant spores in response to environmental cues. We also discuss the direct relationship between toxin production and spore formation in these pathogens.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, MA
| | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Mahfuzur R Sarker
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Daniel Paredes-Sabja
- Department of Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biolo gicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
19
|
Alves Feliciano C, Douché T, Giai Gianetto Q, Matondo M, Martin-Verstraete I, Dupuy B. CotL, a new morphogenetic spore coat protein of Clostridium difficile. Environ Microbiol 2019; 21:984-1003. [PMID: 30556639 DOI: 10.1111/1462-2920.14505] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/07/2018] [Accepted: 12/13/2018] [Indexed: 01/01/2023]
Abstract
The strict anaerobe Clostridium difficile is the most common cause of antibiotic-associated diarrhoea. The oxygen-resistant C. difficile spores play a central role in the infectious cycle, contributing to transmission, infection and recurrence. The spore surface layers, the coat and exosporium, enable the spores to resist physical and chemical stress. However, little is known about the mechanisms of their assembly. In this study, we characterized a new spore protein, CotL, which is required for the assembly of the spore coat. The cotL gene was expressed in the mother cell compartment under the dual control of the RNA polymerase sigma factors, σE and σK . CotL was localized in the spore coat, and the spores of the cotL mutant had a major morphologic defect at the level of the coat/exosporium layers. Therefore, the mutant spores contained a reduced amount of several coat/exosporium proteins and a defect in their localization in sporulating cells. Finally, cotL mutant spores were more sensitive to lysozyme and were impaired in germination, a phenotype likely to be associated with the structurally altered coat. Collectively, these results strongly suggest that CotL is a morphogenetic protein essential for the assembly of the spore coat in C. difficile.
Collapse
Affiliation(s)
- Carolina Alves Feliciano
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Thibaut Douché
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour La Biologie, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Quentin Giai Gianetto
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour La Biologie, CNRS USR 2000, Institut Pasteur, Paris, France.,Bioinformatics and Biostatistics HUB, C3BI, CNRS USR 3756, Institut Pasteur, Paris, France
| | - Mariette Matondo
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour La Biologie, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
20
|
Trautwein-Schult A, Maaß S, Plate K, Otto A, Becher D. A Metabolic Labeling Strategy for Relative Protein Quantification in Clostridioides difficile. Front Microbiol 2018; 9:2371. [PMID: 30386308 PMCID: PMC6198727 DOI: 10.3389/fmicb.2018.02371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/18/2018] [Indexed: 01/03/2023] Open
Abstract
Clostridioides difficile (formerly Clostridium difficile) is a Gram-positive, anaerobe, spore-forming pathogen, which causes drug-induced diseases in hospitals worldwide. A detailed analysis of the proteome may provide new targets for drug development or therapeutic strategies to combat this pathogen. The application of metabolic labeling (ML) would allow for accurate quantification of significant differences in protein abundance, even in the case of very small changes. Additionally, it would be possible to perform more accurate studies of the membrane or surface proteomes, which usually require elaborated sample preparation. Such studies are therefore prone to higher standard deviations during the quantification. The implementation of ML strategies for C. difficile is complicated due to the lack in arginine and lysine auxotrophy as well as the Stickland dominated metabolism of this anaerobic pathogen. Hence, quantitative proteome analyses could only be carried out by label free or chemical labeling methods so far. In this paper, a ML approach for C. difficile is described. A cultivation procedure with 15N-labeled media for strain 630Δerm was established achieving an incorporation rate higher than 97%. In a proof-of-principle experiment, the performance of the ML approach in C. difficile was tested. The proteome data of the cytosolic subproteome of C. difficile cells grown in complex medium as well as two minimal media in the late exponential and early stationary growth phase obtained via ML were compared with two label free relative quantification approaches (NSAF and LFQ). The numbers of identified proteins were comparable within the three approaches, whereas the number of quantified proteins were between 1,110 (ML) and 1,861 (LFQ) proteins. A hierarchical clustering showed clearly separated clusters for the different conditions and a small tree height with ML approach. Furthermore, it was shown that the quantification based on ML revealed significant altered proteins with small fold changes compared to the label free approaches. The quantification based on ML was accurate, reproducible, and even more sensitive compared to label free quantification strategies.
Collapse
Affiliation(s)
| | | | | | | | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
21
|
Pizarro-Guajardo M, Cristina Ravanal M, Daniela Paez M, Callegari E, Paredes-Sabja D. Identification of Clostridium difficile Immunoreactive Spore Proteins of the Epidemic Strain R20291. Proteomics Clin Appl 2018; 12:e1700182. [PMID: 29573213 PMCID: PMC6370038 DOI: 10.1002/prca.201700182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/25/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE Clostridium difficile infections are the leading cause of diarrhea associated with the use of antibiotics. During infection, C. difficile initiates a sporulation cycle leading to the persistence of C. difficile spores in the host and disease dissemination. The development of vaccine and passive immunization therapies against C. difficile has focused on toxins A and B. In this study, an immunoproteome-based approach to identify immunogenic proteins located on the outer layers of C. difficile spores as potential candidates for the development of immunotherapy and/or diagnostic methods against this devastating infection is used. EXPERIMENTAL DESIGN To identify potential immunogenic proteins on the surface of C. difficile R20291, spore coat/exosporium extracts are separated by 2D electrophoresis (2-DE) and analyzed for reactivity against C. difficile spore-specific goat sera. Finally, the selected spots are in-gel digested with chymotrypsin, peptides generated are separated by nanoUPLC followed by MS/MS using Quad-TOF-MS, corroborated by Ultimate 3000RS-nano-UHPLC coupled to Q-Exactive-Plus-Orbitrap MS. RESULTS The analysis identify five immunoreactive proteins: spore coat proteins CotE, CotA, and CotCB; exosporium protein CdeC; and a cytosolic methyltransferase. CONCLUSION This data provides a list of spore surface protein candidates as antigens for vaccine development against C. difficile infections.
