1
|
Xu X, Hu J, Pang X, Wang X, Xu H, Yan X, Zhang J, Pan S, Wei W, Li Y. Association between plant and animal protein and biological aging: findings from the UK Biobank. Eur J Nutr 2024; 63:3119-3132. [PMID: 39292264 PMCID: PMC11519226 DOI: 10.1007/s00394-024-03494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE This study aimed to evaluate the relationship between plant protein, animal protein and biological aging through different dimensions of biological aging indices. Then explore the effects of substitution of plant protein, animal protein, and their food sources on biological aging. METHODS The data came from 79,294 participants in the UK Biobank who completed at least two 24-h dietary assessments. Higher Klemera-Doubal Method Biological Age (HKDM-BA), higher PhenoAge (HPA), higher allostatic load (HAL), and longer telomere length (LTL) were estimated to assess biological aging. Logistic regression was used to estimate protein-biological aging associations. Substitution model was performed to assess the effect of dietary protein substitutions. RESULTS Plant protein intake was inversely associated with HKDM-BA, HPA, HAL, and positively associated with LTL (odds ratios after fully adjusting and comparing the highest to the lowest quartile: 0.83 (0.79-0.88) for HKDM-BA, 0.86 (0.72-0.94) for HPA, 0.90 (0.85-0.95) for HAL, 1.06 (1.01-1.12) for LTL), while animal protein was not correlated with the four indices. Substituting 5% of energy intake from animal protein with plant protein, replacing red meat or poultry with whole grains, and replacing red or processed meat with nuts, were negatively associated with HKDM-BA, HPA, HAL and positively associated with LTL. However, an inverse association was found when legumes were substituted for yogurt. Gamma glutamyltransferase, alanine aminotransferase, and aspartate aminotransferase mediated the relationship between plant protein and HKDM-BA, HPA, HAL, and LTL (mediation proportion 11.5-24.5%; 1.9-6.7%; 2.8-4.5%, respectively). CONCLUSION Higher plant protein intake is inversely associated with biological aging. Although there is no association with animal protein, food with animal proteins displayed a varied correlation.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
| | - Jinxia Hu
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
| | - Xibo Pang
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
| | - Xuanyang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
| | - Huan Xu
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xuemin Yan
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
| | - Jia Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
| | - Sijia Pan
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
| | - Wei Wei
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
| | - Ying Li
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Wan F, He X, Xie W. Canagliflozin Inhibits Palmitic Acid-Induced Vascular Cell Aging In Vitro through ROS/ERK and Ferroptosis Pathways. Antioxidants (Basel) 2024; 13:831. [PMID: 39061899 PMCID: PMC11273734 DOI: 10.3390/antiox13070831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Vascular aging is one of the reasons for the high incidence of cardiovascular diseases nowadays, as vascular cells age due to various internal and external factors. Among them, high fat is an important inducer. Canagliflozin (CAN) is one of the SGLT2 inhibitors that has been shown to have cardiovascular protective effects in addition to lowering blood sugar, but the specific mechanism is not clear. This study first established a vascular aging model using palmitic acid (PA), then tested the effect of CAN on PA-induced vascular aging, and finally examined the mechanism of CAN's anti-vascular aging via ROS/ERK and ferroptosis pathways. We found that CAN alleviates PA-induced vascular cell aging by inhibiting the activation of ROS/ERK and ferroptosis signaling pathways. This study reveals new mechanisms of lipid-induced vascular aging and CAN inhibition of vascular aging from the perspectives of ROS/ERK and ferroptosis pathways, which is expected to provide new ideas for the development of related drugs in the future.
