1
|
Li Y, Li Z, Tang Y, Zhuang X, Feng W, Boor PPC, Buschow S, Sprengers D, Zhou G. Unlocking the therapeutic potential of the NKG2A-HLA-E immune checkpoint pathway in T cells and NK cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e009934. [PMID: 39486805 PMCID: PMC11529472 DOI: 10.1136/jitc-2024-009934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/29/2024] [Indexed: 11/04/2024] Open
Abstract
Immune checkpoint blockade, which enhances the reactivity of T cells to eliminate cancer cells, has emerged as a potent strategy in cancer therapy. Besides T cells, natural killer (NK) cells also play an indispensable role in tumor surveillance and destruction. NK Group 2 family of receptor A (NKG2A), an emerging co-inhibitory immune checkpoint expressed on both NK cells and T cells, mediates inhibitory signal via interaction with its ligand human leukocyte antigen-E (HLA-E), thereby attenuating the effector and cytotoxic functions of NK cells and T cells. Developing antibodies to block NKG2A, holds promise in restoring the antitumor cytotoxicity of NK cells and T cells. In this review, we delve into the expression and functional significance of NKG2A and HLA-E, elucidating how the NKG2A-HLA-E axis contributes to tumor immune escape via signal transduction mechanisms. Furthermore, we provide an overview of clinical trials investigating NKG2A blockade, either as monotherapy or in combination with other therapeutic antibodies, highlighting the responses of the immune system and the clinical benefits for patients. We pay special attention to additional immune co-signaling molecules that serve as potential targets on both NK cells and T cells, aiming to evoke more robust immune responses against cancer. This review offers an in-depth exploration of the NKG2A-HLA-E pathway as a pivotal checkpoint in the anti-tumor responses, paving the way for new immunotherapeutic strategies to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Yan Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhu Li
- Department of Dermatology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yisen Tang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaomei Zhuang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wanhua Feng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonja Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guoying Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Wang T, Wang X, Zheng X, Guo Z, Mohsin A, Zhuang Y, Wang G. Overexpression of SLC2A1, ALDOC, and PFKFB4 in the glycolysis pathway drives strong drug resistance in 3D HeLa tumor cell spheroids. Biotechnol J 2024; 19:e2400163. [PMID: 39295558 DOI: 10.1002/biot.202400163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 09/21/2024]
Abstract
The 3D multicellular tumor spheroid (MTS) model exhibits enhanced fidelity in replicating the tumor microenvironment and demonstrates exceptional resistance to clinical drugs compared to the 2D monolayer model. In this study, we used multiomics (transcriptome, proteomics, and metabolomics) tools to explore the molecular mechanisms and metabolic differences of the two culture models. Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathways revealed that the differentially expressed genes between the two culture models were mainly enriched in cellular components and biological processes associated with extracellular matrix, extracellular structural organization, and mitochondrial function. An integrated analysis of three omics data revealed 11 possible drug resistance targets. Among these targets, seven genes, AKR1B1, ALDOC, GFPT2, GYS1, LAMB2, PFKFB4, and SLC2A1, exhibited significant upregulation. Conversely, four genes, COA7, DLD, IFNGR1, and QRSL1, were significantly downregulated. Clinical prognostic analysis using the TCGA survival database indicated that high-expression groups of SLC2A1, ALDOC, and PFKFB4 exhibited a significant negative correlation with patient survival. We further validated their involvement in chemotherapy drug resistance, indicating their potential significance in improving prognosis and chemotherapy outcomes. These results provide valuable insights into potential therapeutic targets that can potentially enhance treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Xueting Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Xuli Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Zhongfang Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Shanghai, People's Republic of China
| | - Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Pirayeshfard L, Luo S, Githaka JM, Saini A, Touret N, Goping IS, Julien O. Comparing the BAD Protein Interactomes in 2D and 3D Cell Culture Using Proximity Labeling. J Proteome Res 2024; 23:3433-3443. [PMID: 38959414 PMCID: PMC11302415 DOI: 10.1021/acs.jproteome.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Protein-protein interaction studies using proximity labeling techniques, such as biotin ligase-based BioID, have become integral in understanding cellular processes. Most studies utilize conventional 2D cell culture systems, potentially missing important differences in protein behavior found in 3D tissues. In this study, we investigated the protein-protein interactions of a protein, Bcl-2 Agonist of cell death (BAD), and compared conventional 2D culture conditions to a 3D system, wherein cells were embedded within a 3D extracellular matrix (ECM) mimic. Using BAD fused to the engineered biotin ligase miniTurbo (BirA*), we identified both overlapping and distinct BAD interactomes under 2D and 3D conditions. The known BAD binding proteins 14-3-3 isoforms and Bcl-XL interacted with BAD in both 2D and 3D. Of the 131 BAD-interactors identified, 56% were specific to 2D, 14% were specific to 3D, and 30% were common to both conditions. Interaction network analysis demonstrated differential associations between 2D and 3D interactomes, emphasizing the impact of the culture conditions on protein interactions. The 2D-3D overlap interactome encapsulated the apoptotic program, which is a well-known role of BAD. The 3D unique pathways were enriched in ECM signaling, suggestive of hitherto unknown functions for BAD. Thus, exploring protein-protein interactions in 3D provides novel clues into cell behavior. This exciting approach has the potential to bridge the knowledge gap between tractable 2D cell culture and organoid-like 3D systems.
Collapse
Affiliation(s)
- Leila Pirayeshfard
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Shu Luo
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Arashdeep Saini
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Nicolas Touret
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department
of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
4
|
Rahman MM, Wells G, Rantala JK, Helleday T, Muthana M, Danson SJ. In-vitro assays for immuno-oncology drug efficacy assessment and screening for personalized cancer therapy: scopes and challenges. Expert Rev Clin Immunol 2024; 20:821-838. [PMID: 38546609 DOI: 10.1080/1744666x.2024.2336583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Immunotherapies have revolutionized cancer treatment, but often fail to produce desirable therapeutic outcomes in all patients. Due to the inter-patient heterogeneity and complexity of the tumor microenvironment, personalized treatment approaches are gaining demand. Researchers have long been using a range of in-vitro assays including 2D models, organoid co-cultures, and cancer-on-a-chip platforms for cancer drug screening. A comparative analysis of these assays with their suitability, high-throughput capacity, and clinical translatability is required for optimal translational use. AREAS COVERED The review summarized in-vitro platforms with their comparative advantages and limitations including construction strategies, and translational potential for immuno-oncology drug efficacy assessment. We also discussed end-point analysis strategies so that researchers can contextualize their usefulness and optimally design experiments for personalized immunotherapy efficacy prediction. EXPERT OPINION Researchers developed several in-vitro platforms that can provide information on personalized immunotherapy efficacy from different angles. Image-based assays are undoubtedly more suitable to gather a wide range of information including cellular morphology and phenotypical behaviors but need significant improvement to overcome issues including background noise, sample preparation difficulty, and long duration of experiment. More studies and clinical trials are needed to resolve these issues and validate the assays before they can be used in real-life scenarios.