Collapse
Affiliation(s)
- Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - María Cristina Ravanal
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
- Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias, Universidad Austral de Chile, Isla Teja, Valdivia, Chile
| | - Maria Daniela Paez
- BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, South Dakota, USA
| | - Eduardo Callegari
- BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, South Dakota, USA
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
22
|
Swarge BN, Roseboom W, Zheng L, Abhyankar WR, Brul S, de Koster CG, de Koning LJ. "One-Pot" Sample Processing Method for Proteome-Wide Analysis of Microbial Cells and Spores. Proteomics Clin Appl 2018; 12:e1700169. [PMID: 29484825 PMCID: PMC6174930 DOI: 10.1002/prca.201700169] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/22/2018] [Indexed: 11/15/2022]
Abstract
PURPOSE Bacterial endospores, the transmissible forms of pathogenic bacilli and clostridia, are heterogeneous multilayered structures composed of proteins. These proteins protect the spores against a variety of stresses, thus helping spore survival, and assist in germination, by interacting with the environment to form vegetative cells. Owing to the complexity, insolubility, and dynamic nature of spore proteins, it has been difficult to obtain their comprehensive protein profiles. EXPERIMENTAL DESIGN The intact spores of Bacillus subtilis, Bacillus cereus, and Peptoclostridium difficile and their vegetative counterparts were disrupted by bead beating in 6 m urea under reductive conditions. The heterogeneous mixture was then double digested with LysC and trypsin. Next, the peptide mixture was pre-fractionated with zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) followed by reverse-phase LC-FT-MS analysis of the fractions. RESULTS "One-pot" method is a simple, robust method that yields identification of >1000 proteins with high confidence, across all spore layers from B. subtilis, B. cereus, and P. difficile. CONCLUSIONS AND MEDICAL RELEVANCE This method can be employed for proteome-wide analysis of non-spore-forming as well as spore-forming pathogens. Analysis of spore protein profile will help to understand the sporulation and germination processes and to distinguish immunogenic protein markers.
Collapse
Affiliation(s)
- Bhagyashree Nandakishor Swarge
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institutes of Life Sciences, University of Amsterdam, The Netherlands
| | - Winfried Roseboom
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
| | - Linli Zheng
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institutes of Life Sciences, University of Amsterdam, The Netherlands
| | - Wishwas R Abhyankar
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institutes of Life Sciences, University of Amsterdam, The Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institutes of Life Sciences, University of Amsterdam, The Netherlands
| | - Chris G de Koster
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
| | - Leo J de Koning
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Calderón-Romero P, Castro-Córdova P, Reyes-Ramírez R, Milano-Céspedes M, Guerrero-Araya E, Pizarro-Guajardo M, Olguín-Araneda V, Gil F, Paredes-Sabja D. Clostridium difficile exosporium cysteine-rich proteins are essential for the morphogenesis of the exosporium layer, spore resistance, and affect C. difficile pathogenesis. PLoS Pathog 2018; 14:e1007199. [PMID: 30089172 PMCID: PMC6101409 DOI: 10.1371/journal.ppat.1007199] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 08/20/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Clostridium difficile is a Gram-positive spore-former bacterium and the leading cause of nosocomial antibiotic-associated diarrhea that can culminate in fatal colitis. During the infection, C. difficile produces metabolically dormant spores, which persist in the host and can cause recurrence of the infection. The surface of C. difficile spores seems to be the key in spore-host interactions and persistence. The proteome of the outermost exosporium layer of C. difficile spores has been determined, identifying two cysteine-rich exosporium proteins, CdeC and CdeM. In this work, we explore the contribution of both cysteine-rich proteins in exosporium integrity, spore biology and pathogenesis. Using targeted mutagenesis coupled with transmission electron microscopy we demonstrate that both cysteine rich proteins, CdeC and CdeM, are morphogenetic factors of the exosporium layer of C. difficile spores. Notably, cdeC, but not cdeM spores, exhibited defective spore coat, and were more sensitive to ethanol, heat and phagocytic cells. In a healthy colonic mucosa (mouse ileal loop assay), cdeC and cdeM spore adherence was lower than that of wild-type spores; while in a mouse model of recurrence of the disease, cdeC mutant exhibited an increased infection and persistence during recurrence. In a competitive infection mouse model, cdeC mutant had increased fitness over wild-type. Through complementation analysis with FLAG fusion of known exosporium and coat proteins, we demonstrate that CdeC and CdeM are required for the recruitment of several exosporium proteins to the surface of C. difficile spores. CdeC appears to be conserved exclusively in related Peptostreptococcaeace family members, while CdeM is unique to C. difficile. Our results sheds light on how CdeC and CdeM affect the biology of C. difficile spores and the assembly of the exosporium layer and, demonstrate that CdeC affect C. difficile pathogenesis. We discovered a mechanism of assembly of the outer most layer of Clostridium difficile spores, the exosporium. While CdeC is conserved in several Peptostreptococcaeace family members, CdeM is unique to C. difficile. We show that two proteins that are rich in cysteine amino acid residues, CdeC and CdeM, are essential for the recruitment of additional spore coat and exosporium proteins. The absence of CdeC, had profound implications in the correct spore coat assembly which were related to decreased spore resistant properties that are relevant for in vivo infection such as lysozyme resistance, macrophage infection. Notably, the absence of either cysteine rich proteins leads to a decrease in spore adherence of C. difficile spores to healthy colonic mucosa; but only the absence of CdeC affected in vivo competitive fitness in a mouse model, recurrence of the disease in a mouse model of recurrent infection. Considering the importance of the outer layers of C. difficile spores in spore-host interactions, our findings have broad implications on the biology of C. difficile spores and to C. difficile pathogenesis.
Collapse
Affiliation(s)
- Paulina Calderón-Romero
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo Castro-Córdova
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo Reyes-Ramírez
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Mauro Milano-Céspedes
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Enzo Guerrero-Araya
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Valeria Olguín-Araneda
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
24
|
Thermal inactivation kinetics of Bacillus cereus in Chinese rice wine and in simulated media based on wine components. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Rabi R, Larcombe S, Mathias R, McGowan S, Awad M, Lyras D. Clostridium sordellii outer spore proteins maintain spore structural integrity and promote bacterial clearance from the gastrointestinal tract. PLoS Pathog 2018; 14:e1007004. [PMID: 29668758 PMCID: PMC5927469 DOI: 10.1371/journal.ppat.1007004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/30/2018] [Accepted: 04/03/2018] [Indexed: 12/25/2022] Open
Abstract
Bacterial spores play an important role in disease initiation, transmission and persistence. In some species, the exosporium forms the outermost structure of the spore and provides the first point of contact between the spore and the environment. The exosporium may also be involved in spore adherence, protection and germination. Clostridium sordellii is a highly lethal, spore forming pathogen that causes soft-tissue infections, enteritis and toxic-shock syndrome. Despite the importance of C. sordellii spores in disease, spore proteins from this bacterium have not been defined or interrogated functionally. In this study, we identified the C. sordellii outer spore proteome and two of the identified proteins, CsA and CsB, were characterised using a genetic and phenotypic approach. Both proteins were essential for the correct formation and positioning of the C. sordellii spore coat and exosporium. The absence of CsA reduced sporulation levels and increased spore sensitivity to heat, sodium hydroxide and hydrochloric acid. By comparison, CsB was required for normal levels of spore adherence to cervical, but not vaginal, cells, with csB mutant spores having increased adherence properties. The establishment of a mouse infection model of the gastrointestinal tract for C. sordellii allowed the role of CsA and CsB to be interrogated in an infected host. Following the oral administration of spores to mice, the wild-type strain efficiently colonized the gastrointestinal tract, with the peak of bacterial numbers occurring at one day post-infection. Colonization was reduced by two logs at four days post-infection. By comparison, mice infected with the csB mutant did not show a reduction in bacterial numbers. We conclude that C. sordellii outer spore proteins are important for the structural and functional integrity of spores. Furthermore, outer spore proteins are required for wild-type levels of colonization during infection, possibly as a result of the role that the proteins play in spore structure and morphology.