Collapse
Affiliation(s)
- Fang Wan
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (X.H.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Xin He
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (X.H.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (X.H.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
3
|
Jasbi P, Nikolich-Žugich J, Patterson J, Knox KS, Jin Y, Weinstock GM, Smith P, Twigg HL, Gu H. Targeted metabolomics reveals plasma biomarkers and metabolic alterations of the aging process in healthy young and older adults. GeroScience 2023; 45:3131-3146. [PMID: 37195387 PMCID: PMC10643785 DOI: 10.1007/s11357-023-00823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023] Open
Abstract
With the exponential growth in the older population in the coming years, many studies have aimed to further investigate potential biomarkers associated with the aging process and its incumbent morbidities. Age is the largest risk factor for chronic disease, likely due to younger individuals possessing more competent adaptive metabolic networks that result in overall health and homeostasis. With aging, physiological alterations occur throughout the metabolic system that contribute to functional decline. In this cross-sectional analysis, a targeted metabolomic approach was applied to investigate the plasma metabolome of young (21-40y; n = 75) and older adults (65y + ; n = 76). A corrected general linear model (GLM) was generated, with covariates of gender, BMI, and chronic condition score (CCS), to compare the metabolome of the two populations. Among the 109 targeted metabolites, those associated with impaired fatty acid metabolism in the older population were found to be most significant: palmitic acid (p < 0.001), 3-hexenedioic acid (p < 0.001), stearic acid (p = 0.005), and decanoylcarnitine (p = 0.036). Derivatives of amino acid metabolism, 1-methlyhistidine (p = 0.035) and methylhistamine (p = 0.027), were found to be increased in the younger population and several novel metabolites were identified, such as cadaverine (p = 0.034) and 4-ethylbenzoic acid (p = 0.029). Principal component analysis was conducted and highlighted a shift in the metabolome for both groups. Receiver operating characteristic analyses of partial least squares-discriminant analysis models showed the candidate markers to be more powerful indicators of age than chronic disease. Pathway and enrichment analyses uncovered several pathways and enzymes predicted to underlie the aging process, and an integrated hypothesis describing functional characteristics of the aging process was synthesized. Compared to older participants, the young group displayed greater abundance of metabolites related to lipid and nucleotide synthesis; older participants displayed decreased fatty acid oxidation and reduced tryptophan metabolism, relative to the young group. As a result, we offer a better understanding of the aging metabolome and potentially reveal new biomarkers and predicted mechanisms for future study.
Collapse
Affiliation(s)
- Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Janko Nikolich-Žugich
- University of Arizona Center on Aging, University of Arizona, Tucson, AZ, 85724, USA
| | - Jeffrey Patterson
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA
| | - Kenneth S Knox
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Yan Jin
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL, 34987, USA
| | | | - Patricia Smith
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University Medical Center, 1120 West Michigan Street, CL 260A, Indianapolis, IN, 46202, USA
| | - Homer L Twigg
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University Medical Center, 1120 West Michigan Street, CL 260A, Indianapolis, IN, 46202, USA.
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA.
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL, 34987, USA.
| |
Collapse
|
4
|
Vallée A. Arterial stiffness and biological parameters: A decision tree machine learning application in hypertensive participants. PLoS One 2023; 18:e0288298. [PMID: 37418473 DOI: 10.1371/journal.pone.0288298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
Arterial stiffness, measured by arterial stiffness index (ASI), could be considered a main denominator in target organ damage among hypertensive subjects. Currently, no reported ASI normal references have been reported. The index of arterial stiffness is evaluated by calculation of a stiffness index. Predicted ASI can be estimated regardless to age, sex, mean blood pressure, and heart rate, to compose an individual stiffness index [(measured ASI-predicted ASI)/predicted ASI]. A stiffness index greater than zero defines arterial stiffness. Thus, the purpose of this study was 1) to determine determinants of stiffness index 2) to perform threshold values to discriminate stiffness index and then 3) to determine hierarchical associations of the determinants by performing a decision tree model among hypertensive participants without CV diseases. A study was conducted from 53,363 healthy participants in the UK Biobank survey to determine predicted ASI. Stiffness index was applied on 49,452 hypertensives without CV diseases to discriminate determinants of positive stiffness index (N = 22,453) from negative index (N = 26,999). The input variables for the models were clinical and biological parameters. The independent classifiers were ranked from the most sensitives: HDL cholesterol≤1.425 mmol/L, smoking pack years≥9.2pack-years, Phosphate≥1.172 mmol/L, to the most specifics: Cystatin c≤0.901 mg/L, Triglycerides≥1.487 mmol/L, Urate≥291.9 μmol/L, ALT≥22.13 U/L, AST≤32.5 U/L, Albumin≤45.92 g/L, Testosterone≥5.181 nmol/L. A decision tree model was performed to determine rules to highlight the different hierarchization and interactions between these classifiers with a higher performance than multiple logistic regression (p<0.001). The stiffness index could be an integrator of CV risk factors and participate in future CV risk management evaluations for preventive strategies. Decision trees can provide accurate and useful classification for clinicians.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology and Public Health, Foch hospital, Suresnes, France
