1
|
Ahmad S, Mohammed M, Mekala LP, Chintalapati S, Chintalapati R. Proteomic and metabolic profiling reveals molecular phenotype associated with chemotrophic growth of Rubrivivax benzoatilyticus JA2 on L-tryptophan. Mol Omics 2025; 21:51-68. [PMID: 39607403 DOI: 10.1039/d4mo00170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Rubrivivax benzoatilyticus strain JA2 is an anoxygenic phototrophic bacterium, able to grow under different growth modes. Particularly under chemotrophic conditions, it produces novel Trp-melanin, anthocyanin-like, and pyomelanin pigments. However, the underlying molecular adaptations of strain JA2 that lead to the formation of novel metabolites under chemotrophic conditions remain unexplored. The present study used iTRAQ-based global proteomic and metabolite profiling to unravel the biochemical processes operating under the L-tryptophan-fed chemotrophic state. Exometabolite profiling of L-tryptophan fed chemotrophic cultures revealed production of diverse indolic metabolites, many of which are hydroxyindole derivatives, along with unique pigmented metabolites. Proteomic profiling revealed a global shift in the proteome and detected 2411 proteins, corresponding to 61.8% proteins expressed. Proteins related to signalling, transcription-coupled translation, stress, membrane transport, and metabolism were highly differentially regulated. Extensive rewiring of amino acid, fatty acid, lipid, and energy metabolism was observed under L-tyrptophan fed chemotrophic conditions. Moreover, energy conservation and cell protection strategies such as efflux pumps involved in the efflux of aromatic compounds were activated. The study demonstrated a correlation between some of the detected indole derivatives and the up-regulation of proteins associated with L-tryptophan catabolism, indicating a possible role of aromatic mono/dioxygenases in the formation of hydroxyindole derivatives and pigments under chemotrophic conditions. The overall study revealed metabolic flexibility in utilizing aromatic compounds and molecular adaptations of strain JA2 under the chemotrophic state.
Collapse
Affiliation(s)
- Shabbir Ahmad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Mujahid Mohammed
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Lakshmi Prasuna Mekala
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Sasikala Chintalapati
- Smart Microbiological Services (SMS), Rashtrapathi Road, Secunderabad 500 003, India
| | - Ramana Chintalapati
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
2
|
Wang J, Wang R, Liu L, Zhang W, Yin Z, Guo R, Wang D, Guo C. Integrated Physiological, Transcriptomic and Metabolomic Analyses of the Response of Rice to Aniline Toxicity. Int J Mol Sci 2025; 26:582. [PMID: 39859297 PMCID: PMC11765360 DOI: 10.3390/ijms26020582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The accumulation of aniline in the natural environment poses a potential threat to crops, and thus, investigating the effects of aniline on plants holds practical implications for agricultural engineering and its affiliated industries. This study combined physiological, transcriptomic, and metabolomic methods to investigate the growth status and molecular-level response mechanisms of rice under stress from varying concentrations of aniline. At a concentration of 1 mg/L, aniline exhibited a slight growth-promoting effect on rice. However, higher concentrations of aniline significantly inhibited rice growth and even caused notable damage to the rice seedlings. Physiological data indicated that under aniline stress, the membrane of rice underwent oxidative damage. Furthermore, when the concentration of aniline was excessively high, the cells suffered severe damage, resulting in the inhibition of antioxidant enzyme synthesis and activity. Transcriptomic and metabolomic analyses indicated that the phenylpropanoid biosynthesis pathway became quite active under aniline stress, with alterations in various enzymes and metabolites related to lignin synthesis. In addition to the phenylpropanoid biosynthesis pathway, amino acid metabolism, lipid metabolism, and purine metabolism were also critical pathways related to rice's response to aniline stress. Significant changes occurred in the expression levels of multiple genes (e.g., PRX, C4H, GST, and ilvH, among others) associated with functions such as antioxidant activity, membrane remodeling, signal transduction, and nitrogen supply. Similarly, notable alterations were observed in the accumulation of various metabolites (for instance, glutamic acid, phosphatidic acid, phosphatidylglycerol, and asparagine, etc.) related to these functions. Our research findings have unveiled the potential of compounds such as phenylpropanoids and amino acids in assisting rice to cope with aniline stress. A more in-depth and detailed exploration of the specific mechanisms by which these substances function in the process of plant resistance to aniline stress (for instance, utilizing carbon-14 isotope tracing to monitor the metabolic pathway of aniline within plants) will facilitate the cultivation of plant varieties that are resistant to aniline. This will undoubtedly benefit activities such as ensuring food production and quality in aniline-contaminated environments, as well as utilizing plants for the remediation of aniline-polluted environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1, Shida Road, Limin Economic and Technological Development Zone, Harbin 150025, China; (J.W.); (R.W.); (L.L.); (W.Z.); (Z.Y.); (R.G.); (D.W.)
| |
Collapse
|
3
|
Jin X, Yao R, Yu X, Wu H, Liu H, Huang J, Dai Y, Sun J. Global responses to tris(1-chloro-2-propyl) phosphate and tris(2-butoxyethyl) phosphate in Escherichia coli: Evidences from biomarkers, and metabolic disturbance using GC-MS and LC-MS metabolomics analyses. CHEMOSPHERE 2024; 358:142177. [PMID: 38679182 DOI: 10.1016/j.chemosphere.2024.142177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-butoxyethyl) phosphate (TBEP) as pollutants of emerging concern have aroused the rising attention due to their potential risks on aquatic ecosystem and public health. Nevertheless, there is a lack of toxicological mechanisms exploration of TCPP and TBEP at molecular levels. Herein, the toxicity effects and molecular mechanism of them were fully researched and summarized on Escherichia coli (E.coli). Acute exposure to them significantly activated antioxidant defense system and caused lipid peroxidation, as proved by the changes of antioxidant enzymes and MDA. The ROS overload resulted in the drop of membrane potential as well as the downregulated synthesis of ATPase, endorsing that E. coli cytotoxicity was ascribed to oxidative stress damage induced by TCPP and TBEP. The combination of GC-MS and LC-MS based metabolomics validated that TCPP and TBEP induced metabolic reprogramming in E.coli. More specifically, the responsive metabolites in carbohydrate metabolism, lipids metabolism, nucleotide metabolism, amino acid metabolism, and organic acids metabolism were significantly disturbed by TCPP and TBEP, confirming the negative effects on metabolic functions and key bioprocesses. Additionally, several biomarkers including PE(16:1(5Z)/15:0), PA(17:1(9Z)/18:2(9Z,12Z)), PE(19:1(9Z)/0:0), and LysoPE(0:0/18:1(11Z)) were remarkably upregulated, verifying that the protection of cellular membrane was conducted by regulating the expression of lipids-associated metabolites. Collectively, this work sheds new light on the potential molecular toxicity mechanism of TCPP and TBEP on aquatic organisms, and these findings using GC-MS and LC-MS metabolomics generate a fresh insight into assessing the effects of OPFRs on target and non-target aquatic organisms.