Collapse
Affiliation(s)
- Md Marufur Rahman
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
- Directorate General of Health Services, Dhaka, Bangladesh
| | - Greg Wells
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| | - Juha K Rantala
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
- Misvik Biology Ltd, Turku, Finland
| | - Thomas Helleday
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
- Department of Oncology-Pathology, Karolinska Institutet, Huddinge, Sweden
| | - Munitta Muthana
- Nanobug Oncology Sheffield, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| | - Sarah J Danson
- Sheffield Ex vivo Group, Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Schuster M, Braun FK, Chiang DML, Ludwig C, Meng C, Grätz C, Kirchner B, Proescholdt M, Hau P, Steinlein OK, Pfaffl MW, Riemenschneider MJ, Reithmair M. Extracellular vesicles secreted by 3D tumor organoids are enriched for immune regulatory signaling biomolecules compared to conventional 2D glioblastoma cell systems. Front Immunol 2024; 15:1388769. [PMID: 38726003 PMCID: PMC11079215 DOI: 10.3389/fimmu.2024.1388769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
Background Newer 3D culturing approaches are a promising way to better mimic the in vivo tumor microenvironment and to study the interactions between the heterogeneous cell populations of glioblastoma multiforme. Like many other tumors, glioblastoma uses extracellular vesicles as an intercellular communication system to prepare surrounding tissue for invasive tumor growth. However, little is known about the effects of 3D culture on extracellular vesicles. The aim of this study was to comprehensively characterize extracellular vesicles in 3D organoid models and compare them to conventional 2D cell culture systems. Methods Primary glioblastoma cells were cultured as 2D and 3D organoid models. Extracellular vesicles were obtained by precipitation and immunoaffinity, with the latter allowing targeted isolation of the CD9/CD63/CD81 vesicle subpopulation. Comprehensive vesicle characterization was performed and miRNA expression profiles were generated by smallRNA-sequencing. In silico analysis of differentially regulated miRNAs was performed to identify mRNA targets and corresponding signaling pathways. The tumor cell media and extracellular vesicle proteome were analyzed by high-resolution mass spectrometry. Results We observed an increased concentration of extracellular vesicles in 3D organoid cultures. Differential gene expression analysis further revealed the regulation of twelve miRNAs in 3D tumor organoid cultures (with nine miRNAs down and three miRNAs upregulated). MiR-23a-3p, known to be involved in glioblastoma invasion, was significantly increased in 3D. MiR-7-5p, which counteracts glioblastoma malignancy, was significantly decreased. Moreover, we identified four miRNAs (miR-323a-3p, miR-382-5p, miR-370-3p, miR-134-5p) located within the DLK1-DIO3 domain, a cancer-associated genomic region, suggesting a possible importance of this region in glioblastoma progression. Overrepresentation analysis identified alterations of extracellular vesicle cargo in 3D organoids, including representation of several miRNA targets and proteins primarily implicated in the immune response. Conclusion Our results show that 3D glioblastoma organoid models secrete extracellular vesicles with an altered cargo compared to corresponding conventional 2D cultures. Extracellular vesicles from 3D cultures were found to contain signaling molecules associated with the immune regulatory signaling pathways and as such could potentially change the surrounding microenvironment towards tumor progression and immunosuppressive conditions. These findings suggest the use of 3D glioblastoma models for further clinical biomarker studies as well as investigation of new therapeutic options.
Collapse
Affiliation(s)
- Martina Schuster
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Frank K. Braun
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Dapi Meng-Lin Chiang
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Christian Grätz
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, Regensburg University Hospital, Regensburg, Germany
| | - Peter Hau
- Department of Neurology and Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Ortrud K. Steinlein
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | | | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
6
|
Jose A, Kulkarni P, Thilakan J, Munisamy M, Malhotra AG, Singh J, Kumar A, Rangnekar VM, Arya N, Rao M. Integration of pan-omics technologies and three-dimensional in vitro tumor models: an approach toward drug discovery and precision medicine. Mol Cancer 2024; 23:50. [PMID: 38461268 PMCID: PMC10924370 DOI: 10.1186/s12943-023-01916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/15/2023] [Indexed: 03/11/2024] Open
Abstract
Despite advancements in treatment protocols, cancer is one of the leading cause of deaths worldwide. Therefore, there is a need to identify newer and personalized therapeutic targets along with screening technologies to combat cancer. With the advent of pan-omics technologies, such as genomics, transcriptomics, proteomics, metabolomics, and lipidomics, the scientific community has witnessed an improved molecular and metabolomic understanding of various diseases, including cancer. In addition, three-dimensional (3-D) disease models have been efficiently utilized for understanding disease pathophysiology and as screening tools in drug discovery. An integrated approach utilizing pan-omics technologies and 3-D in vitro tumor models has led to improved understanding of the intricate network encompassing various signalling pathways and molecular cross-talk in solid tumors. In the present review, we underscore the current trends in omics technologies and highlight their role in understanding genotypic-phenotypic co-relation in cancer with respect to 3-D in vitro tumor models. We further discuss the challenges associated with omics technologies and provide our outlook on the future applications of these technologies in drug discovery and precision medicine for improved management of cancer.
Collapse
Affiliation(s)
- Anmi Jose
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pallavi Kulkarni
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Jaya Thilakan
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Murali Munisamy
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Anvita Gupta Malhotra
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Vivek M Rangnekar
- Markey Cancer Center and Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Neha Arya
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India.
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Salvatori L, Malatesta S, Illi B, Somma MP, Fionda C, Stabile H, Fontanella RA, Gaetano C. Nitric Oxide Prevents Glioblastoma Stem Cells' Expansion and Induces Temozolomide Sensitization. Int J Mol Sci 2023; 24:11286. [PMID: 37511047 PMCID: PMC10379318 DOI: 10.3390/ijms241411286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma multiforme (GBM) has high mortality and recurrence rates. Malignancy resilience is ascribed to Glioblastoma Stem Cells (GSCs), which are resistant to Temozolomide (TMZ), the gold standard for GBM post-surgical treatment. However, Nitric Oxide (NO) has demonstrated anti-cancer efficacy in GBM cells, but its potential impact on GSCs remains unexplored. Accordingly, we investigated the effects of NO, both alone and in combination with TMZ, on patient-derived GSCs. Experimentally selected concentrations of diethylenetriamine/NO adduct and TMZ were used through a time course up to 21 days of treatment, to evaluate GSC proliferation and death, functional recovery, and apoptosis. Immunofluorescence and Western blot analyses revealed treatment-induced effects in cell cycle and DNA damage occurrence and repair. Our results showed that NO impairs self-renewal, disrupts cell-cycle progression, and expands the quiescent cells' population. Consistently, NO triggered a significant but tolerated level of DNA damage, but not apoptosis. Interestingly, NO/TMZ cotreatment further inhibited cell cycle progression, augmented G0 cells, induced cell death, but also enhanced DNA damage repair activity. These findings suggest that, although NO administration does not eliminate GSCs, it stunts their proliferation, and makes cells susceptible to TMZ. The resulting cytostatic effect may potentially allow long-term control over the GSCs' subpopulation.
Collapse
Affiliation(s)
- Luisa Salvatori
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Malatesta
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Patrizia Somma
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Rosaria Anna Fontanella
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
8
|
Carannante V, Wiklund M, Önfelt B. In vitro models to study natural killer cell dynamics in the tumor microenvironment. Front Immunol 2023; 14:1135148. [PMID: 37457703 PMCID: PMC10338882 DOI: 10.3389/fimmu.2023.1135148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Immunotherapy is revolutionizing cancer therapy. The rapid development of new immunotherapeutic strategies to treat solid tumors is posing new challenges for preclinical research, demanding novel in vitro methods to test treatments. Such methods should meet specific requirements, such as enabling the evaluation of immune cell responses like cytotoxicity or cytokine release, and infiltration into the tumor microenvironment using cancer models representative of the original disease. They should allow high-throughput and high-content analysis, to evaluate the efficacy of treatments and understand immune-evasion processes to facilitate development of new therapeutic targets. Ideally, they should be suitable for personalized immunotherapy testing, providing information for patient stratification. Consequently, the application of in vitro 3-dimensional (3D) cell culture models, such as tumor spheroids and organoids, is rapidly expanding in the immunotherapeutic field, coupled with the development of novel imaging-based techniques and -omic analysis. In this paper, we review the recent advances in the development of in vitro 3D platforms applied to natural killer (NK) cell-based cancer immunotherapy studies, highlighting the benefits and limitations of the current methods, and discuss new concepts and future directions of the field.