| |
Collapse
|
5
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
6
|
Detopoulou P, Nomikos T, Fragopoulou E, Antonopoulou S. Association of PAF and its metabolic enzymes with GGT and the Fatty Liver Index in healthy volunteers. Curr Vasc Pharmacol 2021; 19:663-672. [PMID: 34182909 DOI: 10.2174/1570161119666210628125239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/18/2021] [Accepted: 05/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Platelet-activating factor (PAF) is a lipid inflammatory mediator implicated in liver disease. Its main biosynthetic enzymes are cytidine diphosphate (CDP)-choline:1-alkyl-2-acetyl-sn-glycerol-cholinephosphotransferase (PAF-CPT) and acetyl-coenzyme A: lyso-PAF-acetyltransferases (Lyso-PAF-AT), while PAF acetylhydrolase (PAF-AH) and lipoprotein-associated phospholipase A2 (Lp-PLA2) degrade PAF. OBJECTIVE To explore the relation of PAF metabolism with liver diseases and non-alcoholic fatty liver disease, as reflected by the fatty liver index (FLI). METHODS In 106 healthy volunteers, PAF concentration, the activity of its metabolic enzymes, and gamma-glutamyl transferase (GGT) were measured in whole blood, leukocytes, and serum, respectively, and the FLI was calculated. Partial correlations and linear regression models were used. RESULTS In males, serum GGT activity was positively correlated with abdominal fat (as assessed by analysis of a manually defined region of interest in dual-energy X-ray absorptiometry), triacylglycerols, bound-PAF, and Lp-PLA2, while the FLI was positively correlated with Lp-PLA2 activity. In females, serum GGT activity was negatively associated with high-density lipoprotein cholesterol (HDL-C) (age-adjusted correlations, all p<0.05). Lp-PLA2 was a significant determinant of serum GGT activity in males after controlling for age, low-density lipoprotein cholesterol (LDL-C), and abdominal fat. The addition of bound-PAF in the model significantly increased the explained variance of serum GGT activity (total variance explanation 30%). CONCLUSION Bound-PAF and Lp-PLA2 activity predicted serum GGT activity, while Lp-PLA2 was also related to FLI. Our findings shed light on the metabolic pathways linking Lp-PLA2 to other atherosclerosis and/or oxidative markers, such as HDL-C, LDL-C, GGT, and FLI, and underline the important role of PAF.
Collapse
Affiliation(s)
- Paraskevi Detopoulou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University; 70, El. Venizelou St. Kallithea, 17671 Athens, Greece
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University; 70, El. Venizelou St. Kallithea, 17671 Athens, Greece
| | - Elizabeth Fragopoulou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University; 70, El. Venizelou St. Kallithea, 17671 Athens, Greece
| | - Smaragdi Antonopoulou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University; 70, El. Venizelou St. Kallithea, 17671 Athens, Greece
| |
Collapse
|
7
|
Kim DJ, Chung H, Ji SC, Lee S, Yu KS, Jang IJ, Cho JY. Ursodeoxycholic acid exerts hepatoprotective effects by regulating amino acid, flavonoid, and fatty acid metabolic pathways. Metabolomics 2019; 15:30. [PMID: 30830474 DOI: 10.1007/s11306-019-1494-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/20/2019] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Ursodeoxycholic acid (UDCA) is an intestinal bacterial metabolite with hepatoprotective effects. However, molecular mechanisms underlying its effects remain unclear. OBJECTIVES The aim of this study was to investigate the mechanisms underlying the therapeutic effects of UDCA by using global metabolomics analyses in healthy subjects. METHODS Healthy Korean men were administered UDCA at dosage of 400, 800, or 1200 mg daily for 2 weeks. Serum samples were collected and used for liver function tests and to determine miR-122 expression levels. Urinary and plasma global metabolomics analyses were conducted using a liquid chromatography system coupled with quadrupole-time-of-flight mass spectrometry (LC/QTOFMS) and gas chromatography-TOFMS (GC/TOFMS). Unsupervised multivariate analysis (principal component analysis) was performed to identify discriminative markers before and after treatment. RESULTS Alanine transaminase score and serum miR-122 levels decreased significantly after 2 weeks of treatment. Through LC- and GC-based metabolomic profiling, we identified 40 differential metabolites in plasma and urine samples. CONCLUSIONS Regulation of liver function scores and metabolic alternations highlight the potential hepatoprotective action of UDCA, which were primarily associated with amino acid, flavonoid, and fatty acid metabolism in healthy men.