Collapse
Affiliation(s)
- Xu Jin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Runlin Yao
- Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| | - Haochuan Wu
- School of Housing, Building and Planning, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Hang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Yicheng Dai
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| |
Collapse
|
4
|
Jachimowicz P, Peng R, Hüffer T, Hofmann T, Cydzik-Kwiatkowska A. Tire materials disturb transformations of nitrogen compounds and affect the structure of biomass in aerobic granular sludge reactors. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133223. [PMID: 38113742 DOI: 10.1016/j.jhazmat.2023.133223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Tire materials (TMs) present a notable hazard due to their potential to release harmful chemicals and microplastics into the environment. They can infiltrate wastewater treatment plants, where their effects remain inadequately understood, raising concerns regarding their influence on treatment procedures. Thus, this study investigated the impact of TMs in wastewater (10, 25, 50 mg/L) on wastewater treatment efficiency, biomass morphology, and microbial composition in aerobic granular sludge (AGS) reactors. TM dosage negatively correlated with nitrification and denitrification efficiencies, reducing overall nitrogen removal, but did not affect the efficiency of chemical-oxygen-demand removal. The presence of TMs increased the diameter of the granules due to TM incorporation into the biomass. The most frequently leached additives from TMs were N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine, benzothiazole (BTH), and 2-hydroxybenzothiazole. In the treated wastewater, only BTH and aniline were detected in higher concentrations, which indicates that tire additives were biodegraded by AGS. The microbial community within the AGS adapted to TMs and their chemicals, highlighting the potential for efficient degradation of tire additives by bacteria belonging to the genera Rubrivivax, Ferruginibacter, and Xanthomonas. Additionally, our research underscores AGS's ability to incorporate TMs into biomass and effectively biodegrade tire additives, offering a promising solution for addressing environmental concerns related to TMs.
Collapse
Affiliation(s)
- Piotr Jachimowicz
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, 10-709 Olsztyn, Poland.
| | - Ruoting Peng
- Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, University of Vienna, 1090 Vienna, Austria; Doctoral School in Microbiology and Environmental Science, University of Vienna, 1090 Vienna, Austria
| | - Thorsten Hüffer
- Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, University of Vienna, 1090 Vienna, Austria
| | - Thilo Hofmann
- Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, University of Vienna, 1090 Vienna, Austria
| | | |
Collapse
|
5
|
van Pijkeren A, Egger AS, Hotze M, Zimmermann E, Kipura T, Grander J, Gollowitzer A, Koeberle A, Bischoff R, Thedieck K, Kwiatkowski M. Proteome Coverage after Simultaneous Proteo-Metabolome Liquid-Liquid Extraction. J Proteome Res 2023; 22:951-966. [PMID: 36763818 PMCID: PMC9990123 DOI: 10.1021/acs.jproteome.2c00758] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Proteomics and metabolomics are essential in systems biology, and simultaneous proteo-metabolome liquid-liquid extraction (SPM-LLE) allows isolation of the metabolome and proteome from the same sample. Since the proteome is present as a pellet in SPM-LLE, it must be solubilized for quantitative proteomics. Solubilization and proteome extraction are critical factors in the information obtained at the proteome level. In this study, we investigated the performance of two surfactants (sodium deoxycholate (SDC), sodium dodecyl sulfate (SDS)) and urea in terms of proteome coverage and extraction efficiency of an interphase proteome pellet generated by methanol-chloroform based SPM-LLE. We also investigated how the performance differs when the proteome is extracted from the interphase pellet or by direct cell lysis. We quantified 12 lipids covering triglycerides and various phospholipid classes, and 25 polar metabolites covering central energy metabolism in chloroform and methanol extracts. Our study reveals that the proteome coverages between the two surfactants and urea for the SPM-LLE interphase pellet were similar, but the extraction efficiencies differed significantly. While SDS led to enrichment of basic proteins, which were mainly ribosomal and ribonuclear proteins, urea was the most efficient extraction agent for simultaneous proteo-metabolome analysis. The results of our study also show that the performance of surfactants for quantitative proteomics is better when the proteome is extracted through direct cell lysis rather than an interphase pellet. In contrast, the performance of urea for quantitative proteomics was significantly better when the proteome was extracted from an interphase pellet than by direct cell lysis. We demonstrated that urea is superior to surfactants for proteome extraction from SPM-LLE interphase pellets, with a particularly good performance for the extraction of proteins associated with metabolic pathways. Data are available via ProteomeXchange with identifier PXD027338.