Collapse
Affiliation(s)
- Rebecca Rabi
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Sarah Larcombe
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Rommel Mathias
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Sheena McGowan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Milena Awad
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
26
|
Abhyankar WR, Wen J, Swarge BN, Tu Z, de Boer R, Smelt JPPM, de Koning LJ, Manders E, de Koster CG, Brul S. Proteomics and microscopy tools for the study of antimicrobial resistance and germination mechanisms of bacterial spores. Food Microbiol 2018; 81:89-96. [PMID: 30910091 DOI: 10.1016/j.fm.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/21/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
Bacterial spores are ubiquitous in nature and can withstand both chemical and physical stresses. Spores can survive food preservation processes and upon outgrowth cause food spoilage as well as safety risks. The heterogeneous germination and outgrowth behavior of isogenic spore populations exacerbates this risk. A major unknown factor of spores is likely to be the inherently heterogeneous spore protein composition. The proteomics methods discussed here help in broadening the knowledge about spore structure and identification of putative target proteins from spores of different spore formers. Approaches to synchronize Bacillus subtilis spore formation, and to analyze spore proteins as well as the physiology of spore germination and outgrowth are also discussed. Live-imaging and fluorescence microscopy techniques discussed here allow analysis, at single cell level, of the 'germinosome', the process of spore germination itself, spore outgrowth and the spore intracellular pH dynamics. For the latter, a recently published improved pHluorin (IpHluorin) under control of the ptsG promoter is applicable. While the data obtained from such tools offers novel insight in the mechanisms of bacterial spore awakening, it may also be used to probe candidate antimicrobial compounds for inhibitory effects on spore germination and strengthen microbial risk assessment.
Collapse
Affiliation(s)
- W R Abhyankar
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - J Wen
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B N Swarge
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Z Tu
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - R de Boer
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - J P P M Smelt
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - L J de Koning
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - E Manders
- Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - C G de Koster
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - S Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Stelder SK, Benito de Moya C, Hoefsloot HCJ, de Koning LJ, Brul S, de Koster CG. Stoichiometry, Absolute Abundance, and Localization of Proteins in the Bacillus cereus Spore Coat Insoluble Fraction Determined Using a QconCAT Approach. J Proteome Res 2018; 17:903-917. [PMID: 29260567 PMCID: PMC5799878 DOI: 10.1021/acs.jproteome.7b00732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Spores of Bacillus cereus pose a threat to food
safety due to their high resistance to the heat or acid treatments
commonly used to make food microbiologically safe. Spores may survive
these treatments and later resume growth either on foodstuffs or,
after ingestion, upon entering the gut they are capable of producing
toxins, which cause either vomiting or diarrhea. The outer layers
of the spore, the spore coat and exosporium, consist primarily of
proteins that may serve as potential biomarkers for detection. The
major morphogenetic protein CotE is important for correct assembly
and attachment of the outermost layer, the exosporium, and by extension
retention of many proteins. However, characterization of the proteins
affected by deletion of CotE has been limited to electrophoretic patterns.
Here we report the effect of CotE deletion on the insoluble fraction
of the spore proteome through liquid chromatography–Fourier
transform tandem mass spectrometry (LC–FTMS/MS) analysis. A total of 560 proteins have been identified in both mutant
and wild-type spore coat isolates. A further 163 proteins were identified
exclusively in wild-type spore isolates indicating that they are dependent
on CotE for their association with the spore. Several of these are
newly confirmed as associated with the exosporium, namely BC_2569
(BclF), BC_3345, BC_2427, BC_2878, BC_0666, BC_2984, BC_3481, and
BC_2570. A total of 153 proteins were only identified in ΔCotE
spore isolates. This was observed for proteins that are known or likely
to be interacting with or are encased by CotE. Crucial spore proteins
were quantified using a QconCAT reference standard, the first time
this was used in a biochemically heterogeneous system. This allowed
us to determine the absolute abundance of 21 proteins, which spanned
across three orders of magnitude and together covered 5.66% ±
0.51 of the total spore weight. Applying the QconCAT methodology to
the ΔCotE mutant allowed us to quantify 4.13% ± 0.14 of
the spore total weight and revealed a reduction in abundance for most
known exosporium associated proteins upon CotE deletion. In contrast,
several proteins, either known or likely to be interacting with or
encased by CotE (i.e., GerQ), were more abundant. The results obtained
provide deeper insight into the layered spore structure such as which
proteins are exposed on the outside of the spore. This information
is important for developing detection methods for targeting spores
in a food safety setting. Furthermore, protein stoichiometry and determination
of the abundance of germination mediating enzymes provides useful
information for germination and outgrowth model development.
Collapse
Affiliation(s)
- Sacha K Stelder
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Celia Benito de Moya
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Huub C J Hoefsloot
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Leo J de Koning
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Chris G de Koster
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
28
|
Kohler LJ, Quirk AV, Welkos SL, Cote CK. Incorporating germination-induction into decontamination strategies for bacterial spores. J Appl Microbiol 2017; 124:2-14. [PMID: 28980459 DOI: 10.1111/jam.13600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 01/05/2023]
Abstract
Bacterial spores resist environmental extremes and protect key spore macromolecules until more supportive conditions arise. Spores germinate upon sensing specific molecules, such as nutrients. Germination is regulated by specialized mechanisms or structural features of the spore that limit contact with germinants and enzymes that regulate germination. Importantly, germination renders spores more susceptible to inactivating processes such as heat, desiccation, and ultraviolet radiation, to which they are normally refractory. Thus, germination can be intentionally induced through a process called germination-induction and subsequent treatment of these germinated spores with common disinfectants or gentle heat will inactivate them. However, while the principle of germination-induction has been shown effective in the laboratory, this strategy has not yet been fully implemented in real-word scenarios. Here, we briefly review the mechanisms of bacterial spore germination and discuss the evolution of germination-induction as a decontamination strategy. Finally, we examine progress towards implementing germination-induction in three contexts: biodefense, hospital settings and food manufacture. SIGNIFICANCE AND IMPACT This article reviews implementation of germination-induction as part of a decontamination strategy for the cleanup of bacterial spores. To our knowledge this is the first time that germination-induction studies have been reviewed in this context. This article will provide a resource which summarizes the mechanisms of germination in Clostridia and Bacillus species, challenges and successes in germination-induction, and potential areas where this strategy may be implemented.