Collapse
Affiliation(s)
- Da Jung Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Hyewon Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Department of Clinical Pharmacology and Toxicology, Korea University Guro Hospital, Seoul, South Korea
| | - Sang Chun Ji
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
8
|
Feng R, Sun G, Zhang Y, Sun Q, Ju L, Sun C, Wang C. Short-term high-fat diet exacerbates insulin resistance and glycolipid metabolism disorders in young obese men with hyperlipidemia, as determined by metabolomics analysis using ultra-HPLC-quadrupole time-of-flight mass spectrometry. J Diabetes 2019; 11:148-160. [PMID: 30058212 DOI: 10.1111/1753-0407.12828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The prevalence of obesity is increasing rapidly worldwide, and dietary intake is strongly associated with obesity-related chronic diseases. However, key metabolic perturbations in obese young men with hyperlipidemia after high-fat diet (HFD) intervention are not yet clear, and remain to be determined. The aim of this study was to investigate the effects of a short-term HFD on glycolipid metabolism, insulin resistance (IR), and urinary metabolomic profiling in young obese men with hyperlipidemia. METHODS Sixty young men (19-25 years; 30 normal weight, 30 obese with hyperlipidemia) were enrolled in the study. Differences in metabolomic profiling of urine between normal-weight and obese young men before and after 3 days intake of the HFD were investigated using ultra-HPLC-quadrupole time-of-flight mass spectrometry. RESULTS After the HFD intervention, total cholesterol (TC), low-density lipoprotein cholesterol, fasting plasma glucose, insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) were significantly increased and high-density lipoprotein cholesterol was significantly decreased in obese men, but only TC was significantly increased in normal-weight subjects. Based on metabolic differences, normal-weight and obese men, and obese men before and after the HFD intervention could be separated into distinct clusters. Seventeen major metabolites were identified that were associated with type 2 diabetes mellitus, glycolipid metabolism and IR; the changes in these metabolites suggest metabolic changes in young obese males after short-term HFD intake. CONCLUSIONS The findings of this study may contribute to increased understanding of the early biological adaptations of obesity with hyperlipidemia to HFD for the early prevention and control of diabetes and IR.
Collapse
Affiliation(s)
- Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Guozhang Sun
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Yunbo Zhang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Qintong Sun
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Liyan Ju
- Department of Laboratory, Harbin Center for Disease Control and Prevention, Harbin, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Cheng Wang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Kim DJ, Yoon S, Ji SC, Yang J, Kim YK, Lee S, Yu KS, Jang IJ, Chung JY, Cho JY. Ursodeoxycholic acid improves liver function via phenylalanine/tyrosine pathway and microbiome remodelling in patients with liver dysfunction. Sci Rep 2018; 8:11874. [PMID: 30089798 PMCID: PMC6082879 DOI: 10.1038/s41598-018-30349-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
Ursodeoxycholic acid (UDCA) is a metabolic by-product of intestinal bacteria, showing hepatoprotective effects. However, its underlying molecular mechanisms remain unclear. The purpose of this study was to elucidate the action mechanisms underlying the protective effects of UDCA and vitamin E against liver dysfunction using metabolomics and metagenomic analysis. In this study, we analysed blood and urine samples from patients with obesity and liver dysfunction. Nine patients were randomly assigned to receive UDCA (300 mg twice daily), and 10 subjects received vitamin E (400 IU twice daily) for 8 weeks. UDCA significantly improved the liver function scores after 4 weeks of treatment and effectively reduced hepatic deoxycholic acid and serum microRNA-122 levels. To better understand its protective mechanism, a global metabolomics study was conducted, and we found that UDCA regulated uremic toxins (hippuric acid, p-cresol sulphate, and indole-derived metabolites), antioxidants (ascorbate sulphate and N-acetyl-L-cysteine), and the phenylalanine/tyrosine pathway. Furthermore, microbiome involvement, particularly of Lactobacillus and Bifidobacterium, was demonstrated through metagenomic analysis of bacteria-derived extracellular vesicles. Meanwhile, vitamin E treatment did not result in such alterations, except that it reduced uremic toxins and liver dysfunction. Our findings suggested that both treatments were effective in improving liver function, albeit via different mechanisms.