Collapse
Affiliation(s)
- Alienke van Pijkeren
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria.,Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Anna-Sophia Egger
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria
| | - Madlen Hotze
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria
| | - Elisabeth Zimmermann
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria
| | - Tobias Kipura
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria
| | - Julia Grander
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020, Innsbruck, Austria
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020, Innsbruck, Austria
| | - Rainer Bischoff
- Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria.,Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands.,Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, 26129, Germany
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria
| |
Collapse
|
6
|
Zhan Y, Xu H, Tan HT, Ho YS, Yang D, Chen S, Ow DSW, Lv X, Wei F, Bi X, Chen S. Systematic Adaptation of Bacillus licheniformis to 2-Phenylethanol Stress. Appl Environ Microbiol 2023; 89:e0156822. [PMID: 36752618 PMCID: PMC9972911 DOI: 10.1128/aem.01568-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/12/2023] [Indexed: 02/09/2023] Open
Abstract
The compound 2-phenylethanol (2-PE) is a bulk flavor and fragrance with a rose-like aroma that can be produced by microbial cell factories, but its cellular toxicity inhibits cellular growth and limits strain performance. Specifically, the microbe Bacillus licheniformis has shown a strong tolerance to 2-PE. Understanding these tolerance mechanisms is crucial for achieving the hyperproduction of 2-PE. In this report, the mechanisms of B. licheniformis DW2 resistance to 2-PE were studied by multi-omics technology coupled with physiological and molecular biological approaches. 2-PE induced reactive oxygen species formation and affected nucleic acid, ribosome, and cell wall synthesis. To manage 2-PE stress, the antioxidant and global stress response systems were activated; the repair system of proteins and homeostasis of the ion and osmotic were initiated. Furthermore, the tricarboxylic acid cycle and NADPH synthesis pathways were upregulated; correspondingly, scanning electron microscopy revealed that cell morphology was changed. These results provide deeper insights into the adaptive mechanisms of B. licheniformis to 2-PE and highlight the potential targets for genetic manipulation to enhance 2-PE resistance. IMPORTANCE The ability to tolerate organic solvents is essential for bacteria producing these chemicals with high titer, yield, and productivity. As exemplified by 2-PE, bioproduction of 2-PE represents a promising alternative to chemical synthesis and plant extraction approaches, but its toxicity hinders successful large-scale microbial production. Here, a multi-omics approach is employed to systematically study the mechanisms of B. licheniformis DW2 resistance to 2-PE. As a 2-PE-tolerant strain, B. licheniformis displays multifactorial mechanisms of 2-PE tolerance, including activating global stress response and repair systems, increasing NADPH supply, changing cell morphology and membrane composition, and remodeling metabolic pathways. The current work yields novel insights into the mechanisms of B. licheniformis resistance to 2-PE. This knowledge can also be used as a clue for improving bacterial performances to achieve industrial-scale production of 2-PE and potentially applied to the production of other relevant organic solvents, such as tyrosol and hydroxytyrosol.
Collapse
Affiliation(s)
- Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei, People’s Republic of China
| | - Haixia Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei, People’s Republic of China
| | - Hween Tong Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dongxiao Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shuwen Chen
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dave Siak-Wei Ow
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, People’s Republic of China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, People’s Republic of China
| | - Xuezhi Bi
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
7
|
Ahmad S, Mohammed M, Mekala LP, Anusha R, Sasikala C, Ramana CV. Stable isotope-assisted metabolite profiling reveals new insights into L-tryptophan chemotrophic metabolism of Rubrivivax benzoatilyticus. World J Microbiol Biotechnol 2023; 39:98. [PMID: 36781830 DOI: 10.1007/s11274-023-03537-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Anoxygenic photosynthetic bacteria (APB) are metabolically versatile, capable of surviving with an extended range of carbon and nitrogen sources. This group of phototrophic bacteria have remarkable metabolic plasticity in utilizing an array of organic compounds as carbon source/electron donors and nitrogen sources with sophisticated growth modes. Rubrivivax benzoatilyticus JA2 is one such photosynthetic bacterium utilizes L-tryptophan as nitrogen source under phototrophic growth mode and produces an array of indolic compounds of biotechnological significance. However, chemotrophic L-tryptophan metabolism is largely unexplored and studying L-tryptophan metabolism under chemotrophic mode would provide new insights into metabolic potential of strain JA2. In the present study, we employed stable-isotopes assisted metabolite profiling to unravel the L-tryptophan catabolism in Rubrivivax benzoatilyticus strain JA2 under chemotrophic (dark aerobic) conditions. Utilization of L-tryptophan as a nitrogen source for growth and simultaneous production of indole derivatives was observed in strain JA2. Liquid chromatography mass spectrometry (LC-MS) analysis of exo-metabolite profiling of carbon labeled L-tryptophan (13C11) fed cultures of strain JA2 revealed at least seventy labeled metabolites. Of these, only fourteen metabolites were confirmed using standards, while sixteen were putative and forty metabolites remained unidentified. L-tryptophan chemotrophic catabolism revealed multiple catabolic pathways and distinct differential catabolism of L-tryptophan under chemotropic state as compared to photo-catabolism of L-tryptophan in strain JA2.
Collapse
Affiliation(s)
- Shabbir Ahmad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Mujahid Mohammed
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.,Department of Botany, Bharathidasan Government College for Women, Muthialpet, Puducherry U.T., 605003, India
| | - Lakshmi Prasuna Mekala
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.,Department of Plant Science, Avvaiyar Government College for Women, Karaikal, Puducherry- U.T., 609 602, India
| | - Rai Anusha
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | | | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
8
|
Du M, Wang J, Jin Y, Fan J, Zan S, Li Z. Response mechanism of microbial community during anaerobic biotransformation of marine toxin domoic acid. ENVIRONMENTAL RESEARCH 2022; 215:114410. [PMID: 36154856 DOI: 10.1016/j.envres.2022.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Domoic acid (DA) is a potent neurotoxin produced by toxigenic Pseudo-nitzschia blooms and quickly transfers to the benthic anaerobic environment by marine snow particles. DA anaerobic biotransformation is driven by microbial interactions, in which trace amounts of DA can cause physiological stress in marine microorganisms. However, the underlying response mechanisms of microbial community to DA stress remain unclear. In this study, we utilized an anaerobic marine DA-degrading consortium GLY (using glycine as co-substrate) to systematically investigate the global response mechanisms of microbial community during DA anaerobic biotransformation.16S rRNA gene sequencing and metatranscriptomic analyses were applied to measure microbial community structure, function and metabolic responses. Results showed that DA stress markedly changed the composition of main species, with increased levels of Firmicutes and decreased levels of Proteobacteria, Cyanobacteria, Bacteroidetes and Actinobacteria. Several genera of tolerated bacteria (Bacillus and Solibacillus) were increased, while, Stenotrophomonas, Sphingomonas and Acinetobacter were decreased. Metatranscriptomic analyses indicated that DA stimulated the expression of quorum sensing, extracellular polymeric substance (EPS) production, sporulation, membrane transporters, bacterial chemotaxis, flagellar assembly and ribosome protection in community, promoting bacterial adaptation ability under DA stress. Moreover, amino acid metabolism, carbohydrate metabolism and lipid metabolism were modulated during DA anaerobic biotransformation to reduce metabolic burden, increase metabolic demands for EPS production and DA degradation. This study provides the new insights into response of microbial community to DA stress and its potential impact on benthic microorganisms in marine environments.