Collapse
Affiliation(s)
- Valentina Carannante
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Martin Wiklund
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Campisi M, Shelton SE, Chen M, Kamm RD, Barbie DA, Knelson EH. Engineered Microphysiological Systems for Testing Effectiveness of Cell-Based Cancer Immunotherapies. Cancers (Basel) 2022; 14:3561. [PMID: 35892819 PMCID: PMC9330888 DOI: 10.3390/cancers14153561] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cell therapies, including adoptive immune cell therapies and genetically engineered chimeric antigen receptor (CAR) T or NK cells, have shown promise in treating hematologic malignancies. Yet, immune cell infiltration and expansion has proven challenging in solid tumors due to immune cell exclusion and exhaustion and the presence of vascular barriers. Testing next-generation immune therapies remains challenging in animals, motivating sophisticated ex vivo models of human tumor biology and prognostic assays to predict treatment response in real-time while comprehensively recapitulating the human tumor immune microenvironment (TIME). This review examines current strategies for testing cell-based cancer immunotherapies using ex vivo microphysiological systems and microfluidic technologies. Insights into the multicellular interactions of the TIME will identify novel therapeutic strategies to help patients whose tumors are refractory or resistant to current immunotherapies. Altogether, these microphysiological systems (MPS) have the capability to predict therapeutic vulnerabilities and biological barriers while studying immune cell infiltration and killing in a more physiologically relevant context, thereby providing important insights into fundamental biologic mechanisms to expand our understanding of and treatments for currently incurable malignancies.
Collapse
Affiliation(s)
- Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| | - Sarah E. Shelton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Minyue Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| | - Erik H. Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| |
Collapse
|
10
|
Pediatric glioblastoma: mechanisms of immune evasion and potential therapeutic opportunities. Cancer Immunol Immunother 2022; 71:1813-1822. [PMID: 35020009 DOI: 10.1007/s00262-021-03131-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Pediatric glioblastoma is relatively rare compared with its adult counterpart but is associated with a similarly grim prognosis. Available data indicate that pediatric glioblastomas are molecularly distinct from adult tumors, and relatively little is known about the pediatric glioblastoma tumor microenvironment (TME). Cancer immunotherapy has emerged as a new pillar of cancer treatment and is revolutionizing the care of patients with many advanced solid tumors, including melanoma, non-small cell lung cancer, head and neck cancer, and renal cell carcinoma. Unfortunately, attempts to treat adult glioblastoma with current immunotherapies have had limited success to date. Nevertheless, the immune milieu in pediatric glioblastoma is distinct from that found in adult tumors, and evidence suggests that pediatric tumors are less immunosuppressive. As a result, immunotherapies should be specifically evaluated in the pediatric context. The purpose of this review is to explore known and emerging mechanisms of immune evasion in pediatric glioblastoma and highlight potential opportunities for implementing immunotherapy in the treatment of these devastating pediatric brain tumors.
Collapse
|
11
|
Beller NC, Lukowski JK, Ludwig KR, Hummon AB. Spatial Stable Isotopic Labeling by Amino Acids in Cell Culture: Pulse-Chase Labeling of Three-Dimensional Multicellular Spheroids for Global Proteome Analysis. Anal Chem 2021; 93:15990-15999. [PMID: 34813286 DOI: 10.1021/acs.analchem.1c03461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three-dimensional cell cultures, or spheroids, are important model systems for cancer research because they recapitulate chemical and phenotypic aspects of in vivo tumors. Spheroids develop radially symmetric chemical gradients, resulting in distinct cellular populations. Stable isotopic labeling by amino acids in cell culture (SILAC) is a well-established approach to quantify protein expression and has previously been used in a pulse-chase format to evaluate temporal changes. In this article, we demonstrate that distinct isotopic signatures can be introduced into discrete spatial cellular populations, effectively tracking proteins to original locations in the spheroid, using a platform that we refer to as spatial SILAC. Spheroid populations were grown with light, medium, and heavy isotopic media, and the concentric shells of cells were harvested by serial trypsinization. Proteins were quantitatively analyzed by ultraperformance liquid chromatography-tandem mass spectrometry. The isotopic signatures correlated with the spatial location and the isotope position do not significantly impact the proteome of each individual layer. Spatial SILAC can be used to examine the proteomic changes in the different layers of the spheroid and to identify protein biomarkers throughout the structure. We show that SILAC labels can be discretely pulsed to discrete positions, without altering the spheroid's proteome, promising future combined pharmacodynamic and pharmacokinetic studies.
Collapse
Affiliation(s)
- Nicole C Beller
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jessica K Lukowski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Katelyn R Ludwig
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Evaluation of Comprehensive Gene Expression and NK Cell-Mediated Killing in Glioblastoma Cell Line-Derived Spheroids. Cancers (Basel) 2021; 13:cancers13194896. [PMID: 34638384 PMCID: PMC8508082 DOI: 10.3390/cancers13194896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most aggressive primary malignant brain tumor in adults. Despite standard treatment, including surgery, chemotherapy, and radiotherapy, it is associated with poor survival. Immunotherapy is a promising alternative for patients with GBM. Natural killer (NK) cells are possible promising targets in GBM treatment because of their potent cytotoxic effect. We previously reported that highly activated and ex vivo-expanded NK cells, or genuine induced NK cells (GiNK), exert a greatly cytotoxic effect on GBM cells. In this study, we investigated the potential of NK cell-based immunotherapy for GBM, which we evaluated using an ex vivo three-dimensional GBM cell-derived spheroid model. Our results indicated that the NK cells had an anti-tumor effect on the spheroid models. Our findings could lead to the development of future NK cell-based immunotherapies for GBM. Abstract Glioblastoma (GBM) is the most common and aggressive primary brain tumor, with a dismal prognosis. Natural killer (NK) cells are large granular lymphocytes with natural cytotoxicity against tumor cells, and they should be established for the novel treatment of patients with GBM. We previously reported highly activated, and ex vivo-expanded NK cells derived from human peripheral blood, designated genuine induced NK cells (GiNK), which were induced by specific culture conditions and which exerted a cytotoxic effect on GBM cells via apoptosis. Here, we comprehensively summarize the molecular characteristics, especially focusing on the expression of stem cell markers, extracellular matrix markers, chemokines, chemokine receptors, and NK receptor ligands of spheroids derived from GBM cell lines as compared with that of two-dimensional (2D) adherent GBM cells via microarray. The spheroid had upregulated gene expression of stem cell markers, extracellular matrix markers, chemokines, chemokine receptors, and NK cell inhibitory receptor ligands compared with the 2D adherent GBM cells. Preclinical evaluation of the NK cells was performed via an ex vivo 3D spheroid model derived from GBM cell lines. In the model, the NK cells accumulated and infiltrated around the spheroids and induced GBM cell death. Flow cytometry-based apoptosis detection clearly showed that the NK cells induced GBM cell death via apoptosis. Our findings could provide pivotal information for NK cell-based immunotherapy for patients with GBM.
Collapse
|
13
|
Stanković T, Ranđelović T, Dragoj M, Stojković Burić S, Fernández L, Ochoa I, Pérez-García VM, Pešić M. In vitro biomimetic models for glioblastoma-a promising tool for drug response studies. Drug Resist Updat 2021; 55:100753. [PMID: 33667959 DOI: 10.1016/j.drup.2021.100753] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
The poor response of glioblastoma to current treatment protocols is a consequence of its intrinsic drug resistance. Resistance to chemotherapy is primarily associated with considerable cellular heterogeneity, and plasticity of glioblastoma cells, alterations in gene expression, presence of specific tumor microenvironment conditions and blood-brain barrier. In an attempt to successfully overcome chemoresistance and better understand the biological behavior of glioblastoma, numerous tri-dimensional (3D) biomimetic models were developed in the past decade. These novel advanced models are able to better recapitulate the spatial organization of glioblastoma in a real time, therefore providing more realistic and reliable evidence to the response of glioblastoma to therapy. Moreover, these models enable the fine-tuning of different tumor microenvironment conditions and facilitate studies on the effects of the tumor microenvironment on glioblastoma chemoresistance. This review outlines current knowledge on the essence of glioblastoma chemoresistance and describes the progress achieved by 3D biomimetic models. Moreover, comprehensive literature assessment regarding the influence of 3D culturing and microenvironment mimicking on glioblastoma gene expression and biological behavior is also provided. The contribution of the blood-brain barrier as well as the blood-tumor barrier to glioblastoma chemoresistance is also reviewed from the perspective of 3D biomimetic models. Finally, the role of mathematical models in predicting 3D glioblastoma behavior and drug response is elaborated. In the future, technological innovations along with mathematical simulations should create reliable 3D biomimetic systems for glioblastoma research that should facilitate the identification and possibly application in preclinical drug testing and precision medicine.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Teodora Ranđelović
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Miodrag Dragoj
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Luis Fernández
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Centro Investigación Biomédica en Red. Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Centro Investigación Biomédica en Red. Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Victor M Pérez-García
- Departamento de Matemáticas, E.T.S.I. Industriales and Instituto de Matemática Aplicada a la Ciencia y la Ingeniería (IMACI), Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia.
