1
|
Kan F, Ye L, Yan T, Cao J, Zheng J, Li W. Proteomic and transcriptomic studies of HBV-associated liver fibrosis of an AAV-HBV-infected mouse model. BMC Genomics 2017; 18:641. [PMID: 28830339 PMCID: PMC5568174 DOI: 10.1186/s12864-017-3984-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/01/2017] [Indexed: 01/05/2023] Open
Abstract
Background Human hepatitis B virus (HBV) infection is an important public health issue in the Asia-Pacific region and is associated with chronic hepatitis, liver fibrosis, cirrhosis and even liver cancer. However, the underlying mechanisms of HBV-associated liver fibrosis remain incompletely understood. Results In the present study, proteomic and transcriptomic approaches as well as biological network analyses were performed to investigate the differentially expressed molecular signature and key regulatory networks that were associated with HBV-mediated liver fibrosis. RNA sequencing and 2DE-MALDI-TOF/TOF were performed on liver tissue samples obtained from HBV-infected C57BL/6 mouse generated via AAV8-HBV virus. The results showed that 322 genes and 173 proteins were differentially expressed, and 28 HBV-specific proteins were identified by comprehensive proteomic and transcriptomic analysis. GO analysis indicated that the differentially expressed proteins were predominantly involved in oxidative stress, which plays a key role in HBV-related liver fibrosis. Importantly, CAT, PRDX1, GSTP1, NXN and BLVRB were shown to be associated with oxidative stress among the differentially expressed proteins. The most striking results were validated by Western blot and RT-qPCR. The RIG-I like receptor signaling pathway was found to be the major signal pathway that changed during HBV-related fibrosis. Conclusions This study provides novel insights into HBV-associated liver fibrosis and reveals the significant role of oxidative stress in liver fibrosis. Furthermore, CAT, BLVRB, NXN, PRDX1, and IDH1 may be candidates for detection of liver fibrosis or therapeutic targets for the treatment of liver fibrosis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3984-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fangming Kan
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Ye
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Yan
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaqi Cao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianhua Zheng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Wuping Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Wang Z, Wang C, Liu S, He W, Wang L, Gan J, Huang Z, Wang Z, Wei H, Zhang J, Dong L. Specifically Formed Corona on Silica Nanoparticles Enhances Transforming Growth Factor β1 Activity in Triggering Lung Fibrosis. ACS NANO 2017; 11:1659-1672. [PMID: 28085241 DOI: 10.1021/acsnano.6b07461] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A corona is a layer of macromolecules formed on a nanoparticle surface in vivo. It can substantially change the biological identity of nanomaterials and possibly trigger adverse responses from the body tissues. Dissecting the role of the corona in the development of a particular disease may provide profound insights for understanding toxicity of nanomaterials in general. In our present study, we explored the capability of different silica nanoparticles (SiNPs) to induce silicosis in the mouse lung and analyzed the composition of coronas formed on these particles. We found that SiNPs of certain size and surface chemistry could specifically recruit transforming growth factor β1 (TGF-β1) into their corona, which subsequently induces the development of lung fibrosis. Once embedded into the corona on SiNPs, TGF-β1 was remarkably more stable than in its free form, and its fibrosis-triggering activity was significantly prolonged. Our study meaningfully demonstrates that a specific corona component on a certain nanoparticle could initiate a particular pathogenic process in a clinically relevant disease model. Our findings may shed light on the understanding of molecular mechanisms of human health risks correlated with exposure to small-scale substances.
Collapse
Affiliation(s)
- Zhenzhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macau SAR, China
| | - Shang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Wei He
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Lintao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - JingJing Gan
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Zhenheng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Haoyang Wei
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
- Jiangsu Provincial Laboratory for Nano-Technology, Nanjing University , Nanjing 210093, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| |
Collapse
|
11
|
Codarin E, Renzone G, Poz A, Avellini C, Baccarani U, Lupo F, di Maso V, Crocè SL, Tiribelli C, Arena S, Quadrifoglio F, Scaloni A, Tell G. Differential Proteomic Analysis of Subfractioned Human Hepatocellular Carcinoma Tissues. J Proteome Res 2009; 8:2273-84. [DOI: 10.1021/pr8009275] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Erika Codarin
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Giovanni Renzone
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Alessandra Poz
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Claudio Avellini
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Umberto Baccarani
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Francesco Lupo
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Vittorio di Maso
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Saveria Lory Crocè
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Claudio Tiribelli
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Simona Arena
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Franco Quadrifoglio
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Andrea Scaloni
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Gianluca Tell
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| |
Collapse
|