Collapse
Affiliation(s)
- Da Jung Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Seonghae Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Bundang Hospital, Seongnam, Korea
| | - Sang Chun Ji
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | | | | | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Bundang Hospital, Seongnam, Korea.
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea. .,Metabolomics Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Man E, Cheung PT, Cheung YF. Associations between arterial structure and function and serum levels of liver enzymes in obese adolescents. J Paediatr Child Health 2017; 53:691-697. [PMID: 28383828 DOI: 10.1111/jpc.13528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/04/2016] [Accepted: 12/11/2016] [Indexed: 11/27/2022]
Abstract
AIM To determine the structural and functional alterations of systemic arteries in obese adolescents and their relationships with adiposity, metabolic and lipid profile, and serum liver enzyme levels. METHODS Carotid intima-media thickness (IMT), carotid stiffness index, and brachial-ankle pulse wave velocity (baPWV) were measured in 56 obese adolescents and 58 lean controls. Obese adolescents had additional liver ultrasound and determination of fasting blood indices of glucose metabolism and lipid profile, and serum levels of liver enzymes. RESULTS Carotid IMT (P < 0.0001), carotid stiffness index (P < 0.0001) and baPWV (P = 0.001) were significantly greater in obese than control subjects. Thirty-seven (66%) obese subjects had fatty liver changes and their aspartate aminotransferase, alanine aminotransferase (ALT), alkaline phosphatase, and gamma-glutamyl transferase levels were significantly higher than those without (all P < 0.05). Univariate analyses showed positive correlations between serum ALT (r = 0.29, P = 0.03) and alkaline phosphatase (r = 0.28, P = 0.04) levels and carotid IMT, aspartate aminotransferase level and carotid stiffness (r = 0.41, P = 0.002), and gamma-glutamyl transferase level and baPWV (r = 0.34, P = 0.02) in obese subjects. Multivariate linear regression revealed serum ALT level (β = 0.02, P = 0.006) as an independent correlate of carotid stiffness. CONCLUSION Obese adolescents have increased carotid IMT and stiffness, which are associated positively with serum liver enzyme levels.
Collapse
Affiliation(s)
- Elim Man
- Division of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Pik-To Cheung
- Division of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yiu-Fai Cheung
- Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
11
|
Sun L, Li X, Li G, Dai B, Tan W. Actinidia chinensis Planch. Improves the Indices of Antioxidant and Anti-Inflammation Status of Type 2 Diabetes Mellitus by Activating Keap1 and Nrf2 via the Upregulation of MicroRNA-424. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7038789. [PMID: 28642811 PMCID: PMC5470031 DOI: 10.1155/2017/7038789] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/24/2017] [Accepted: 03/19/2017] [Indexed: 12/24/2022]
Abstract
The fruit juice of Actinidia chinensis Planch. has antioxidant and anti-inflammation properties on patients with type 2 diabetes mellitus (T2DM), but the molecular mechanism was unclear. The patients took the juice and the serum level of antioxidant miR-424, Kelch-like ECH-associated protein 1 (Keap1), erythroid-derived 2-like 2 (Nrf2), and biochemical indices were measured. The juice increased the levels of serum microRNA-424, Keap1, and Nrf2 and reduced the levels of interleukin-1 (IL-1) beta and IL-6 in T2DM patients. The levels of SOD and GSH were higher while the levels of ALT and AST were lower in the patients consuming the juice when compared to the patients without taking the juice. The Spearman rank correlation analysis showed that the serum levels of miR-424 were positively related to Keap1 and Nrf2 levels while Keap1 and Nrf2 levels were positively related to the levels of SOD and GSH and negatively related to IL-1 beta and IL-6. Thus, FJACP improves the indices of antioxidant and anti-inflammation status by activating Keap1 and Nrf2 via the upregulation of miR-424 in the patients with T2DM. This trial is registered with ChiCTR-ONC-17011087 on 04/07/2017.