| |
Collapse
|
14
|
Wang C, Sinha S, Jiang X, Murphy L, Fitch S, Wilson C, Grant G, Yang F. Matrix Stiffness Modulates Patient-Derived Glioblastoma Cell Fates in Three-Dimensional Hydrogels. Tissue Eng Part A 2021; 27:390-401. [PMID: 32731804 PMCID: PMC7984937 DOI: 10.1089/ten.tea.2020.0110] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/17/2020] [Indexed: 01/13/2023] Open
Abstract
Cancer progression is known to be accompanied by changes in tissue stiffness. Previous studies have primarily employed immortalized cell lines and 2D hydrogel substrates, which do not recapitulate the 3D tumor niche. How matrix stiffness affects patient-derived cancer cell fate in 3D remains unclear. In this study, we report a matrix metalloproteinase-degradable poly(ethylene-glycol)-based hydrogel platform with brain-mimicking biochemical cues and tunable stiffness (40-26,600 Pa) for 3D culture of patient-derived glioblastoma xenograft (PDTX GBM) cells. Our results demonstrate that decreasing hydrogel stiffness enhanced PDTX GBM cell proliferation, and hydrogels with stiffness 240 Pa and below supported robust PDTX GBM cell spreading in 3D. PDTX GBM cells encapsulated in hydrogels demonstrated higher drug resistance than 2D control, and increasing hydrogel stiffness further enhanced drug resistance. Such 3D hydrogel platforms may provide a valuable tool for mechanistic studies of the role of niche cues in modulating cancer progression for different cancer types.
Collapse
Affiliation(s)
- Christine Wang
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, California, USA
| | - Sauradeep Sinha
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, California, USA
| | - Xinyi Jiang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Luke Murphy
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, California, USA
| | - Sergio Fitch
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Christy Wilson
- Department of Neurosurgery, Stanford University, School of Medicine, Stanford, California, USA
| | - Gerald Grant
- Department of Neurosurgery, Stanford University, School of Medicine, Stanford, California, USA
| | - Fan Yang
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, California, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
15
|
Pieters VM, Co IL, Wu NC, McGuigan AP. Applications of Omics Technologies for Three-Dimensional In Vitro Disease Models. Tissue Eng Part C Methods 2021; 27:183-199. [PMID: 33406987 DOI: 10.1089/ten.tec.2020.0300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Omics technologies, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, multiomics, and integrated modalities, have greatly contributed to our understanding of various diseases by enabling researchers to probe the molecular wiring of cellular systems in a high-throughput and precise manner. With the development of tissue-engineered three-dimensional (3D) in vitro disease models, such as organoids and spheroids, there is potential of integrating omics technologies with 3D disease models to elucidate the complex links between genotype and phenotype. These 3D disease models have been used to model cancer, infectious disease, toxicity, neurological disorders, and others. In this review, we provide an overview of omics technologies, highlight current and emerging studies, discuss the associated experimental design considerations, barriers and challenges of omics technologies, and provide an outlook on the future applications of omics technologies with 3D models. Overall, this review aims to provide a valuable resource for tissue engineers seeking to leverage omics technologies for diving deeper into biological discovery. Impact statement With the emergence of three-dimensional (3D) in vitro disease models, tissue engineers are increasingly interested to investigate these systems to address biological questions related to disease mechanism, drug target discovery, therapy resistance, and more. Omics technologies are a powerful and high-throughput approach, but their application for 3D disease models is not maximally utilized. This review illustrates the achievements and potential of using omics technologies to leverage the full potential of 3D in vitro disease models. This will improve the quality of such models, advance our understanding of disease, and contribute to therapy development.
Collapse
Affiliation(s)
- Vera M Pieters
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ileana L Co
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Nila C Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Alison P McGuigan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Zhu X, Li S, Xu B, Luo H. Cancer evolution: A means by which tumors evade treatment. Biomed Pharmacother 2020; 133:111016. [PMID: 33246226 DOI: 10.1016/j.biopha.2020.111016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
Although various methods have been tried to study and treat cancer, the cancer remains a major challenge for human medicine today. One important reason for this is the presence of cancer evolution. Cancer evolution is a process in which tumor cells adapt to the external environment, which can suppress the human immune system's ability to recognize and attack tumors, and also reduce the reproducibility of cancer research. Among them, heterogeneity of the tumor provides intrinsic motivation for this process. Recently, with the development of related technologies such as liquid biopsy, more and more knowledge about cancer evolution has been gained and interest in this topic has also increased. Therefore, starting from the causes of tumorigenesis, this paper introduces several tumorigenesis processes and pathways, as well as treatment options for different targets.
Collapse
Affiliation(s)
- Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.
| | - Shi Li
- Guangdong Key Laboratory of Urogenital Tumor Systems and Synthetic Biology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, China; Shenzhen Key Laboratory of Genitourinary Tumor, Translational Medicine Institute of Shenzhen, The Second People's Hospital of Shenzhen, Shenzhen, China; College of Bioengineering, Chongqing University, Chongqing, China
| | - Bairui Xu
- The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, China
| | - Hui Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, China.
| |
Collapse
|
17
|
Steinmetz J, Senkowski W, Lengqvist J, Rubin J, Ossipova E, Herman S, Larsson R, Jakobsson PJ, Fryknäs M, Kultima K. Descriptive Proteome Analysis to Investigate Context-Dependent Treatment Responses to OXPHOS Inhibition in Colon Carcinoma Cells Grown as Monolayer and Multicellular Tumor Spheroids. ACS OMEGA 2020; 5:17242-17254. [PMID: 32715210 PMCID: PMC7376893 DOI: 10.1021/acsomega.0c01419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
We have previously identified selective upregulation of the mevalonate pathway genes upon inhibition of oxidative phosphorylation (OXPHOS) in quiescent cancer cells. Using mass spectrometry-based proteomics, we here investigated whether these responses are corroborated on the protein level and whether proteomics could yield unique insights into context-dependent biology. HCT116 colon carcinoma cells were cultured as monolayer cultures, proliferative multicellular tumor spheroids (P-MCTS), or quiescent (Q-MCTS) multicellular tumor spheroids and exposed to OXPHOS inhibitors: nitazoxanide, FCCP, oligomycin, and salinomycin or the HMG-CoA-reductase inhibitor simvastatin at two different doses for 6 and 24 h. Samples were processed using an in-depth bottom-up proteomics workflow resulting in a total of 9286 identified protein groups. Gene set enrichment analysis showed profound differences between the three cell systems and confirmed differential enrichment of hypoxia, OXPHOS, and cell cycle progression-related protein responses in P-MCTS and Q-MCTS. Treatment experiments showed that the observed drug-induced alterations in gene expression of metabolically challenged cells are not translated directly to the protein level, but the results reaffirmed OXPHOS as a selective vulnerability of quiescent cancer cells. This work provides rationale for the use of deep proteome profiling to identify context-dependent treatment responses and encourages further studies investigating metabolic processes that could be co-targeted together with OXPHOS to eradicate quiescent cancer cells.