Collapse
Affiliation(s)
- Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Yuan Jin
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Jingfeng Fan
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
9
|
Effect of Cucurbit[7]uril on Adsorption of Aniline Derivatives at Quartz. COATINGS 2022. [DOI: 10.3390/coatings12081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The adsorption behavior of small molecules at solid–liquid interfaces have become an important research topic in recent years. For example, small molecules of aniline pollutants will adsorb on solid surfaces with a massive discharge of industrial wastewater and are difficult to separate. Therefore, their adsorption and desorption on solid surfaces have become an important scientific problem. In this study, the interactions of cucurbit[7]uril (Q[7]) with 4,4′-diaminodiphenylmethane (MDA) and benzidine (AN) are studied using 1H NMR, UV-Vis spectrometry and fluorescence spectroscopy. The results show that Q[7] forms an inclusion complex with MDA and AN. According to the results of Quartz Crystal Microbalance with Dissipation (QCM-D), MDA adsorbs onto a quartz surface and forms a viscous adsorption layer on it. The AN adsorbs on the quartz surface and forms a rigid adsorption film on it. Q[7] can reduce the adsorption of MDA on the quartz surface and increases the adsorption of AN on it. Through the dynamic adsorption experiments, we find that Q[7] has a desorption effect on MDA molecules adsorbed on the quartz surface. An Atomic Force Microscope (AFM) is used to measure the morphological changes in the adsorption film before and after Q[7] makes contact with the quartz surface, and it proves that Q[7] has a desorption effect on MDA molecules adsorbed on the surface.
Collapse
|
10
|
Gu Q, Chen M, Zhang J, Guo W, Wu H, Sun M, Wei L, Wang J, Wei X, Zhang Y, Ye Q, Xue L, Pang R, Ding Y, Wu Q. Genomic Analysis and Stability Evaluation of the Phenol-Degrading Bacterium Acinetobacter sp. DW-1 During Water Treatment. Front Microbiol 2021; 12:687511. [PMID: 34326823 PMCID: PMC8313972 DOI: 10.3389/fmicb.2021.687511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/11/2021] [Indexed: 01/12/2023] Open
Abstract
Phenol is a toxic organic molecule that is widely detected in the natural environment, even in drinking water sources. Biological methods were considered to be a good tool for phenol removal, especially microbial immobilized technology. However, research on the “seed” bacteria along with microbial community analysis in oligotrophic environment such as drinking water system has not been addressed. In this study, Acinetobacter sp. DW-1 with high phenol degradation ability had been isolated from a drinking water biofilter was used as seeded bacteria to treat phenol micro-polluted drinking water source. Meanwhile, the whole genome of strain DW-1 was sequenced using nanopore technology. The genomic analysis suggests that Acinetobacter sp. DW-1 could utilize phenol via the β-ketoadipate pathway, including the catechol and protocatechuate branches. Subsequently, a bio-enhanced polyhedral hollow polypropylene sphere (BEPHPS) filter was constructed to investigate the stability of the seeded bacteria during the water treatment process. The denatured gradient gel electrophoresis (DGGE) profile and the quantification of phenol hydroxylase gene results indicate that when the BEPHPS filter was operated for 56 days, Acinetobacter sp. was still a persistent and competitive bacterium in the treatment group. In addition, 16S rRNA gene amplicon sequencing results indicate that Acinetobacter sp., as well as Pseudomonas sp., Nitrospira sp., Rubrivivax sp. were the predominant bacteria in the treatment group, which were different from that in the CK group. This study provides a better understanding of the mechanisms of phenol degradation by Acinetobacter sp. DW-1 at the gene level, and provides new insights into the stability of seeded bacteria and its effects on microbial ecology during drinking water treatment.
Collapse
Affiliation(s)
- Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Weipeng Guo
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huiqing Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ming Sun
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lei Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Li Y, Li Z, Liu Z, Han S, Zhao S, Yan K, Zhu A. Degradation of aniline in water with gaseous streamer corona plasma. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202314. [PMID: 33996129 PMCID: PMC8059555 DOI: 10.1098/rsos.202314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
This paper demonstrated the effects and influencing factors in degrading aniline by gaseous streamer corona plasma along water surface under different discharging gas atmospheres. For aniline with an initial concentration of 100 mg l-1, the degradation was fastest when the reactor was not ventilated, and the degradation rate is 98.5% under 7.5 min treatment. While the degradation was slowest when Ar was ventilated, the degradation rate is 98.6% after treatment for 60 min. Some active particles were detected using a multi-channel fibre-optic spectrometer during the discharge, such as Ar, OH, N2, N 2 + and N. In particular, NO was detected during air discharge. The NO and N 2 + could produce NO 3 - ; then generated nitric acid would affect the pH value of the solution. The intermediate product by N2 discharge is nitrophenol, and nitrophenol would be converted to p-benzoquinone. The O2 discharge could produce an intermediate product of aminophenol. The intermediate products in Ar discharge were in small amounts and the final mineralization effect was the best.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, People's Republic of China
| | - Zhanguo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, People's Republic of China
| | - Zhen Liu
- Industrial Ecology and Environment Research Institute, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Shitong Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, People's Republic of China
| | - Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, People's Republic of China
| | - Keping Yan
- Industrial Ecology and Environment Research Institute, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Anna Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, People's Republic of China
| |
Collapse
|
12
|
An ion-pair free LC-MS/MS method for quantitative metabolite profiling of microbial bioproduction systems. Talanta 2021; 222:121625. [DOI: 10.1016/j.talanta.2020.121625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 11/23/2022]
|
13
|
Karkossa I, Raps S, von Bergen M, Schubert K. Systematic Review of Multi-Omics Approaches to Investigate Toxicological Effects in Macrophages. Int J Mol Sci 2020; 21:E9371. [PMID: 33317022 PMCID: PMC7764599 DOI: 10.3390/ijms21249371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Insights into the modes of action (MoAs) of xenobiotics are of utmost importance for the definition of adverse outcome pathways (AOPs), which are essential for a mechanism-based risk assessment. A well-established strategy to reveal MoAs of xenobiotics is the use of omics. However, often an even more comprehensive approach is needed, which can be achieved using multi-omics. Since the immune system plays a central role in the defense against foreign substances and pathogens, with the innate immune system building a first barrier, we systematically reviewed multi-omics studies investigating the effects of xenobiotics on macrophages. Surprisingly, only nine publications were identified, combining proteomics with transcriptomics or metabolomics. We summarized pathways and single proteins, transcripts, or metabolites, which were described to be affected upon treatment with xenobiotics in the reviewed studies, thus revealing a broad range of effects. In summary, we show that macrophages are a relevant model system to investigate the toxicological effects induced by xenobiotics. Furthermore, the multi-omics approaches led to a more comprehensive overview compared to only one omics layer with slight advantages for combinations that complement each other directly, e.g., proteome and metabolome.