Collapse
Affiliation(s)
- Longfeng Sun
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xiaofei Li
- Department of Emergency Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Gang Li
- Department of Urology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Bing Dai
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Wei Tan
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
12
|
Kim M, Lee SH, Lee JH. Global Metabolic Profiling of Plasma Shows that Three-Year Mild-Caloric Restriction Lessens an Age-Related Increase in Sphingomyelin and Reduces L-leucine and L-phenylalanine in Overweight and Obese Subjects. Aging Dis 2016; 7:721-733. [PMID: 28053823 PMCID: PMC5198864 DOI: 10.14336/ad.2016.0330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/30/2016] [Indexed: 12/21/2022] Open
Abstract
The effect of weight loss from long-term, mild-calorie diets (MCD) on plasma metabolites is unknown. This study was to examine whether MCD-induced weight reduction caused changes in the extended plasma metabolites. Overweight and obese subjects aged 40-59 years consumed a MCD (approximately 100 kcal/day deficit, n=47) or a weight-maintenance diet (control, n=47) in a randomized, controlled design with a three-year clinical intervention period and plasma samples were analyzed by using UPLC-LTQ-Orbitrap mass spectrometry. The three-year MCD intervention resulted in weight loss (-8.87%) and significant decreases in HOMA-IR and TG. The three-year follow-up of the MCD group showed reductions in the following 13 metabolites: L-leucine; L-phenylalanine; 9 lysoPCs; PC (18:0/20:4); and SM (d18:0/16:1). The three-year MCD group follow-up identified increases in palmitic amide, oleamide, and PC (18:2/18:2). Considering the age-related alterations in the identified metabolites, the MCD group showed a greater decrease in L-leucine, L-phenylalanine, and SM (d18:0/16:1) compared with those of the control group. Overall, the change (Δ) in BMI positively correlated with the ΔTG, ΔHOMA-IR, ΔL-leucine, and ΔSM (d18:0/16:1). The ΔHOMA-IR positively correlated with ΔTG, ΔL-leucine, ΔL-phenylalanine, and ΔSM (d18:0/16:1). The weight loss resulting from three-year mild-caloric restriction lessens the age-related increase in SM and reduces L-leucine and L-phenylalanine in overweight and obese subjects. These changes were coupled with improved insulin resistance (ClinicalTrials.gov: NCT02081898).
Collapse
Affiliation(s)
- Minjoo Kim
- 1National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Korea; 2Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Korea
| | - Sang-Hyun Lee
- 3Department of Family Practice, National Health Insurance Corporation Ilsan Hospital, Goyang, 10444, Korea
| | - Jong Ho Lee
- 1National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Korea; 2Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, 03722, Korea; 4Research Institute of Science for Aging, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
13
|
Tootsi K, Märtson A, Zilmer M, Paapstel K, Kals J. Increased arterial stiffness in patients with end-stage osteoarthritis: a case-control study. BMC Musculoskelet Disord 2016; 17:335. [PMID: 27515421 PMCID: PMC4982219 DOI: 10.1186/s12891-016-1201-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 08/03/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Both osteoarthritis (OA) and cardiovascular diseases (CVD) are prevalent conditions which often co-exist. Vascular involvement in the pathogenesis of these diseases, as well as increased cardiovascular risk in OA patients give occasion to investigate arterial stiffness in OA. The aim of this study was to establish associations between OA and arterial stiffness. METHODS The characteristics of arterial stiffness were measured with Sphygmocor and HDI devices in 48 patients (age 63 ± 7 years (mean ± SD)) with end-stage OA awaiting knee and hip replacement and in 49 age and gender matched controls (61 ± 7 years). Independent Student's t-test or the Mann-Whitney U test was used to compare means between the groups. Correlation between variables was determined using Pearson's or Spearman's correlation analysis and stepwise multiple regression analysis. RESULTS Carotid-femoral pulse wave velocity (car-fem PWV) was increased in the patients with OA compared to the controls (9.6 ± 2.4 and 8.4 ± 1.9 m/s, p = 0.015 respectively). High-sensitivity C-reactive protein and white blood cells count were significantly higher in the OA patients compared with the controls (1.80 ± 1.10 and 1.48 ± 1.32 mg/l, p = 0.042; 6.5 ± 1.5 and 5.6 ± 1.9 10(9)/l, p = 0.001 respectively). In multiple regression analysis age (p < 0.001), mean arterial blood pressure (p = <0.001) and OA status (p = 0.029) were found to be independent predictors of car-fem PWV. CONCLUSIONS This study showed that patients with OA had increased aortic stiffness compared to non-OA controls. The potential link between arterial stiffening and OA suggests that vascular alterations are involved in OA pathogenesis and could be responsible for increased cardiovascular risk in end-stage OA patients.