Collapse
Affiliation(s)
- Julia Steinmetz
- Division
of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Wojciech Senkowski
- Department
of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala SE-751 05, Sweden
| | - Johan Lengqvist
- Department
of Oncology-Pathology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Jenny Rubin
- Department
of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala SE-751 05, Sweden
| | - Elena Ossipova
- Division
of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Stephanie Herman
- Department
of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala SE-751 85, Sweden
| | - Rolf Larsson
- Department
of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala SE-751 05, Sweden
| | - Per-Johan Jakobsson
- Division
of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Mårten Fryknäs
- Department
of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala SE-751 05, Sweden
| | - Kim Kultima
- Department
of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala SE-751 85, Sweden
| |
Collapse
|
18
|
Wu Z, Liang J, Wang Z, Li A, Fan X, Jiang T. HLA-E expression in diffuse glioma: relationship with clinicopathological features and patient survival. BMC Neurol 2020; 20:59. [PMID: 32066399 PMCID: PMC7025409 DOI: 10.1186/s12883-020-01640-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 02/10/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Human leukocyte antigen-E (HLA-E) has been extensively investigated in various human cancers including glioma. However, the clinical significance of HLA-E expression in glioma patients has not been elucidated. The current study aimed to investigate the association of HLA-E expression with clinicopathological features and survival in patients with diffuse glioma. METHODS A total of 261 glioma patients were enrolled, subsequently, mRNA microarray analysis was conducted to identify the relationship of HLA-E with clinicopathological features and patient survival. RESULTS HLA-E was significantly overexpressed in high-grade gliomas compared to low-grade gliomas (LGGs). Moreover, HLA-E expression was significantly higher in diffuse astrocytomas than oligodendrogliomas (p = 0.032, t-test). Kaplan-Meier analysis showed that progression-free survival (PFS) and overall survival (OS) were significantly better in LGG patients with low HLA-E expression (p = 0.018 for PFS and p = 0.020 for OS, Log-rank test). Furthermore, HLA-E expression was identified to be an independent prognostic factor by Cox analysis (p = 0.020 for PFS and p = 0.024 for OS). CONCLUSIONS This is the first study which identified the clinical significance of HLA-E in diffuse glioma. HLA-E expression was correlated with more aggressive tumor grade and histological type and was identified as an independent prognostic biomarker in LGG patients.
Collapse
Affiliation(s)
- Zhifeng Wu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jingshan Liang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Lianyungang First People's Hospital, Xuzhou Medical University, Jiangsu, China
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Aimin Li
- Department of Neurosurgery, Lianyungang First People's Hospital, Xuzhou Medical University, Jiangsu, China
| | - Xing Fan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
19
|
Guo J, Xing C, Yuan H, Chai R, Zhan Y. Oligo (p-Phenylene Vinylene)/Polyisocyanopeptide Biomimetic Composite Hydrogel-Based Three-Dimensional Cell Culture System for Anticancer and Antibacterial Therapeutics. ACS APPLIED BIO MATERIALS 2019; 2:2520-2527. [DOI: 10.1021/acsabm.9b00217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jingqi Guo
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Hongbo Yuan
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Ran Chai
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Yong Zhan
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| |
Collapse
|
20
|
High expression of GALNT7 promotes invasion and proliferation of glioma cells. Oncol Lett 2018; 16:6307-6314. [PMID: 30405766 PMCID: PMC6202485 DOI: 10.3892/ol.2018.9498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/20/2018] [Indexed: 01/06/2023] Open
Abstract
Polypeptide-N-acetyl-galactosaminlytransferase 7 (GALNT7), a member of the GalNAc-transferase family, has not been previously evaluated as a prognostic factor of glioblastoma (GBM) or low-grade glioma (LGG). Based on The Cancer Genome Atlas database and bioinformatics analyses, the expression of GALNT7 was demosntrated to be higher in GBM and LGG tissues than in normal brain tissue. The expression levels of GANLT7 were associated with age, tumor grade, survival rate, disease-free survival time and overall survival time. Gene correlation and gene-set enrichment analyses suggested that GALNT7 may affect the proliferative and invasive abilities of glioma cells through multiple signaling pathways, including regulation of the actin cytoskeleton, natural killer cell-mediated cytotoxicity, the janus kinase-signal transducer and activator of transcription (STAT) signaling pathway, cell adhesion molecules and extracellular matrix receptor interaction pathways. Furthermore, 5 target genes of GALNT7 involved in these signaling pathways were identified, including Crk, Rac family small GTPase 1, STAT3, poliovirus receptor and Tenascin C. In summary, high expression of GALNT7 was associated with poor prognosis of glioma, and may be used as an effective biomarker of glioma.
Collapse
|
21
|
Ma L, Zhang B, Zhou C, Li Y, Li B, Yu M, Luo Y, Gao L, Zhang D, Xue Q, Qiu Q, Lin B, Zou J, Yang H. The comparison genomics analysis with glioblastoma multiforme (GBM) cells under 3D and 2D cell culture conditions. Colloids Surf B Biointerfaces 2018; 172:665-673. [PMID: 30243220 DOI: 10.1016/j.colsurfb.2018.09.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/27/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
GBM, the most common and aggressive malignant primary brain tumors which needs new research approach to reveal the underline molecular mechanism of tumor progression. The 3D in vitro tumor model can be a simple and effective way to study tumor characteristics with ability to replicate of the tumor milieu. In the current study, we adopted the DNA microarray to analyze the gene expression of GBM tumor cells cultured under 2D cell culture flasks and 3D PLA porous scaffolds for 4,7 and 14 days. For 14 day old cultures, 8117 and 3060 genes expression were upregulated and downregulated respectively. Further KEGG pathway analysis revealed, the upregulated genes were mainly enriched/involved in PPAR and PI3K-Akt signaling pathways whereas the downregulated genes were mainly contributed in metabolism, ECM related and TGF-beta pathways. Thus, our approach of establishing 3D in vitro tumor model provides realistic results and proves itself a powerful tool for understanding the inner nature of GBM and can be considered as potential platform for drug screening.
Collapse
Affiliation(s)
- Liang Ma
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Bin Zhang
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yuting Li
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Binjie Li
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Yichen Luo
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lei Gao
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom
| | - Qian Xue
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qingchong Qiu
- Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Biaoyang Lin
- Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Jun Zou
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Huayong Yang
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
22
|
Kim YE, Jeon HJ, Kim D, Lee SY, Kim KY, Hong J, Maeng PJ, Kim KR, Kang D. Quantitative Proteomic Analysis of 2D and 3D Cultured Colorectal Cancer Cells: Profiling of Tankyrase Inhibitor XAV939-Induced Proteome. Sci Rep 2018; 8:13255. [PMID: 30185973 PMCID: PMC6125324 DOI: 10.1038/s41598-018-31564-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
Recently there has been a growing interest in three-dimensional (3D) cell culture systems for drug discovery and development. These 3D culture systems better represent the in vivo cellular environment compared to two-dimensional (2D) cell culture, thereby providing more physiologically reliable information on drug screening and testing. Here we present the quantitative profiling of a drug-induced proteome in 2D- and 3D-cultured colorectal cancer SW480 cells using 2D nanoflow liquid chromatography-tandem mass spectrometry (2D-nLC-MS/MS) integrated with isobaric tags for relative and absolute quantitation (iTRAQ). We identified a total of 4854 shared proteins between 2D- and 3D-cultured SW480 cells and 136/247 differentially expressed proteins (up/down-regulated in 3D compared to 2D). These up/down-regulated proteins were mainly involved in energy metabolism, cell growth, and cell-cell interactions. We also investigated the XAV939 (tankyrase inhibitor)-induced proteome to reveal factors involved in the 3D culture-selective growth inhibitory effect of XAV939 on SW480 cells. We identified novel XAV939-induced proteins, including gelsolin (a possible tumor suppressor) and lactate dehydrogenase A (a key enzyme of glycolysis), which were differentially expressed between 2D- and 3D-cultured SW480 cells. These results provide a promising informative protein dataset to determine the effect of XAV939 on the expression levels of proteins involved in SW480 cell growth.