Collapse
Affiliation(s)
- Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (I.K.); (S.R.); (M.v.B.)
| | - Stefanie Raps
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (I.K.); (S.R.); (M.v.B.)
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (I.K.); (S.R.); (M.v.B.)
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (I.K.); (S.R.); (M.v.B.)
| |
Collapse
|
14
|
Li P, Li ZH. Tributyltin Induces the Tissue-Specific Stresses in Zebrafish, a Study in Various Tissues of Muscle, Gill and Intestine. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:847-852. [PMID: 33211132 DOI: 10.1007/s00128-020-03048-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Because the mechanism of tissue-specific toxicity of tributyltin (TBT) in aquatic organisms has not been explained clearly, the aim of this study is to investigate the effect of chronic exposure to TBT on muscle-related energy metabolism, gill-related ATPase enzymatic system and intestine-related digestive enzymes activities in zebrafish. Male zebrafish were exposed to sub-lethal concentrations of TBT (10, 100 and 300 ng/L) for 6 weeks. Multiple biomarkers were measured (such as glucose, lactate, hexokinase, pyruvate kinase, lactate dehydrogenase, ATP content, ATPases, trypsin, lipase and amylase), which reflected more serious physiological stress with increasing TBT concentrations during the experimental period. Through principal component analysis (PCA) and integrated biomarker response (IBR) analysis, the toxic effect of TBT in zebrafish was in a concentration-dependent manner. Shortly, the results of this study can provide new evidence for a comprehensive understanding of the toxic effects of TBT.
Collapse
Affiliation(s)
- Ping Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
15
|
Liu Y, Wang C, Zhang K, Zhou Y, Xu Y, Xu X, Zhu L. Rapid degradation of 2,4-dichloronitrobenzene in single-chamber microbial electrolysis cell with pre-acclimated bioanode: A comprehensive assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138053. [PMID: 32247974 DOI: 10.1016/j.scitotenv.2020.138053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/24/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
2,4-dichloronitrobenzene (DClNB) as a typical refractory pollutant, exists in multifarious industrial wastewater widely and poses a serious threat to the environment. An ion exchange membrane (IEM)-free microbial electrolysis cell (MEC) with pre-acclimated bioanode was built and evaluated systematically for treatment of DClNB containing wastewater. Results showed that compared with the non-acclimated or IEM-equipped MECs, the pre-acclimated IEM-free MECs had the best DClNB removal efficiency of 91.3% under COD and DClNB loading rates of nearly 1000 kg m-3 d-1 and 100 g m-3 d-1. Both of anode pre-acclimation and IEM removal reduced the electron transfer resistance by 71.1 and 194.5 Ω, respectively. Compared to the pre-acclimated IEM-equipped MEC, the cathode current efficiency of pre-acclimated IEM-free MEC increased by 13.7%. Analysis of live/dead cell staining indicated that a higher proportion of live cells was observed in the acclimated anode biofilm (66.1% vs. 47.3%), and the detoxification of DClNB in the pre-acclimated IEM-free MECs was significantly better (p < 0.05) than those of non-acclimated or IEM-equipped MECs. This study contributes to the performance improvement of the MEC process for treatment of toxic industrial wastewater.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Chen Wang
- Institute of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Kaiji Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuran Zhou
- Monash University, Wellington Rd, Clayton Vlc3800, Melbourne, Australia
| | - Yilan Xu
- Haining Water Investment Group Co., Ltd, Haining 314400, China
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|
16
|
Hu B, Wang M, Geng S, Wen L, Wu M, Nie Y, Tang YQ, Wu XL. Metabolic Exchange with Non-Alkane-Consuming Pseudomonas stutzeri SLG510A3-8 Improves n-Alkane Biodegradation by the Alkane Degrader Dietzia sp. Strain DQ12-45-1b. Appl Environ Microbiol 2020; 86:AEM.02931-19. [PMID: 32033953 PMCID: PMC7117941 DOI: 10.1128/aem.02931-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Biodegradation of alkanes by microbial communities is ubiquitous in nature. Interestingly, the microbial communities with high hydrocarbon-degrading performances are sometimes composed of not only hydrocarbon degraders but also nonconsumers, but the synergistic mechanisms remain unknown. Here, we found that two bacterial strains isolated from Chinese oil fields, Dietzia sp. strain DQ12-45-1b and Pseudomonas stutzeri SLG510A3-8, had a synergistic effect on hexadecane (C16 compound) biodegradation, even though P. stutzeri could not utilize C16 individually. To gain a better understanding of the roles of the alkane nonconsumer P. stutzeri in the C16-degrading consortium, we reconstructed a two-species stoichiometric metabolic model, iBH1908, and integrated in silico prediction with the following in vitro validation, a comparative proteomics analysis, and extracellular metabolomic detection. Metabolic interactions between P. stutzeri and Dietzia sp. were successfully revealed to have importance in efficient C16 degradation. In the process, P. stutzeri survived on C16 metabolic intermediates from Dietzia sp., including hexadecanoate, 3-hydroxybutanoate, and α-ketoglutarate. In return, P. stutzeri reorganized its metabolic flux distribution to fed back acetate and glutamate to Dietzia sp. to enhance its C16 degradation efficiency by improving Dietzia cell accumulation and by regulating the expression of Dietzia succinate dehydrogenase. By using the synergistic microbial consortium of Dietzia sp. and P. stutzeri with the addition of the in silico-predicted key exchanged metabolites, diesel oil was effectively disposed of in 15 days with a removal fraction of 85.54% ± 6.42%, leaving small amounts of C15 to C20 isomers. Our finding provides a novel microbial assembling mode for efficient bioremediation or chemical production in the future.IMPORTANCE Many natural and synthetic microbial communities are composed of not only species whose biological properties are consistent with their corresponding communities but also ones whose chemophysical characteristics do not directly contribute to the performance of their communities. Even though the latter species are often essential to the microbial communities, their roles are unclear. Here, by investigation of an artificial two-member microbial consortium in n-alkane biodegradation, we showed that the microbial member without the n-alkane-degrading capability had a cross-feeding interaction with and metabolic regulation to the leading member for the synergistic n-alkane biodegradation. Our study improves the current understanding of microbial interactions. Because "assistant" microbes showed importance in communities in addition to the functional microbes, our findings also suggest a useful "assistant-microbe" principle in the design of microbial communities for either bioremediation or chemical production.