Collapse
Affiliation(s)
- Kaspar Tootsi
- Department of Traumatology and Orthopaedics, University of Tartu, Puusepa street 8, Tartu, Estonia.
| | - Aare Märtson
- Department of Traumatology and Orthopaedics, University of Tartu, Puusepa street 8, Tartu, Estonia.,Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia
| | - Mihkel Zilmer
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kaido Paapstel
- Department of Vascular Surgery, Tartu University Hospital, Tartu, Estonia
| | - Jaak Kals
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia.,Department of Vascular Surgery, Tartu University Hospital, Tartu, Estonia.,Department of Surgery, University of Tartu, Tartu, Estonia
| |
Collapse
|
14
|
Kim Y, Kang M, Han D, Kim H, Lee K, Kim SW, Kim Y, Park T, Jang JY, Kim Y. Biomarker Development for Intraductal Papillary Mucinous Neoplasms Using Multiple Reaction Monitoring Mass Spectrometry. J Proteome Res 2015; 15:100-13. [PMID: 26561977 DOI: 10.1021/acs.jproteome.5b00553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intraductal papillary mucinous neoplasm (IPMN) is a common precursor of pancreatic cancer (PC). Much clinical attention has been directed toward IPMNs due to the increase in the prevalence of PC. The diagnosis of IPMN depends primarily on a radiological examination, but the diagnostic accuracy of this tool is not satisfactory, necessitating the development of accurate diagnostic biomarkers for IPMN to prevent PC. Recently, high-throughput targeted proteomic quantification methods have accelerated the discovery of biomarkers, rendering them powerful platforms for the evolution of IPMN diagnostic biomarkers. In this study, a robust multiple reaction monitoring (MRM) pipeline was applied to discovery and verify IPMN biomarker candidates in a large cohort of plasma samples. Through highly reproducible MRM assays and a stringent statistical analysis, 11 proteins were selected as IPMN marker candidates with high confidence in 184 plasma samples, comprising a training (n = 84) and test set (n = 100). To improve the discriminatory power, we constructed a six-protein panel by combining marker candidates. The multimarker panel had high discriminatory power in distinguishing between IPMN and controls, including other benign diseases. Consequently, the diagnostic accuracy of IPMN can be improved dramatically with this novel plasma-based panel in combination with a radiological examination.
Collapse
Affiliation(s)
- Yikwon Kim
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - MeeJoo Kang
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - Dohyun Han
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - Hyunsoo Kim
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - KyoungBun Lee
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - Sun-Whe Kim
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - Yongkang Kim
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - Taesung Park
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - Jin-Young Jang
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| | - Youngsoo Kim
- Department of Biomedical Engineering, ‡Surgery and Cancer Research Institute, and §Department of Pathology, Seoul National University College of Medicine , 28 Yongon-Dong, Seoul 110-799 Korea.,Department of Statistics and ⊥Interdisciplinary Program in Bioinformatics, Seoul National University , Daehak-dong, Seoul 151-742, Korea
| |
Collapse
|
15
|
Lin Q, Cao Y, Gao J. Decreased expression of the APOA1-APOC3-APOA4 gene cluster is associated with risk of Alzheimer's disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5421-31. [PMID: 26491253 PMCID: PMC4598222 DOI: 10.2147/dddt.s89279] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Apolipoprotein is genetically associated with the risk of Alzheimer’s disease (AD). The APOA1, APOC3, and APOA4 genes are closely linked and located on human chromosome 11. Therefore, this gene cluster may be related to the risk of AD. Patients and methods A total of 147 AD patients and 160 healthy controls were randomly recruited from June 2013 to August 2014. APOA1, APOC3, and APOA4 levels were measured using real-time quantitative reverse-transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay. Results APOA1, APOC3 and APOA4 levels were significantly lower in AD patients than controls (P<0.01). APOA1, APOC3, and APOA4 levels were negatively related with the severities of AD determined by Clinical Dementia Rating scores (P<0.01). APOA1, APOC3, and APOA4 levels showed a negative relation with Montgomery–Åsberg Depression Rating Scale scores and a positive relation with RAND 36-item health-survey scores (P<0.01). There was a decreased trend for levels of APOA1, APOC3, and APOA4 in AD patients. Conclusion Low levels of APOA1, APOC3, and APOA4 are associated with risk of AD. APOA1, APOC3, and APOA4 should be developed as combined drugs for the therapy of AD.