Collapse
Affiliation(s)
- L J Kohler
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - A V Quirk
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - S L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - C K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| |
Collapse
|
29
|
Abstract
Spores of Clostridiales and Bacillales are encased in a complex series of concentric shells that provide protection, facilitate germination, and mediate interactions with the environment. Analysis of diverse spore-forming species by thin-section transmission electron microscopy reveals that the number and morphology of these encasing shells vary greatly. In some species, they appear to be composed of a small number of discrete layers. In other species, they can comprise multiple, morphologically complex layers. In addition, spore surfaces can possess elaborate appendages. For all their variability, there is a consistent architecture to the layers encasing the spore. A hallmark of all Clostridiales and Bacillales spores is the cortex, a layer made of peptidoglycan. In close association with the cortex, all species examined possess, at a minimum, a series of proteinaceous layers, called the coat. In some species, including Bacillus subtilis, only the coat is present. In other species, including Bacillus anthracis, an additional layer, called the exosporium, surrounds the coat. Our goals here are to review the present understanding of the structure, composition, assembly, and functions of the coat, primarily in the model organism B. subtilis, but also in the small but growing number of other spore-forming species where new data are showing that there is much to be learned beyond the relatively well-developed basis of knowledge in B. subtilis. To help summarize this large field and define future directions for research, we will focus on key findings in recent years.
Collapse
|
30
|
Trunet C, Carlin F, Coroller L. Investigating germination and outgrowth of bacterial spores at several scales. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Li Z, Mukherjee T, Bowler K, Namdari S, Snow Z, Prestridge S, Carlton A, Bar-Peled M. A four-gene operon in Bacillus cereus produces two rare spore-decorating sugars. J Biol Chem 2017; 292:7636-7650. [PMID: 28298443 DOI: 10.1074/jbc.m117.777417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/14/2017] [Indexed: 11/06/2022] Open
Abstract
Bacterial glycan structures on cell surfaces are critical for cell-cell recognition and adhesion and in host-pathogen interactions. Accordingly, unraveling the sugar composition of bacterial cell surfaces can shed light on bacterial growth and pathogenesis. Here, we found that two rare sugars with a 3-C-methyl-6-deoxyhexose structure were linked to spore glycans in Bacillus cereus ATCC 14579 and ATCC 10876. Moreover, we identified a four-gene operon in B. cereus ATCC 14579 that encodes proteins with the following sequential enzyme activities as determined by mass spectrometry and one- and two-dimensional NMR methods: CTP:glucose-1-phosphate cytidylyltransferase, CDP-Glc 4,6-dehydratase, NADH-dependent SAM:C-methyltransferase, and NADPH-dependent CDP-3-C-methyl-6-deoxyhexose 4-reductase. The last enzyme predominantly yielded CDP-3-C-methyl-6-deoxygulose (CDP-cereose) and likely generated a 4-epimer CDP-3-C-methyl-6-deoxyallose (CDP-cillose). Some members of the B. cereus sensu lato group produce CDP-3-C-methyl-6-deoxy sugars for the formation of cereose-containing glycans on spores, whereas others such as Bacillus anthracis do not. Gene knockouts of the Bacillus C-methyltransferase and the 4-reductase confirmed their involvement in the formation of cereose-containing glycan on B. cereus spores. We also found that cereose represented 0.2-1% spore dry weight. Moreover, mutants lacking cereose germinated faster than the wild type, yet the mutants exhibited no changes in sporulation or spore resistance to heat. The findings reported here may provide new insights into the roles of the uncommon 3-C-methyl-6-deoxy sugars in cell-surface recognition and host-pathogen interactions of the genus Bacillus.
Collapse
Affiliation(s)
- Zi Li
- From the Complex Carbohydrate Research Center and.,the Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | | | - Kyle Bowler
- From the Complex Carbohydrate Research Center and
| | | | - Zachary Snow
- From the Complex Carbohydrate Research Center and
| | | | | | - Maor Bar-Peled
- From the Complex Carbohydrate Research Center and .,the Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
32
|
Otto A, Maaß S, Lassek C, Becher D, Hecker M, Riedel K, Sievers S. The protein inventory of Clostridium difficile grown in complex and minimal medium. Proteomics Clin Appl 2016; 10:1068-1072. [PMID: 27511832 DOI: 10.1002/prca.201600069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/21/2016] [Accepted: 08/08/2016] [Indexed: 01/29/2023]
Abstract
The intestinal pathogen Clostridium difficile is causing an increasing number of infections often characterized by severity and high relapse rates. Profound knowledge of the physiology of the pathogen could help to develop new treatment strategies. Proteomics, a valuable tool to study bacterial physiology, was used in this work to establish a benchmark proteome of reference strain C. difficile 630Δerm with MS-based details on all identified proteins. Our elaborate annotation and visualization of C. difficile 630Δerm 3764 ORFs will serve as a valuable base for researchers having to evaluate global expression studies. To exemplify expression variability, protein expression of late exponentially growing cells in complex brain-heart infusion medium and C. difficile minimal medium was compared. Noteworthy results of this comparison are as follows: (i) the higher expression of enzymes for the biosynthesis of some vitamins and purine and (ii) downregulation of proteins involved in butanoate fermentation in C. difficile minimal medium. However, the abundance of proteins involved in DNA metabolism, protein synthesis, and the cell envelope showed no variation between the two growth media.
Collapse
Affiliation(s)
- Andreas Otto
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Lassek
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Michael Hecker
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
33
|
Martin-Verstraete I, Peltier J, Dupuy B. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis. Toxins (Basel) 2016; 8:E153. [PMID: 27187475 PMCID: PMC4885068 DOI: 10.3390/toxins8050153] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022] Open
Abstract
The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection.
Collapse
Affiliation(s)
- Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bactéries Anaérobes, Department of Microbiology, Institut Pasteur, 25 rue du Dr Roux Paris, Paris 75015, France.
- UFR Sciences du vivant, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris 75015, France.
| | - Johann Peltier
- Laboratoire Pathogenèse des Bactéries Anaérobes, Department of Microbiology, Institut Pasteur, 25 rue du Dr Roux Paris, Paris 75015, France.