Collapse
Affiliation(s)
- Young Eun Kim
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea
| | - Hyo Jin Jeon
- Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea.,Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Dahee Kim
- Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Sun Young Lee
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea.,College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Ki Young Kim
- Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Pil Jae Maeng
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Kwang-Rok Kim
- Therapeutic & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea.
| | - Dukjin Kang
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea.
| |
Collapse
|
23
|
Hudson AL, Parker NR, Khong P, Parkinson JF, Dwight T, Ikin RJ, Zhu Y, Chen J, Wheeler HR, Howell VM. Glioblastoma Recurrence Correlates With Increased APE1 and Polarization Toward an Immuno-Suppressive Microenvironment. Front Oncol 2018; 8:314. [PMID: 30151353 PMCID: PMC6099184 DOI: 10.3389/fonc.2018.00314] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/24/2018] [Indexed: 12/04/2022] Open
Abstract
While treatment with surgery, radiotherapy and/or chemotherapy may prolong life for patients with glioblastoma, recurrence is inevitable. What is still being discovered is how much these treatments and recurrence of disease affect the molecular profiles of these tumors and how these tumors adapt to withstand these treatment pressures. Understanding such changes will uncover pathways used by the tumor to evade destruction and will elucidate new targets for treatment development. Nineteen matched pre-treatment and post-treatment glioblastoma tumors were subjected to gene expression profiling (Fluidigm, TaqMan assays), MGMT promoter methylation analysis (pyrosequencing) and protein expression analysis of the DNA repair pathways, known to be involved in temozolomide resistance (immunohistochemistry). Gene expression profiling to molecularly subtype tumors revealed that 26% of recurrent post-treatment specimens did not match their primary diagnostic specimen subtype. Post-treatment specimens had molecular changes which correlated with known resistance mechanisms including increased expression of APEX1 (p < 0.05) and altered MGMT methylation status. In addition, genes associated with immune suppression, invasion and aggression (GPNMB, CCL5, and KLRC1) and polarization toward an M2 phenotype (CD163 and MSR1) were up-regulated in post-treatment tumors, demonstrating an overall change in the tumor microenvironment favoring aggressive tumor growth and disease recurrence. This was confirmed by in vitro studies that determined that glioma cell migration was enhanced in the presence of M2 polarized macrophage conditioned media. Further, M2 macrophage-modulated migration was markedly enhanced in post-treatment (temozolomide resistant) glioma cells. These findings highlight the ability of glioblastomas to evade not only the toxic onslaught of therapy but also to evade the immune system suggesting that immune-altering therapies may be of value in treating this terrible disease.
Collapse
Affiliation(s)
- Amanda L. Hudson
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| | - Nicole R. Parker
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| | - Peter Khong
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| | - Jonathon F. Parkinson
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| | - Trisha Dwight
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
- Cancer Genetics, Hormones and Cancer Group, Kolling Institute, St Leonards, NSW, Australia
| | - Rowan J. Ikin
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| | - Ying Zhu
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
- Hunter New England Health, New Lambton, NSW, Australia
| | - Jason Chen
- Department of Anatomical Pathology, Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Helen R. Wheeler
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| | - Viive M. Howell
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
24
|
Tölle RC, Gaggioli C, Dengjel J. Three-Dimensional Cell Culture Conditions Affect the Proteome of Cancer-Associated Fibroblasts. J Proteome Res 2018; 17:2780-2789. [DOI: 10.1021/acs.jproteome.8b00237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Regine C. Tölle
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Department of Dermatology, Medical Center University of Freiburg, Hauptstr. 7, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Cedric Gaggioli
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia, Antipolis, Medical School, 28 Avenue Valombrose, 06107 Nice, France
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Department of Dermatology, Medical Center University of Freiburg, Hauptstr. 7, 79104 Freiburg, Germany
| |
Collapse
|
25
|
Acland M, Mittal P, Lokman NA, Klingler-Hoffmann M, Oehler MK, Hoffmann P. Mass Spectrometry Analyses of Multicellular Tumor Spheroids. Proteomics Clin Appl 2018; 12:e1700124. [PMID: 29227035 DOI: 10.1002/prca.201700124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/13/2017] [Indexed: 12/21/2022]
Abstract
Multicellular tumor spheroids (MCTS) are a powerful biological in vitro model, which closely mimics the 3D structure of primary avascularized tumors. Mass spectrometry (MS) has established itself as a powerful analytical tool, not only to better understand and describe the complex structure of MCTS, but also to monitor their response to cancer therapeutics. The first part of this review focuses on traditional mass spectrometry approaches with an emphasis on elucidating the molecular characteristics of these structures. Then the mass spectrometry imaging (MSI) approaches used to obtain spatially defined information from MCTS is described. Finally the analysis of primary spheroids, such as those present in ovarian cancer, and the great potential that mass spectrometry analysis of these structures has for improved understanding of cancer progression and for personalized in vitro therapeutic testing is discussed.
Collapse
Affiliation(s)
- Mitchell Acland
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Institute of Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Institute of Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia
| | - Noor A Lokman
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Manuela Klingler-Hoffmann
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Peter Hoffmann
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
26
|
Mengus C, Muraro MG, Mele V, Amicarella F, Manfredonia C, Foglietta F, Muenst S, Soysal SD, Iezzi G, Spagnoli GC. In Vitro Modeling of Tumor-Immune System Interaction. ACS Biomater Sci Eng 2017; 4:314-323. [PMID: 33418726 DOI: 10.1021/acsbiomaterials.7b00077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunotherapy has emerged during the past two decades as an innovative and successful form of cancer treatment. However, frequently, mechanisms of actions are still unclear, predictive markers are insufficiently characterized, and preclinical assays for innovative treatments are poorly reliable. In this context, the analysis of tumor/immune system interaction plays key roles, but may be unreliably mirrored by in vivo experimental models and standard bidimensional culture systems. Tridimensional cultures of tumor cells have been developed to bridge the gap between in vitro and in vivo systems. Interestingly, defined aspects of the interaction of cells from adaptive and innate immune systems and tumor cells may also be mirrored by 3D cultures. Here we review in vitro models of cancer/immune cell interaction and we propose that updated technologies might help develop innovative treatments, identify biologicals of potential clinical relevance, and select patients eligible for immunotherapy treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Federica Foglietta
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy
| | - Simone Muenst
- Institute of Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4056, Basel, Switzerland
| | - Savas D Soysal
- Department of Surgery, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | | | | |
Collapse
|
27
|
Yue X, Lukowski JK, Weaver EM, Skube SB, Hummon AB. Quantitative Proteomic and Phosphoproteomic Comparison of 2D and 3D Colon Cancer Cell Culture Models. J Proteome Res 2016; 15:4265-4276. [PMID: 27696853 DOI: 10.1021/acs.jproteome.6b00342] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell cultures are widely used model systems. Some immortalized cell lines can be grown in either two-dimensional (2D) adherent monolayers or in three-dimensional (3D) multicellular aggregates, or spheroids. Here, the quantitative proteome and phosphoproteome of colon carcinoma HT29 cells cultures in 2D monolayers and 3D spheroids were compared with a stable isotope labeling of amino acids (SILAC) labeling strategy. Two biological replicates from each sample were examined, and notable differences in both the proteome and the phosphoproteome were determined by nanoliquid chromatography tandem mass spectrometry (LC-MS/MS) to assess how growth configuration affects molecular expression. A total of 5867 protein groups, including 2523 phosphoprotein groups and 8733 phosphopeptides were identified in the samples. The Gene Ontology analysis revealed enriched GO terms in the 3D samples for RNA binding, nucleic acid binding, enzyme binding, cytoskeletal protein binding, and histone binding for their molecular functions (MF) and in the process of cell cycle, cytoskeleton organization, and DNA metabolic process for the biological process (BP). The KEGG pathway analysis indicated that 3D cultures are enriched for oxidative phosphorylation pathways, metabolic pathways, peroxisome pathways, and biosynthesis of amino acids. In contrast, analysis of the phosphoproteomes indicated that 3D cultures have decreased phosphorylation correlating with slower growth rates and lower cell-to-extracellular matrix interactions. In sum, these results provide quantitative assessments of the effects on the proteome and phosphoproteome of culturing cells in 2D versus 3D cell culture configurations.
Collapse
Affiliation(s)
- Xiaoshan Yue
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame , 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Jessica K Lukowski
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame , 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Eric M Weaver
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame , 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Susan B Skube
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame , 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame , 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
28
|
Biau J, Chautard E, Court F, Pereira B, Verrelle P, Devun F, De Koning L, Dutreix M. Global Conservation of Protein Status between Cell Lines and Xenografts. Transl Oncol 2016; 9:313-21. [PMID: 27567954 PMCID: PMC5006813 DOI: 10.1016/j.tranon.2016.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 01/23/2023] Open
Abstract
Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery.