Collapse
Affiliation(s)
- Qiao Lin
- Department of Internal Medicine, Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yunpeng Cao
- Neural Department of Internal Medicine, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jie Gao
- Department of Anatomy, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
16
|
Serum Uric Acid, Alanine Aminotransferase, Hemoglobin and Red Blood Cell Count Levels in Pseudoexfoliation Syndrome. J Ophthalmol 2015; 2015:914098. [PMID: 26075087 PMCID: PMC4444578 DOI: 10.1155/2015/914098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 11/23/2022] Open
Abstract
Purpose. The pathogenesis of pseudoexfoliation (PEX), the most common cause of secondary glaucoma, has not been clearly identified, but there is increasing evidence that points out the role of oxidative stress. The aim of this study is to evaluate some of the most commonly used blood parameters, hemoglobin (Hb), red blood cell count (RBC), alanine aminotransferase (ALT), and uric acid (UA) levels, in subjects with PEX. Materials and Methods. This study is performed in a state hospital between November 2011 and December 2012. Retrospective chart review of subjects who underwent cataract surgery was performed. Thirty-one healthy subjects with PEX and 34 healthy subjects without PEX were evaluated. Hb, RBC, ALT, and UA levels were recorded. Student's t-test was used to compare the two groups. Results. The mean age was 73.6 ± 14.1 years in PEX group and 70.1 ± 12.7 in control group (p = 0.293). Hb, RBC, ALT, and UA levels did not show a statistically significant difference among PEX and control groups (p > 0.05 for all). Conclusion. Serum levels of Hb, RBC, ALT, and UA levels were similar in subjects with and without PEX. Further studies are needed to clarify the precise role of Hb, RBC, ALT, and UA in the pathogenesis of PEX.
Collapse
|
17
|
Dietary blueberry and bifidobacteria attenuate nonalcoholic fatty liver disease in rats by affecting SIRT1-mediated signaling pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:469059. [PMID: 25544867 PMCID: PMC4265704 DOI: 10.1155/2014/469059] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/01/2014] [Accepted: 11/03/2014] [Indexed: 02/07/2023]
Abstract
NAFLD model rats were established and divided into NAFLD model (MG group), SIRT1 RNAi (SI group), blueberry juice (BJ group), blueberry juice + bifidobacteria (BJB group), blueberry juice + SIRT1 RNAi (BJSI group), and blueberry juice + bifidobacteria + SIRT1 RNAi groups (BJBSI group). A group with normal rats was a control group (CG). BJB group ameliorated NAFLD, which was better than BJ group (P < 0.05). The lipid accumulation was lower in CG, BJ, and BJB groups than that in MG, SI, BJSI, and BJBSI groups (P < 0.05). The levels of SIRT1 and PPAR-α were higher in CG, BJ, and BJB groups than those in MG, SI, BJSI, and BJBSI groups (P < 0.05). The levels of SREBP-1c were lower in CG, BJ, and BJB groups than those in MG, SI, BJSI, and BJBSI groups (P < 0.05). The biochemical indexes SOD, GSH, and HDL-c were improved from CG to BJB group (P < 0.05). Inversely, the levels of AST and ALT, TG, TC, LDL-c, and MDA were decreased from CG to BJB group (P < 0.05). These changes enhance antioxidative capability and biochemical index of rats. Blueberry juice and bifidobacteria improve NAFLD by activating SIRTI-mediating signaling pathway.
Collapse
|