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobes, Department of Microbiology, Institut Pasteur, 25 rue du Dr Roux Paris, Paris 75015, France.
| |
Collapse
|
34
|
The Exosporium Layer of Bacterial Spores: a Connection to the Environment and the Infected Host. Microbiol Mol Biol Rev 2016; 79:437-57. [PMID: 26512126 DOI: 10.1128/mmbr.00050-15] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Much of what we know regarding bacterial spore structure and function has been learned from studies of the genetically well-characterized bacterium Bacillus subtilis. Molecular aspects of spore structure, assembly, and function are well defined. However, certain bacteria produce spores with an outer spore layer, the exosporium, which is not present on B. subtilis spores. Our understanding of the composition and biological functions of the exosporium layer is much more limited than that of other aspects of the spore. Because the bacterial spore surface is important for the spore's interactions with the environment, as well as being the site of interaction of the spore with the host's innate immune system in the case of spore-forming bacterial pathogens, the exosporium is worthy of continued investigation. Recent exosporium studies have focused largely on members of the Bacillus cereus family, principally Bacillus anthracis and Bacillus cereus. Our understanding of the composition of the exosporium, the pathway of its assembly, and its role in spore biology is now coming into sharper focus. This review expands on a 2007 review of spore surface layers which provided an excellent conceptual framework of exosporium structure and function (A. O. Henriques and C. P. Moran, Jr., Annu Rev Microbiol 61:555-588, 2007, http://dx.doi.org/10.1146/annurev.micro.61.080706.093224). That review began a process of considering outer spore layers as an integrated, multilayered structure rather than simply regarding the outer spore components as independent parts.
Collapse
|
35
|
Setlow B, Korza G, Setlow P. Analysis of α
-glucosidase enzyme activity used in a rapid test for steam sterilization assurance. J Appl Microbiol 2016; 120:1326-35. [DOI: 10.1111/jam.13074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/29/2015] [Accepted: 01/14/2016] [Indexed: 11/26/2022]
Affiliation(s)
- B. Setlow
- Department of Molecular Biology and Biophysics; UConn Health; Farmington CT USA
| | - G. Korza
- Department of Molecular Biology and Biophysics; UConn Health; Farmington CT USA
| | - P. Setlow
- Department of Molecular Biology and Biophysics; UConn Health; Farmington CT USA
| |
Collapse
|
36
|
Ultrastructural Variability of the Exosporium Layer of Clostridium difficile Spores. Appl Environ Microbiol 2016; 82:2202-2209. [PMID: 26850296 DOI: 10.1128/aem.03410-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/18/2016] [Indexed: 01/05/2023] Open
Abstract
The anaerobic sporeformer Clostridium difficile is the leading cause of nosocomial antibiotic-associated diarrhea in developed and developing countries. The metabolically dormant spore form is considered the transmission, infectious, and persistent morphotype, and the outermost exosporium layer is likely to play a major role in spore-host interactions during the first contact of C. difficile spores with the host and for spore persistence during recurrent episodes of infection. Although some studies on the biology of the exosporium have been conducted (J. Barra-Carrasco et al., J Bacteriol 195:3863-3875, 2013, http://dx.doi.org/10.1128/JB.00369-13; J. Phetcharaburanin et al., Mol Microbiol 92:1025-1038, 2014, http://dx.doi.org/10.1111/mmi.12611), there is a lack of information on the ultrastructural variability and stability of this layer. In this work, using transmission electron micrographs, we analyzed the variability of the spore's outermost layers in various strains and found distinctive variability in the ultrastructural morphotype of the exosporium within and between strains. Through transmission electron micrographs, we observed that although this layer was stable during spore purification, it was partially lost after 6 months of storage at room temperature. These observations were confirmed by indirect immunofluorescence microscopy, where a significant decrease in the levels of two exosporium markers, the N-terminal domain of BclA1 and CdeC, was observed. It is also noteworthy that the presence of the exosporium marker CdeC on spores obtained from C. difficile biofilms depended on the biofilm culture conditions and the strain used. Collectively, these results provide information on the heterogeneity and stability of the exosporium surface of C. difficile spores. These findings have direct implications and should be considered in the development of novel methods to diagnose and/or remove C. difficile spores by using exosporium proteins as targets.
Collapse
|
37
|
Ghose C, Eugenis I, Edwards AN, Sun X, McBride SM, Ho DD. Immunogenicity and protective efficacy of Clostridium difficile spore proteins. Anaerobe 2015; 37:85-95. [PMID: 26688279 DOI: 10.1016/j.anaerobe.2015.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/28/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022]
Abstract
Clostridium difficile is a spore-forming, anaerobic, Gram-positive organism that is the leading cause of antibiotic-associated infectious diarrhea, commonly known as C. difficile infection (CDI). C. difficile spores play an important role in the pathogenesis of CDI. Spore proteins, especially those that are surface-bound may play an essential role in the germination, colonization and persistence of C. difficile in the human gut. In our current study, we report the identification of two surface-bound spore proteins, CdeC and CdeM that may be utilized as immunization candidates against C. difficile. These spore proteins are immunogenic in mice and are able to protect mice against challenge with C. difficile UK1, a clinically-relevant 027/B1/NAP1 strain. These spore proteins are also able to afford high levels of protection against challenge with C. difficile 630Δerm in golden Syrian hamsters. This unprecedented study shows the vaccination potential of C. difficile spore exosporium proteins.
Collapse
Affiliation(s)
| | | | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani School of Medicine, University of South Florida, Tampa, FL, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, New York, NY, USA; Rockefeller University, New York, NY, USA
| |
Collapse
|
38
|
Abstract
Dental implants may fail to osseointegrate in sites of endodontic failure. This may occur as a result colonization by various anaerobic and facultative bacterial species. If an implant is placed in a site where vegetative bacteria are residing, the implant may fail to integrate if a bacterial colonization proceeds coronally. If the implant apical cortical bone is thin or if there is an apical fenestration, the colonization may proceed through the thin or nonexistent bone through the covering mucosa, relieving inflammatory pressure to create an apical (retrograde) peri-implantitis. Enterococcus faecalis may be the prime culprit in these types of implant failures. After thorough debridement, the implant may be immediately placed after extraction of an endodontically failed tooth, and the patient treated with an appropriate antibiotic. Alternatively waiting for postextraction healing and subsequent implant placement can be done. Nevertheless, either way may allow for the formation of bacterial vegetative forms or biofilms. The implant surface may be colonized when the surface is exposed to the bacteria. Thorough debridement is crucial. Nonetheless, organisms may persist. Randomized controlled trials are needed to elucidate this issue.