Collapse
Affiliation(s)
- Bing Hu
- Institute for Synthetic Biosystems, Department of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Miaoxiao Wang
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Shuang Geng
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Liqun Wen
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Mengdi Wu
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yong Nie
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Yue-Qin Tang
- Department of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Xiao-Lei Wu
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| |
Collapse
|
17
|
Mohammed M, Mekala LP, Chintalapati S, Chintalapati VR. New insights into aniline toxicity: Aniline exposure triggers envelope stress and extracellular polymeric substance formation in Rubrivivax benzoatilyticus JA2. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121571. [PMID: 31753663 DOI: 10.1016/j.jhazmat.2019.121571] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/12/2019] [Accepted: 10/29/2019] [Indexed: 05/16/2023]
Abstract
Aniline is a major environmental pollutant of serious concern due to its toxicity. Although microbial metabolism of aniline is well-studied, its toxic effects and physiological responses of microorganisms to aniline are largely unexplored. Rubrivivax benzoatilyticus JA2, an aniline non-degrading bacterium, tolerates high concentrations of aniline and produces extracellular polymeric substance(EPS). Surprisingly, strain JA2 forms EPS only when exposed to aniline and other toxic compounds like organic solvents and heavy metals indicating that EPS formation is coupled to cell toxicity. Further, extensive reanalysis of the previous proteomic data of aniline exposed cells revealed up-regulation of envelope stress response(ESR) proteins such as periplasmic protein folding, envelope integrity, transmembrane complex, and cell-wall remodelling proteins. In silico analysis and molecular modeling of three highly up-regulated proteins revealed that these proteins were homologous to CpxARP proteins of ESR signalling pathway. Furthermore, EPS formation to known ESR activators(Triton-X-100, EDTA) suggests that envelope stress possibly regulating the EPS production. The present study suggests that aniline triggers envelope stress; to counter this strain JA2 activates ESR pathway and EPS production. Our study revealed the hitherto unknown toxic effects of aniline as an acute envelope stressor thus toxicity of aniline may be more profound to life-forms than previously thought.
Collapse
Affiliation(s)
- Mujahid Mohammed
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Lakshmi Prasuna Mekala
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Sasikala Chintalapati
- Bacterial Discovery Laboratory, Center for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad 500 085, India
| | - Venkata Ramana Chintalapati
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India.
| |
Collapse
|
18
|
Zhai Q, Xiao Y, Narbad A, Chen W. Comparative metabolomic analysis reveals global cadmium stress response of Lactobacillus plantarum strains. Metallomics 2019; 10:1065-1077. [PMID: 29998247 DOI: 10.1039/c8mt00095f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Our previous work demonstrated the protective effects of Lactobacillus plantarum (L. plantarum) strains against cadmium (Cd) toxicity in vivo, and also indicated that the Cd tolerance of the strains played an important role in this protection. The goal of this study was to investigate the Cd resistance mechanism of L. plantarum by liquid chromatography-mass spectrometry (LC-MS) based metabolomic analysis, with a focus on the global Cd stress response. L. plantarum CCFM8610 (strongly resistant to Cd) and L. plantarum CCFM191 (sensitive to Cd) were selected as target strains, and their metabolomic profiles with and without Cd exposure were compared. The underlying mechanisms of the intra-species distinction between CCFM8610 and CCFM191 in terms of Cd tolerance can be attributed to the following aspects: (a) CCFM8610 possesses a higher intracellular content of osmolytes; (b) CCFM8610 can induce more effective biosynthesis of extracellular polymeric substance (EPS) to sequestrate Cd;
Collapse
Affiliation(s)
- Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | | | | | | |
Collapse
|
19
|
Gupta D, Mohammed M, Mekala LP, Chintalapati S, Chintalapati VR. iTRAQ-based quantitative proteomics reveals insights into metabolic and molecular responses of glucose-grown cells of Rubrivivax benzoatilyticus JA2. J Proteomics 2018; 194:49-59. [PMID: 30597313 DOI: 10.1016/j.jprot.2018.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 01/28/2023]
Abstract
Anoxygenic photosynthetic bacteria thrive under diverse habitats utilising an extended range of inorganic/organic compounds under different growth modes. Although they display incredible metabolic flexibility, their responses and adaptations to changing carbon regimes is largely unexplored. In the present study, we employed iTRAQ-based global proteomic profiling and physiological studies to uncover the adaptive strategies of a phototrophic bacterium, Rubrivivax benzoatilyticus JA2 to glucose. Strain JA2 displayed altered growth rates, reduced cell size and progressive loss of pigmentation when grown on glucose compared to malate under photoheterotrophic condition. A ten-fold increase in the saturated to unsaturated fatty acid ratio of glucose-grown cells indicates a possible membrane adaptation. Proteomic profiling revealed extensive metabolic remodelling in the glucose-grown cells wherein signal-transduction, selective-transcription, DNA-repair, transport and protein quality control processes were up-regulated to cope with the changing milieu. Proteins involved in DNA replication, translation, electron-transport, photosynthetic machinery were down-regulated possibly to conserve the energy. Glycolysis/gluconeogenesis, TCA cycle and pigment biosynthesis were also down-regulated. The cell has activated alternative energy metabolic pathways viz., fatty acid β-oxidation, glyoxylate, acetate-switch and Entner-Doudoroff pathways. Overall, the present study deciphered the molecular/metabolic events associated with glucose-grown cells of strain JA2 and also unraveled how a carbon source modulates the metabolic phenotypes. SIGNIFICANCE: Anoxygenic photosynthetic bacteria (APB) exhibit incredible metabolic flexibility leading to diverse phenotypes. They thrive under diverse habitat using an array of inorganic/organic compounds as carbon sources, yet their metabolic adaptation to varying carbon regime is mostly unexplored. Present study uncovered the proteomic insights of the cellular responses of strain JA2 to changing carbon sources viz. malate and glucose under photoheterotrophic conditions. Our study suggests that carbon source can also determine the metabolic fate of the cells and reshape the energy dynamics of APB. Here, for the first time study highlighted the plausible carbon source (glucose) mediated regulation of photosynthesis in APB. The study sheds light on the plausible cellular events and adaptive metabolic strategies employed by strain JA2 in presence of non-preferred carbon source. It also revealed new insights into the metabolic plasticity of APB to the changing milieu.