Collapse
Affiliation(s)
- Julian Biau
- Institut Curie, Centre de Recherche, 91400 Orsay/75248 Paris, France; UMR3347, Centre National de la Recherche Scientifique, 91400 Orsay, France; U1021, Institut National de la Santé et de la Recherche Médicale, 91400 Orsay, France; Université Paris Sud, 91400 Orsay, France; Clermont Auvergne University, EA7283 CREaT, 63011 Clermont-Ferrand, France; Radiotherapy Department, Centre Jean Perrin, 63011 Clermont-Ferrand, France.
| | - Emmanuel Chautard
- Clermont Auvergne University, EA7283 CREaT, 63011 Clermont-Ferrand, France; Radiotherapy Department, Centre Jean Perrin, 63011 Clermont-Ferrand, France
| | - Frank Court
- U1103, Institut National de la Santé et de la Recherche Médicale, 63001 Clermont-Ferrand, France; UMR 6293, Centre National de la Recherche Scientifique, 63001 Clermont-Ferrand, France; Clermont Auvergne University, GReD Laboratory, Clermont-Ferrand, 63000, France
| | - Bruno Pereira
- Biostatistics Department, DRCI, Clermont-Ferrand Hospital, Clermont-Ferrand, 63003, France
| | - Pierre Verrelle
- Institut Curie, Centre de Recherche, 91400 Orsay/75248 Paris, France; UMR3347, Centre National de la Recherche Scientifique, 91400 Orsay, France; U1021, Institut National de la Santé et de la Recherche Médicale, 91400 Orsay, France; Clermont Auvergne University, EA7283 CREaT, 63011 Clermont-Ferrand, France; Radiotherapy Department, Institut Curie, 75005 Paris, France
| | - Flavien Devun
- Institut Curie, Centre de Recherche, 91400 Orsay/75248 Paris, France; DNA Therapeutics, Evry, Paris, France
| | - Leanne De Koning
- Institut Curie, Department of Translational Research, RPPA platform,75248 Paris cedex05, France
| | - Marie Dutreix
- Institut Curie, Centre de Recherche, 91400 Orsay/75248 Paris, France; UMR3347, Centre National de la Recherche Scientifique, 91400 Orsay, France; U1021, Institut National de la Santé et de la Recherche Médicale, 91400 Orsay, France; Université Paris Sud, 91400 Orsay, France
| |
Collapse
|
29
|
Zhen Z, Guo X, Liao R, Yang K, Ye L, You Z. Involvement of IL-10 and TGF-β in HLA-E-mediated neuroblastoma migration and invasion. Oncotarget 2016; 7:44340-44349. [PMID: 27322426 PMCID: PMC5190101 DOI: 10.18632/oncotarget.10041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/03/2016] [Indexed: 12/23/2022] Open
Abstract
Human leukocyte antigen (HLA)-E is highly expressed in a variety of tumors and, in addition to immune escape, may promote tumor growth via other mechanisms. However, the role of HLA-E in neuroblastoma (NB) migration and invasion is unknown. In the present study, HLA-E expression in human NB tumors was measured by immunohistochemistry. The effect of HLA-E on NB cell migration and invasion was studied in vitro and in vivo, as well as the effect of HLA-E on natural killer (NK)-cell cytotoxicity. HLA-E was expressed in 70.2% of the NB tumor tissues examined. HLA-E expression by NB cells inhibited NK-cell cytotoxicity and induced the release of interleukin (IL)-10 and transforming growth factor (TGF)-β1. HLA-E and the released cytokines enhanced the ability of NB cells migration and invasion. NK cell infusion did not inhibit the growth of NB cells with high HLA-E expression but instead increased the number of metastatic cells in the bone marrow. Taken together, the results indicate that IL-10 and TGF-β are involved in HLA-E-mediated NB migration and invasion. Thus, HLA-E may be a new treatment target in NB.
Collapse
Affiliation(s)
- Zijun Zhen
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Xiaofang Guo
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Ru Liao
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Kaibin Yang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Litong Ye
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhiyao You
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
30
|
Nyga A, Neves J, Stamati K, Loizidou M, Emberton M, Cheema U. The next level of 3D tumour models: immunocompetence. Drug Discov Today 2016; 21:1421-1428. [PMID: 27113911 DOI: 10.1016/j.drudis.2016.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/19/2016] [Accepted: 04/11/2016] [Indexed: 12/28/2022]
Abstract
The complexity of the tumour microenvironment encompasses interactions between cancer and stromal cells. Moving from 2D cell culture methods into 3D models enables more-accurate investigation of those interactions. Current 3D cancer models focus on cancer spheroid interaction with stromal cells, such as fibroblasts. However, over recent years, the cancer immune environment has been shown to have a major role in tumour progression. This review summarises the state-of-art on immunocompetent 3D cancer models that, in addition to cancer cells, also incorporate immune cells, including monocytes, cancer-associated macrophages, dendritic cells, neutrophils and lymphocytes.
Collapse
Affiliation(s)
- Agata Nyga
- Research Department of Nanotechnology, Division of Surgery and Interventional Science, UCL, London, UK.
| | - Joana Neves
- Research Department of Urology, Division of Surgery and Interventional Science, UCL, London, UK
| | - Katerina Stamati
- Research Department of Nanotechnology, Division of Surgery and Interventional Science, UCL, London, UK
| | - Marilena Loizidou
- Research Department of Nanotechnology, Division of Surgery and Interventional Science, UCL, London, UK
| | - Mark Emberton
- Research Department of Urology, Division of Surgery and Interventional Science, UCL, London, UK
| | - Umber Cheema
- Research Department of Materials and Tissues, Institute of Orthopaedics, Division of Surgery and Interventional Science, UCL, London, UK.
| |
Collapse
|
31
|
Zhang I, Cui Y, Amiri A, Ding Y, Campbell RE, Maysinger D. Pharmacological inhibition of lipid droplet formation enhances the effectiveness of curcumin in glioblastoma. Eur J Pharm Biopharm 2016; 100:66-76. [PMID: 26763536 DOI: 10.1016/j.ejpb.2015.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 02/08/2023]
Abstract
Increased lipid droplet number and fatty acid synthesis allow glioblastoma multiforme, the most common and aggressive type of brain cancer, to withstand accelerated metabolic rates and resist therapeutic treatments. Lipid droplets are postulated to sequester hydrophobic therapeutic agents, thereby reducing drug effectiveness. We hypothesized that the inhibition of lipid droplet accumulation in glioblastoma cells using pyrrolidine-2, a cytoplasmic phospholipase A2 alpha inhibitor, can sensitize cancer cells to the killing effect of curcumin, a promising anticancer agent isolated from the turmeric spice. We observed that curcumin localized in the lipid droplets of human U251N glioblastoma cells. Reduction of lipid droplet number using pyrrolidine-2 drastically enhanced the therapeutic effect of curcumin in both 2D and 3D glioblastoma cell models. The mode of cell death involved was found to be mediated by caspase-3. Comparatively, the current clinical chemotherapeutic standard, temozolomide, was significantly less effective in inducing glioblastoma cell death. Together, our results suggest that the inhibition of lipid droplet accumulation is an effective way to enhance the chemotherapeutic effect of curcumin against glioblastoma multiforme.
Collapse
Affiliation(s)
- Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Yiming Cui
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Abdolali Amiri
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Yidan Ding
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
32
|
McMillan KS, McCluskey AG, Sorensen A, Boyd M, Zagnoni M. Emulsion technologies for multicellular tumour spheroid radiation assays. Analyst 2016; 141:100-10. [DOI: 10.1039/c5an01382h] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Emulsion technology is used to assess the cytotoxic effect of radiation on spheroids by mimicking tumour growth and tumour quiescence.