Collapse
|
39
|
The C-Terminal Zwitterionic Sequence of CotB1 Is Essential for Biosilicification of the Bacillus cereus Spore Coat. J Bacteriol 2015; 198:276-82. [PMID: 26503850 DOI: 10.1128/jb.00447-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/15/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Silica is deposited in and around the spore coat layer of Bacillus cereus, and enhances the spore's acid resistance. Several peptides and proteins, including diatom silaffin and silacidin peptides, are involved in eukaryotic silica biomineralization (biosilicification). Homologous sequence search revealed a silacidin-like sequence in the C-terminal region of CotB1, a spore coat protein of B. cereus. The negatively charged silacidin-like sequence is followed by a positively charged arginine-rich sequence of 14 amino acids, which is remarkably similar to the silaffins. These sequences impart a zwitterionic character to the C terminus of CotB1. Interestingly, the cotB1 gene appears to form a bicistronic operon with its paralog, cotB2, the product of which, however, lacks the C-terminal zwitterionic sequence. A ΔcotB1B2 mutant strain grew as fast and formed spores at the same rate as wild-type bacteria but did not show biosilicification. Complementation analysis showed that CotB1, but neither CotB2 nor C-terminally truncated mutants of CotB1, could restore the biosilicification activity in the ΔcotB1B2 mutant, suggesting that the C-terminal zwitterionic sequence of CotB1 is essential for the process. We found that the kinetics of CotB1 expression, as well as its localization, correlated well with the time course of biosilicification and the location of the deposited silica. To our knowledge, this is the first report of a protein directly involved in prokaryotic biosilicification. IMPORTANCE Biosilicification is the process by which organisms incorporate soluble silicate in the form of insoluble silica. Although the mechanisms underlying eukaryotic biosilicification have been intensively investigated, prokaryotic biosilicification was not studied until recently. We previously demonstrated that biosilicification occurs in Bacillus cereus and its close relatives, and that silica is deposited in and around a spore coat layer as a protective coating against acid. The present study reveals that a B. cereus spore coat protein, CotB1, which carried a C-terminal zwitterionic sequence, is essential for biosilicification. Our results provide the first insight into mechanisms required for biosilicification in prokaryotes.
Collapse
|
40
|
Sporulation Temperature Reveals a Requirement for CotE in the Assembly of both the Coat and Exosporium Layers of Bacillus cereus Spores. Appl Environ Microbiol 2015; 82:232-43. [PMID: 26497467 DOI: 10.1128/aem.02626-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/15/2015] [Indexed: 11/20/2022] Open
Abstract
The Bacillus cereus spore surface layers consist of a coat surrounded by an exosporium. We investigated the interplay between the sporulation temperature and the CotE morphogenetic protein in the assembly of the surface layers of B. cereus ATCC 14579 spores and on the resulting spore properties. The cotE deletion affects the coat and exosporium composition of the spores formed both at the suboptimal temperature of 20°C and at the optimal growth temperature of 37°C. Transmission electron microscopy revealed that ΔcotE spores had a fragmented and detached exosporium when formed at 37°C. However, when produced at 20°C, ΔcotE spores showed defects in both coat and exosporium attachment and were susceptible to lysozyme and mutanolysin. Thus, CotE has a role in the assembly of both the coat and exosporium, which is more important during sporulation at 20°C. CotE was more represented in extracts from spores formed at 20°C than at 37°C, suggesting that increased synthesis of the protein is required to maintain proper assembly of spore surface layers at the former temperature. ΔcotE spores formed at either sporulation temperature were impaired in inosine-triggered germination and resistance to UV-C and H2O2 and were less hydrophobic than wild-type (WT) spores but had a higher resistance to wet heat. While underscoring the role of CotE in the assembly of B. cereus spore surface layers, our study also suggests a contribution of the protein to functional properties of additional spore structures. Moreover, it also suggests a complex relationship between the function of a spore morphogenetic protein and environmental factors such as the temperature during spore formation.
Collapse
|
41
|
Deatherage Kaiser BL, Wunschel DS, Sydor MA, Warner MG, Wahl KL, Hutchison JR. Improved proteomic analysis following trichloroacetic acid extraction of Bacillus anthracis spore proteins. J Microbiol Methods 2015; 118:18-24. [PMID: 26295278 DOI: 10.1016/j.mimet.2015.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 07/10/2015] [Accepted: 08/07/2015] [Indexed: 11/29/2022]
Abstract
Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Analysis of cellular proteins is dependent upon efficient extraction from bacterial samples, which can be challenging with increasing complexity and refractory characteristics. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrichment for certain classes of proteins. The method presented here is technically simple, does not require specialized equipment such as a mechanical disrupter, and is effective for protein extraction of the particularly challenging sample type of Bacillus anthracis Sterne spores. The ability of Trichloroacetic acid (TCA) extraction to isolate proteins from spores and enrich for spore-specific proteins was compared to the traditional mechanical disruption method of bead beating. TCA extraction improved the total average number of proteins identified within a sample as compared to bead beating (547 vs 495, respectively). Further, TCA extraction enriched for 270 spore proteins, including those typically identified by first isolating the spore coat and exosporium layers. Bead beating enriched for 156 spore proteins more typically identified from whole spore proteome analyses. The total average number of proteins identified was equal using TCA or bead beating for easily lysed samples, such as B. anthracis vegetative cells. As with all assays, supplemental methods such as implementation of an alternative preparation method may simplify sample preparation and provide additional insight to the protein biology of the organism being studied.