Collapse
Affiliation(s)
- Deepshikha Gupta
- Department of Plant Sciences, P.O. Central University, University of Hyderabad, Hyderabad 500046, India
| | - Mujahid Mohammed
- Department of Plant Sciences, P.O. Central University, University of Hyderabad, Hyderabad 500046, India
| | - Lakshmi Prasuna Mekala
- Department of Plant Sciences, P.O. Central University, University of Hyderabad, Hyderabad 500046, India
| | - Sasikala Chintalapati
- Bacterial Discovery Laboratory, Centre for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad 500085, India
| | | |
Collapse
|
20
|
Ren Y, Xu B, Zhong Z, Pittman CU, Zhou A. Synthesis of ArSe‐Substituted Aniline Derivatives by C(sp
2
)‐H Functionalization. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yaokun Ren
- Pharmacy SchoolJiangsu University Xuefu Road 301 Zhenjiang Jiangsu 212013 P. R. China
| | - Baojun Xu
- Pharmacy SchoolJiangsu University Xuefu Road 301 Zhenjiang Jiangsu 212013 P. R. China
| | - Zijian Zhong
- Pharmacy SchoolJiangsu University Xuefu Road 301 Zhenjiang Jiangsu 212013 P. R. China
| | - Charles U. Pittman
- Department of ChemistryMississippi State University Mississippi State, MS 39762 USA
| | - Aihua Zhou
- Pharmacy SchoolJiangsu University Xuefu Road 301 Zhenjiang Jiangsu 212013 P. R. China
| |
Collapse
|
21
|
Papadopoulou ES, Perruchon C, Vasileiadis S, Rousidou C, Tanou G, Samiotaki M, Molassiotis A, Karpouzas DG. Metabolic and Evolutionary Insights in the Transformation of Diphenylamine by a Pseudomonas putida Strain Unravelled by Genomic, Proteomic, and Transcription Analysis. Front Microbiol 2018; 9:676. [PMID: 29681895 PMCID: PMC5897751 DOI: 10.3389/fmicb.2018.00676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/22/2018] [Indexed: 11/19/2022] Open
Abstract
Diphenylamine (DPA) is a common soil and water contaminant. A Pseudomonas putida strain, recently isolated from a wastewater disposal site, was efficient in degrading DPA. Thorough knowledge of the metabolic capacity, genetic stability and physiology of bacteria during biodegradation of pollutants is essential for their future industrial exploitation. We employed genomic, proteomic, transcription analyses and plasmid curing to (i) identify the genetic network of P. putida driving the microbial transformation of DPA and explore its evolution and origin and (ii) investigate the physiological response of bacterial cells during degradation of DPA. Genomic analysis identified (i) two operons encoding a biphenyl (bph) and an aniline (tdn) dioxygenase, both flanked by transposases and (ii) two operons and several scattered genes encoding the ortho-cleavage of catechol. Proteomics identified 11 putative catabolic proteins, all but BphA1 up-regulated in DPA- and aniline-growing cells, and showed that the bacterium mobilized cellular mechanisms to cope with oxidative stress, probably induced by DPA and its derivatives. Transcription analysis verified the role of the selected genes/operons in the metabolic pathway: DPA was initially transformed to aniline and catechol by a biphenyl dioxygenase (DPA-dioxygenase); aniline was then transformed to catechol which was further metabolized via the ortho-cleavage pathway. Plasmid curing of P. putida resulted in loss of the DPA and aniline dioxygenase genes and the corresponding degradation capacities. Overall our findings provide novel insights into the evolution of the DPA degradation pathway and suggests that the degradation capacity of P. putida was acquired through recruitment of the bph and tdn operons via horizontal gene transfer.
Collapse
Affiliation(s)
- Evangelia S Papadopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Chiara Perruchon
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Constantina Rousidou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Georgia Tanou
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | | | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
22
|
Mekala LP, Mohammed M, Chintalapati S, Chintalapati VR. Stable Isotope-Assisted Metabolic Profiling Reveals Growth Mode Dependent Differential Metabolism and Multiple Catabolic Pathways of l-Phenylalanine in Rubrivivax benzoatilyticus JA2. J Proteome Res 2017; 17:189-202. [PMID: 29043820 DOI: 10.1021/acs.jproteome.7b00500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anoxygenic phototrophic bacteria are metabolically versatile and survive under different growth modes using diverse organic compounds, yet their metabolic diversity is largely unexplored. In the present study, we employed stable-isotope-assisted metabolic profiling to unravel the l-phenylalanine catabolism in Rubrivivax benzoatilyticus JA2 under varying growth modes. Strain JA2 grows under anaerobic and aerobic conditions by utilizing l-phenylalanine as a nitrogen source. Furthermore, ring-labeled 13C6-phenylalanine feeding followed by liquid chromatography-mass spectrometry exometabolite profiling revealed 60 labeled metabolic features (M + 6, M + 12, and M + 18) derived solely from l-phenylalanine, of which 11 were identified, 7 putatively identified, and 42 unidentified under anaerobic and aerobic conditions. However, labeled metabolites were significantly higher in aerobic compared to anaerobic conditions. Furthermore, detected metabolites and enzyme activities indicated multiple l-phenylalanine catabolic routes mainly Ehrlich, homogentisate-dependent melanin, benzenoid, and unidentified pathways operating under anaerobic and aerobic conditions in strain JA2. Interestingly, the study indicated l-phenylalanine-dependent and independent benzenoid biosynthesis in strain JA2 and a differential flux of l-phenylalanine to Ehrlich and benzenoid pathways under anaerobic and aerobic conditions. Additionally, unidentified labeled metabolites strongly suggest the presence of unknown phenylalanine catabolic routes in strain JA2. Overall, the study uncovered the l-phenylalanine catabolic diversity in strain JA2 and demonstrated the potential of stable isotope-assisted metabolomics in unraveling the hidden metabolic repertoire.