Collapse
Affiliation(s)
- Kay S. McMillan
- Centre for Microsystems and Photonics
- Electronic and Electrical Engineering
- University of Strathclyde
- Glasgow
- UK
| | - Anthony G. McCluskey
- Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- Glasgow
- UK
| | - Annette Sorensen
- Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- Glasgow
- UK
| | - Marie Boyd
- Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- Glasgow
- UK
| | - Michele Zagnoni
- Centre for Microsystems and Photonics
- Electronic and Electrical Engineering
- University of Strathclyde
- Glasgow
- UK
| |
Collapse
|
33
|
Abstract
The microenvironment is increasingly recognized to have key roles in cancer, and biomaterials provide a means to engineer microenvironments both in vitro and in vivo to study and manipulate cancer. In vitro cancer models using 3D matrices recapitulate key elements of the tumour microenvironment and have revealed new aspects of cancer biology. Cancer vaccines based on some of the same biomaterials have, in parallel, allowed for the engineering of durable prophylactic and therapeutic anticancer activity in preclinical studies, and some of these vaccines have moved to clinical trials. The impact of biomaterials engineering on cancer treatment is expected to further increase in importance in the years to come.
Collapse
Affiliation(s)
- Luo Gu
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - David J Mooney
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
34
|
Das V, Bruzzese F, Konečný P, Iannelli F, Budillon A, Hajdúch M. Pathophysiologically relevant in vitro tumor models for drug screening. Drug Discov Today 2015; 20:848-55. [PMID: 25908576 DOI: 10.1016/j.drudis.2015.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/16/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022]
Abstract
The alarming rate of failure of clinical trials is a major hurdle in cancer therapy that partly results from the inadequate use of in vitro tumor models for the screening of promising hits and leads in preclinical studies. 2D cultures of cancer cell lines that are primarily used for drug screening do not adequately recapitulate tumor microenvironment (TME) complexities compared with 3D cancer cell cultures and tumor-derived primary cell cultures. In this review, we focus on the potential use of in vitro tumor models that reproduce in vivo tumor complexities for effective drug selection in the preclinical stages of drug development.
Collapse
Affiliation(s)
- Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic; EATRIS Headquarters, Giovanni Migliaccio, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands
| | - Francesca Bruzzese
- Experimental Pharmacology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori Fondazioni Giovanni Pascale - IRCCS, 80131 Naples, Italy; EATRIS Headquarters, Giovanni Migliaccio, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands
| | - Petr Konečný
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic; EATRIS Headquarters, Giovanni Migliaccio, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands
| | - Federica Iannelli
- Experimental Pharmacology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori Fondazioni Giovanni Pascale - IRCCS, 80131 Naples, Italy; EATRIS Headquarters, Giovanni Migliaccio, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori Fondazioni Giovanni Pascale - IRCCS, 80131 Naples, Italy; EATRIS Headquarters, Giovanni Migliaccio, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic; EATRIS Headquarters, Giovanni Migliaccio, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Saeed A, Francini N, White L, Dixon J, Gould T, Rashidi H, Al Ghanami RC, Hruschka V, Redl H, Saunders BR, Alexander C, Shakesheff KM. A thermoresponsive and magnetic colloid for 3D cell expansion and reconfiguration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:662-8. [PMID: 25447597 PMCID: PMC4322481 DOI: 10.1002/adma.201403626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/23/2014] [Indexed: 05/23/2023]
Abstract
A dual thermoresponsive and magnetic colloidal gel matrix is described for enhanced stem-cell culture. The combined properties of the material allow enzyme-free passaging and expansion of mesenchymal stem cells, as well as isolation of cells postculture by the simple process of lowering the temperature and applying an external magnetic field. The colloidal gel can be reconfigured with thermal and magnetic stimuli to allow patterning of cells in discrete zones and to control movement of cells within the porous matrix during culture.
Collapse
Affiliation(s)
- Aram Saeed
- School of Pharmacy, University of East AngliaNorwich, NR4 7TJ, UK
| | - Nora Francini
- School of Pharmacy, University of NottinghamNottingham, NG7 2RD, UK
| | - Lisa White
- School of Pharmacy, University of NottinghamNottingham, NG7 2RD, UK
| | - James Dixon
- School of Pharmacy, University of NottinghamNottingham, NG7 2RD, UK
| | - Toby Gould
- School of Pharmacy, University of NottinghamNottingham, NG7 2RD, UK
| | - Hassan Rashidi
- School of Pharmacy, University of NottinghamNottingham, NG7 2RD, UK
| | | | - Veronika Hruschka
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyVienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyVienna, Austria
| | - Brian R Saunders
- School of Materials, University of ManchesterManchester, M13 9PL, UK
| | | | | |
Collapse
|
36
|
Ahlf Wheatcraft DR, Liu X, Hummon AB. Sample preparation strategies for mass spectrometry imaging of 3D cell culture models. J Vis Exp 2014:52313. [PMID: 25549242 PMCID: PMC4396945 DOI: 10.3791/52313] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Three dimensional cell cultures are attractive models for biological research. They combine the flexibility and cost-effectiveness of cell culture with some of the spatial and molecular complexity of tissue. For example, many cell lines form 3D structures given appropriate in vitro conditions. Colon cancer cell lines form 3D cell culture spheroids, in vitro mimics of avascular tumor nodules. While immunohistochemistry and other classical imaging methods are popular for monitoring the distribution of specific analytes, mass spectrometric imaging examines the distribution of classes of molecules in an unbiased fashion. While MALDI mass spectrometric imaging was originally developed to interrogate samples obtained from humans or animal models, this report describes the analysis of in vitro three dimensional cell cultures, including improvements in sample preparation strategies. Herein is described methods for growth, harvesting, sectioning, washing, and analysis of 3D cell cultures via matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) imaging. Using colon carcinoma 3D cell cultures as a model system, this protocol demonstrates the ability to monitor analytes in an unbiased fashion across the 3D cell culture system with MALDI-MSI.
Collapse
Affiliation(s)
- Dorothy R Ahlf Wheatcraft
- Department of Chemistry and Biochemistry, University of Notre Dame; Harper Cancer Research Institute, University of Notre Dame
| | - Xin Liu
- Department of Chemistry and Biochemistry, University of Notre Dame; Harper Cancer Research Institute, University of Notre Dame
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, University of Notre Dame; Harper Cancer Research Institute, University of Notre Dame;
| |
Collapse
|
37
|
Le VM, Lang MD, Shi WB, Liu JW. A collagen-based multicellular tumor spheroid model for evaluation of the efficiency of nanoparticle drug delivery. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:540-4. [PMID: 25315504 DOI: 10.3109/21691401.2014.968820] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Targeted drug delivery systems, especially those that use nanoparticles, have been the focus of research into cancer therapy during the last decade, to improve the bioavailability and delivery of anticancer drugs to specific tumor sites, thereby reducing the toxicity and side effects to normal tissues. However, the positive antitumor effects of these nanocarriers observed in conventional monolayer cultures frequently fail in vivo, due to the lack of physical and biological barriers resembling those seen in the actual body. Therefore, the collagen-based 3-D multicellular culture system, to screen new nanocarriers for drug delivery and to obtain more adequate and better prediction of therapeutic outcomes in preclinical experiments, was developed. This 3-D culture model was successfully established using optimized density of cells. Our result showed that 3-D cell colonies were successfully developed from 95-D, U87 and HCT116 cell lines respectively, after a seven-day culture in the collagen matrix. The coumarin-conjugated nanoparticles were able to penetrate the matrix gel to reach the tumor cells. The model is supposedly more accurate in reflecting/predicting the dynamics and therapeutic outcomes of candidates for drug transport in vivo, and/or investigation of tumor biology, thus speeding up the pace of discovery of novel drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Van-Minh Le
- a Department of Molecular & Cellular Pharmacology , Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai , P.R. China
| | - Mei-Dong Lang
- b Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai , China
| | - Wei-Bin Shi
- c Department of General Surgery , Xinhua Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai , P.R. China
| | - Jian-Wen Liu
- a Department of Molecular & Cellular Pharmacology , Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai , P.R. China
| |
Collapse
|