Collapse
Affiliation(s)
- Brooke L Deatherage Kaiser
- Chemical and Biological Signature Science Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - David S Wunschel
- Chemical and Biological Signature Science Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Michael A Sydor
- Chemical and Biological Signature Science Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marvin G Warner
- Chemical and Biological Signature Science Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karen L Wahl
- Chemical and Biological Signature Science Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Janine R Hutchison
- Chemical and Biological Signature Science Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
42
|
Díaz-González F, Milano M, Olguin-Araneda V, Pizarro-Cerda J, Castro-Córdova P, Tzeng SC, Maier CS, Sarker MR, Paredes-Sabja D. Protein composition of the outermost exosporium-like layer of Clostridium difficile 630 spores. J Proteomics 2015; 123:1-13. [PMID: 25849250 DOI: 10.1016/j.jprot.2015.03.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/23/2015] [Accepted: 03/29/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Clostridium difficile spores are considered the morphotype of infection, transmission and persistence of C. difficile infections. There is a lack of information on the composition of the outermost exosporium layer of C. difficile spores. Using recently developed exosporium removal methods combined with MS/MS, we have established a gel-free approach to analyze the proteome of the exosporium of C. difficile spores of strain 630. A total of 184 proteins were found in the exosporium layer of C. difficile spores. We identified 7 characterized spore coat and/or exosporium proteins; 6 proteins likely to be involved in spore resistance; 6 proteins possibly involved in pathogenicity; 13 uncharacterized proteins; and 146 cytosolic proteins that might have been encased into the exosporium during assembly, similarly as reported for Bacillus anthracis and Bacillus cereus spores. We demonstrate through Flag-fusions that CotA and CotB are mainly located in the spore coat, while the exosporium collagen-like glycoproteins (i.e. BclA1, BclA2 and BclA3), the exosporium morphogenetic proteins CdeC and CdeM, and the uncharacterized exosporium proteins CdeA and CdeB are mainly located in the exosporium layer of C. difficile 630 spores. This study offers novel candidates of C. difficile exosporium proteins as suitable targets for detection, removal and spore-based therapies. BIOLOGICAL SIGNIFICANCE This study offers a novel strategy to identify proteins of the exosporium layer of C. difficile spores and complements previous proteomic studies on the entire C. difficile spores and spore coat since it defines the proteome of the outermost layer of C. difficile spores, the exosporium. This study suggests that C. difficile spores have several proteins involved in protection against environmental stress as well as putative virulence factors that might play a role during infection. Spore exosporium structural proteins were also identified providing the ground basis for further functional studies of these proteins. Overall this work provides new protein target for the diagnosis and/or therapeutics that may contribute to combat C. difficile infections.
Collapse
Affiliation(s)
- Fernando Díaz-González
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Mauro Milano
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Valeria Olguin-Araneda
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Jaime Pizarro-Cerda
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Pablo Castro-Córdova
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Shin-Chen Tzeng
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA; Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Daniel Paredes-Sabja
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
43
|
Purification and identification of an antibacterial protein from the symbiotic bacteria associated with novel entomopathogenic nematode, Rhabditis (Oscheius) sp. World J Microbiol Biotechnol 2015; 31:621-32. [PMID: 25666178 DOI: 10.1007/s11274-015-1816-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
Abstract
Entomopathogenic nematodes (EPN) belonging to the families steinernematidae and heterorhabditidae and their symbiotic bacteria Xenorhabdus and Photorhabdus are well-known as biological control agents and are found to produce a wide range of bioactive secondary metabolites. Studies carried out at the Central Tuber Crops Research Institute (CTCRI) on entomopathogenic nematodes resulted in the identification of novel EPN belonging to the family Rhabditidae. This study reports the purification of a high molecular weight antibacterial protein from culture filtrates of a bacterium (Bacillus cereus) symbiotically associated with a novel entomopathogenic nematode Rhabditis (Oscheius) species, maintained at CTCRI laboratory. Fermentation conditions were standardized and optimum antibacterial activity was observed in tryptic soy broth after 48 h incubation at 30 °C. The aqueous extracts yielded antibacterial proteins which were purified by ammonium sulfate precipitation followed by ion exchange chromatography and size exclusion chromatography. Native gel electrophoresis indicated an active protein of molecular mass 220KDa which resolved into a major band of 90 kDa and a minor band of about 40 kDa on SDS-PAGE. The 90 kDa protein showed antibacterial activity and was further analysed by MALDI TOF-MS/MS. The protein was identified as a TQXA (Threonine-glutamine dipeptide) domain containing protein from Bacillus cereus. The protein was found to be active against Bacillus subtilis MTCC2756, Staphylococus aureus MTCC902 and Escherichia coli MTCC 2622 and was thermally stable.
Collapse
|
44
|
Dalla Vecchia E, Visser M, Stams AJM, Bernier-Latmani R. Investigation of sporulation in the Desulfotomaculum genus: a genomic comparison with the genera Bacillus and Clostridium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:756-766. [PMID: 25132579 DOI: 10.1111/1758-2229.12200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
The genus Desulfotomaculum, belonging to the Firmicutes, comprises strictly anaerobic and endospore-forming bacteria capable of dissimilatory sulfate reduction. These microorganisms are metabolically versatile and are widely distributed in the environment. Spore formation allows them to survive prolonged environmental stress. Information on the mechanism of sporulation in Desulfotomaculum species is scarce. Herein, this process was probed from a genomic standpoint, using the Bacillus subtilis model system as a reference and clostridial sporulation for comparison. Desulfotomaculum falls somewhere in between the Bacillus and Clostridium in terms of conservation of sporulation proteins. Furthermore, it showcased the conservation of a core regulatory cascade throughout genera, while uncovering variability in the initiation of sporulation and the structural characteristics of spores from different genera. In particular, while in Clostridium species sporulation is not initiated by a phosphorelay, Desulfotomaculum species harbour homologues of the B. subtilis proteins involved in this process. Conversely, both Clostridium and Desulfotomaculum species conserve very few B. subtilis structural proteins, particularly those found in the outer layers of the spore. Desulfotomaculum species seem to share greater similarity to the outer layers of Clostridium difficile.
Collapse
Affiliation(s)
- Elena Dalla Vecchia
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, CH A1 375 Station 6, Lausanne, CH-1015, Switzerland
| | | | | | | |
Collapse
|
45
|
Awad MM, Johanesen PA, Carter GP, Rose E, Lyras D. Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen. Gut Microbes 2014; 5:579-93. [PMID: 25483328 PMCID: PMC4615314 DOI: 10.4161/19490976.2014.969632] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The worldwide emergence of epidemic strains of Clostridium difficile linked to increased disease severity and mortality has resulted in greater research efforts toward determining the virulence factors and pathogenesis mechanisms used by this organism to cause disease. C. difficile is an opportunist pathogen that employs many factors to infect and damage the host, often with devastating consequences. This review will focus on the role of the 2 major virulence factors, toxin A (TcdA) and toxin B (TcdB), as well as the role of other putative virulence factors, such as binary toxin, in C. difficile-mediated infection. Consideration is given to the importance of spores in both the initiation of disease and disease recurrence and also to the role that surface proteins play in host interactions.