Collapse
Affiliation(s)
- Lakshmi Prasuna Mekala
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad , P.O. Central University, Hyderabad 500 046, India
| | - Mujahid Mohammed
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad , P.O. Central University, Hyderabad 500 046, India
| | - Sasikala Chintalapati
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science & Technology, Jawaharlal Nehru Technological University , Kukatpally, Hyderabad 500 085, Telangana, India
| | - Venkata Ramana Chintalapati
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad , P.O. Central University, Hyderabad 500 046, India
| |
Collapse
|
23
|
Zdarta A, Tracz J, Luczak M, Guzik U, Kaczorek E. Hydrocarbon-induced changes in proteins and fatty acids profiles of Raoultella ornithinolytica M03. J Proteomics 2017; 164:43-51. [DOI: 10.1016/j.jprot.2017.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/25/2017] [Accepted: 05/31/2017] [Indexed: 01/04/2023]
|
24
|
Chen Y, Zhou Z, Yang W, Bi N, Xu J, He J, Zhang R, Wang L, Abliz Z. Development of a Data-Independent Targeted Metabolomics Method for Relative Quantification Using Liquid Chromatography Coupled with Tandem Mass Spectrometry. Anal Chem 2017; 89:6954-6962. [PMID: 28574715 DOI: 10.1021/acs.analchem.6b04727] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Quantitative metabolomics approaches can significantly improve the repeatability and reliability of metabolomics investigations but face critical technical challenges, owing to the vast number of unknown endogenous metabolites and the lack of authentic standards. The present study contributes to the development of a novel method known as "data-independent targeted quantitative metabolomics" (DITQM), which was used to investigate the label-free quantitative metabolomics of multiple known and unknown metabolites in biofluid samples. This approach initially involved the acquisition of MS/MS data for all metabolites in biosamples using a sequentially stepped targeted MS/MS (sst-MS/MS) method, in which multiple product ion scans were performed by selecting all ions in the targeted mass ranges as the precursor ions. Subsequently, scheduled multiple reaction monitoring (MRM) by LC-MS/MS of the metabolome was established for 1658 characteristic ion pairs of 1324 metabolites. For sensitive and accurate quantification of these metabolites, mixed calibration curves were generated using sequentially diluted standard reference plasma samples using established MRM methods. Relative concentrations of all metabolites in each sample were calculated without using individual authentic standards. To evaluate the reliability and applicability of this new method, the performance of DITQM was validated by comparison to absolute quantification of 12 acylcarnitines using authentic standards and traditional metabolomics analysis for lung cancer. The results proved that the DITQM protocol is more reliable and can significantly improve clustering effects and repeatability in biomarker discovery. In this study, we established a novel methodology to standardize and quantify large-scale metabolome, providing a new choice for metabolomics research and its clinical applications.
Collapse
Affiliation(s)
- Yanhua Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, P. R. China
| | - Zhi Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, P. R. China
| | - Wei Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, P. R. China.,Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing 100700, P. R. China
| | - Nan Bi
- Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100021, P. R. China
| | - Jing Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, P. R. China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, P. R. China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, P. R. China
| | - Lvhua Wang
- Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100021, P. R. China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, P. R. China.,Centre for Bioimaging & Systems Biology, Minzu University of China , Beijing 100081, P. R. China
| |
Collapse
|
25
|
Kundu D, Hazra C, Chaudhari A. Biodegradation of 2,6-dinitrotoluene and plant growth promoting traits by Rhodococcus pyridinivorans NT2: Identification and toxicological analysis of metabolites and proteomic insights. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Methods used to increase the comprehensive coverage of urinary and plasma metabolomes by MS. Bioanalysis 2016; 8:981-97. [DOI: 10.4155/bio-2015-0010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metabolomics, focusing on comprehensive analysis of all the metabolites in a biological system, provides a direct signature of biochemical activity. Using emerging technologies in MS, it is possible to simultaneously and rapidly analyze thousands of metabolites. However, due to the chemical and physical diversity of metabolites, it is difficult to acquire a comprehensive and reliable profiling of the whole metabolome. Here, we summarize the state of the art in metabolomics research, focusing on efforts to provide a more comprehensive metabolome coverage via improvements in two fundamental processes: sample preparation and MS analysis. Additionally, the reliable analysis is also highlighted via the combinations of multiple methods (e.g., targeted and untargeted approaches), and analytical quality control and calibration methods.
Collapse
|
27
|
Lin J, Sharma V, Milase R, Mbhense N. Simultaneous enhancement of phenolic compound degradations byAcinetobacterstrain V2via a step-wise continuous acclimation process. J Basic Microbiol 2015; 56:627-34. [DOI: 10.1002/jobm.201500263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/29/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Johnson Lin
- School of Life Sciences; University of KwaZulu-Natal (Westville); Durban Republic of South Africa
| | - Vikas Sharma
- School of Life Sciences; University of KwaZulu-Natal (Westville); Durban Republic of South Africa
| | - Ridwaan Milase
- School of Life Sciences; University of KwaZulu-Natal (Westville); Durban Republic of South Africa
| | - Ntuthuko Mbhense
- School of Life Sciences; University of KwaZulu-Natal (Westville); Durban Republic of South Africa
| |
Collapse
|