Collapse
Key Words
- AAD, antibiotic associated diarrhea
- C. difficile,Clostridium difficile
- CDI, C. difficile infection
- CDT, Clostridium difficile transferase
- CDTLoc, CDT locus
- CDTa, CDT enzymatic component
- CDTb, CDT binding/translocation component
- CST, Clostridium spiroforme toxin
- CWPs, cell wall protein
- Clostridium
- ECF, extracytoplasmic function
- HMW, high molecular weight
- LMW, low molecular weight
- LSR, lipolysis-stimulated lipoprotein receptor
- PCR, polymerase chain reaction
- PFGE, pulsed field gel electrophoresis
- PaLoc, pathogenicity locus
- REA, restriction endonuclease analysis
- S-layer, surface layer
- SLPs, S-layer proteins
- TcdA, toxin A
- TcdB, toxin B
- antibiotic
- colitis
- difficile
- infection
- nosocomial
- toxin
- virulence factor
- ι-toxin, iota toxin
Collapse
Affiliation(s)
- Milena M Awad
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | | | - Glen P Carter
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | - Edward Rose
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | - Dena Lyras
- Department of Microbiology; Monash University; Clayton, Victoria, Australia,Correspondence to: Dena Lyras;
| |
Collapse
|
46
|
Abhyankar W, de Koning LJ, Brul S, de Koster CG. Spore proteomics: the past, present and the future. FEMS Microbiol Lett 2014; 358:137-44. [PMID: 25110127 DOI: 10.1111/1574-6968.12568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 11/30/2022] Open
Abstract
Endospores are metabolically dormant, multi-layered cellular structures formed by Gram-positive bacteria belonging to the genera Bacillus, Clostridium and related organisms. Their external layers are composed of proteins which in part play a role in the resistance behaviour of spores to varied chemical and environmental assaults. Thus, protein analysis is of major interest in spore biology. Spore proteomic studies have been carried out previously but these studies have focused on the soluble coat protein fraction. Using gel-based techniques, protein identification and analysis were performed. Mass spectrometry-driven proteomics has opened new avenues to resolve in particular the insoluble part of the spore layer proteomes. Mass spectrometry-based qualitative and quantitative proteomics methods expand the knowledge about both the actual composition and the amount of proteins in their various layers. The techniques can also be used to study the integrity of the layers as well as spore biology in general. This notion is explored concisely in this mini-review.
Collapse
Affiliation(s)
- Wishwas Abhyankar
- Department of Mass Spectrometry of BioMacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
47
|
Identification and characterization of glycoproteins on the spore surface of Clostridium difficile. J Bacteriol 2014; 196:2627-37. [PMID: 24816601 DOI: 10.1128/jb.01469-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this study, we identify a major spore surface protein, BclA, and provide evidence that this protein is glycosylated. Following extraction of the spore surface, solubilized proteins were separated by one-dimensional PAGE and stained with glycostain to reveal a reactive high-molecular-mass region of approximately 600 kDa. Tandem mass spectrometry analysis of in-gel digests showed this band to contain peptides corresponding to a putative exosporangial glycoprotein (BclA3) and identified a number of glycopeptides modified with multiple N-acetyl hexosamine moieties and, in some cases, capped with novel glycans. In addition, we demonstrate that the glycosyltransferase gene sgtA (gene CD3350 in strain 630 and CDR3194 in strain R20291), which is located immediately upstream of the bclA3 homolog, is involved in the glycosylation of the spore surface, and is cotranscribed with bclA3. The presence of anti-β-O-GlcNAc-reactive material was demonstrated on the surface of spores by immunofluorescence and in surface extracts by Western blotting, although each strain produced a distinct pattern of reactivity. Reactivity of the spore surface with the anti-β-O-GlcNAc antibody was abolished in the 630 and R20291 glycosyltransferase mutant strains, while complementation with a wild-type copy of the gene restored the β-O-GlcNAc reactivity. Phenotypic testing of R20291 glycosyltransferase mutant spores revealed no significant change in sensitivity to ethanol or lysozyme. However, a change in the resistance to heat of R20291 glycosyltransferase mutant spores compared to R20291 spores was observed, as was the ability to adhere to and be internalized by macrophages.
Collapse
|
48
|
Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol 2014; 22:406-16. [PMID: 24814671 DOI: 10.1016/j.tim.2014.04.003] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/27/2014] [Accepted: 04/07/2014] [Indexed: 02/06/2023]
Abstract
Clostridium difficile is a Gram-positive, spore-forming obligate anaerobe and a major nosocomial pathogen of worldwide concern. Owing to its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. In susceptible patients, C. difficile spores germinate in the colon to form the vegetative cells that initiate Clostridium difficile infections (CDI). During CDI, C. difficile induces a sporulation pathway that produces more spores; these spores are responsible for the persistence of C. difficile in patients and horizontal transmission between hospitalized patients. Although important to the C. difficile lifecycle, the C. difficile spore proteome is poorly conserved when compared to members of the Bacillus genus. Further, recent studies have revealed significant differences between C. difficile and Bacillus subtilis at the level of sporulation, germination, and spore coat and exosporium morphogenesis. In this review, the regulation of the sporulation and germination pathways and the morphogenesis of the spore coat and exosporium will be discussed.
Collapse
|
49
|
Velásquez J, Schuurman-Wolters G, Birkner JP, Abee T, Poolman B. Bacillus subtilisspore protein SpoVAC functions as a mechanosensitive channel. Mol Microbiol 2014; 92:813-23. [DOI: 10.1111/mmi.12591] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Jeanette Velásquez
- Department of Biochemistry; Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- TI Food and Nutrition; Wageningen The Netherlands
| | - Gea Schuurman-Wolters
- Department of Biochemistry; Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jan Peter Birkner
- Department of Biochemistry; Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition; Wageningen The Netherlands
- Laboratory of Food Microbiology; Wageningen University; Wageningen The Netherlands
| | - Bert Poolman
- Department of Biochemistry; Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
50
|
Abhyankar W, Pandey R, Ter Beek A, Brul S, de Koning LJ, de Koster CG. Reinforcement of Bacillus subtilis spores by cross-linking of outer coat proteins during maturation. Food Microbiol 2014; 45:54-62. [PMID: 25481062 DOI: 10.1016/j.fm.2014.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Resistance characteristics of bacterial endospores towards various environmental stresses such as chemicals and heat are in part attributed to their coat proteins. Heat resistance is developed in a late stage of sporulation and during maturation of released spores. Using our gel-free proteomic approach and LC-FT-ICR-MS/MS analysis we have monitored the efficiency of the tryptic digestion of proteins in the coat during spore maturation over a period of eight days, using metabolically (15)N labeled mature spores as reference. The results showed that during spore maturation the loss of digestion efficiency of outer coat and crust proteins synchronized with the increase in heat resistance. This implicates that spore maturation involves chemical cross-linking of outer coat and crust layer proteins leaving the inner coat layer proteins unmodified. It appears that digestion efficiencies of spore surface proteins can be linked to their location within the coat and crust layers. We also attempted to study a possible link between spore maturation and the observed heterogeneity in spore germination.
Collapse
Affiliation(s)
- Wishwas Abhyankar
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Rachna Pandey
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander Ter Beek
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Leo J de Koning
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Chris G de Koster
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|