1
|
Li M, Gu TJ, Lin X, Li L. DiLeuPMP: A Multiplexed Isobaric Labeling Method for Quantitative Analysis of O-Glycans. Anal Chem 2021; 93:9845-9852. [PMID: 34240851 DOI: 10.1021/acs.analchem.1c01433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As one of the most important post-translational modifications, glycosylation plays a pivotal role in many essential physiological functions, including cell recognition, signaling, and immune response. Thus, various qualitative and quantitative analytical strategies for glycomic profiling have been developed in recent decades. However, while extensive efforts have been devoted to the analysis of N-glycans, high-throughput quantitative analysis of O-glycans is often overlooked and underexplored. This is partially due to the lack of a universal enzyme for the release of O-glycans from the protein backbone. Furthermore, the traditional chemical releasing method suffers from severe side reactions and involves tedious sample preparation procedures. Here, a multiplexed isobaric labeling method enabled by N,N-dimethyl leucine containing pyrazolone analogue (DiLeuPMP) is introduced. This method combines the release and labeling of O-glycans in a one-pot reaction and achieves accurate MS2-based relative quantification with the ability to process four samples at a time. The method has been applied to core-1 O-glycan standard and three glycoproteins first, and the results demonstrated its validity. Following this proof-of-principle demonstration, we analyzed more complex biological specimen using human serum samples. Overall, this method provides an effective and reliable approach for the profiling and high-throughput quantitative analysis of O-glycans in complex samples.
Collapse
Affiliation(s)
| | | | - Xiaorong Lin
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | | |
Collapse
|
2
|
Gizaw ST, Gaunitz S, Novotny MV. Highly Sensitive O-Glycan Profiling for Human Serum Proteins Reveals Gender-Dependent Changes in Colorectal Cancer Patients. Anal Chem 2019; 91:6180-6189. [PMID: 30983323 PMCID: PMC6602050 DOI: 10.1021/acs.analchem.9b00822] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A newly developed microscale protocol for profiling serum O-glycans has been validated here with multiple serum samples obtained from different cohorts of colorectal cancer patients. The simultaneous cleavage and permethylation steps in this procedure preserve the integrity of released minor O-glycans, so that 39 O-linked oligosaccharides could be reliably recorded in a profile. This is far more detected components than shown in any previous studies. The analytical results were further subjected to a battery of statistical tests. Our O-glycan compositions compare favorably with the previous results obtained with solid tumors and cancer cell lines, suggesting that smaller circulatory mucins protruding into the blood circulation may be one source of O-glycans that we observe in the serum samples. While the control vs cancer statistical comparisons generally agree with the expected glycosylation trends, the comparisons of male vs female subjects have led to some surprising results for which we do not have a ready explanation due to lack of any literature describing hormonal control of O-glycosylation. Our results thus underscore the necessity of applying new analytical technologies to clinically interesting sample sets.
Collapse
Affiliation(s)
- Solomon T. Gizaw
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Stefan Gaunitz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
3
|
You X, Qin H, Mao J, Tian Y, Dong M, Guo Z, Liang X, Wang L, Jin Y, Ye M. Highly Efficient Identification of O-GalNAc Glycosylation by an Acid-Assisted Glycoform Simplification Approach. Proteomics 2018; 18:e1800042. [PMID: 30033600 DOI: 10.1002/pmic.201800042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/15/2018] [Indexed: 01/04/2023]
Abstract
Compared with N-linked glycosylation, the analysis of O-GalNAc glycosylation is extremely challenging due to the high structure diversity of glycans and lack of glycosidases to release O-GalNAc glycans. In this work, a glycoform simplification strategy by combining HILIC enrichment with chemical de-sialylation to characterize O-GalNAc glycosylation of human serum is presented. This method is first validated by using the bovine fetuin as the test sample. It is found that more than 90% of the sialic acid residues can be removed from bovine fetuin by the acid-assisted de-sialylation method, which significantly simplifies the glycan structure and improves identification sensitivity. Indeed, the number of identified peptide backbones increases nearly one fold when this strategy is used. This method is further applied to analyze the human serum sample, where 185 O-GalNAc modified peptide sequences corresponding to 94 proteins with high confidence (FDR (false detection rate) <1%) are identified. This straight forward strategy can significantly reduce the variations of glycan structures, and is applicable to analysis of other biological samples with high complexity.
Collapse
Affiliation(s)
- Xin You
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yu Tian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian Medical University, 116023 Dalian, Liaoning, China
| | - Mingming Dong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, China
| | - Zhimou Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, China
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Hospital of Dalian Medical University, Dalian Medical University, 116023 Dalian, Liaoning, China
| | - Yan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, China
| |
Collapse
|
4
|
Investigation of O-glycosylation heterogeneity of recombinant coagulation factor IX using LC–MS/MS. Bioanalysis 2017; 9:1361-1372. [DOI: 10.4155/bio-2017-0086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Recombinant coagulation factor IX (rFIX) has extraordinarily multiple post-translational modifications including N-glycosylation and O-glycosylation which have a drastic effect on biological functions and in vivo recovery. Unlike N-glycosylation extensively characterized, there are a few studies on O-glycosylation due to its intrinsic complexity. In-depth O-glycosylation analysis is necessary to better understand and assess pharmacological activity of rFIX. Results: We determined unusual O-glycosylations including O-fucosylation and O-glucosylation which were located at Serine 53 and 61, respectively in EGF domain. Other O-glycosylations bearing core 1 glycan moiety were found on activation peptide. Conclusion: This is the first comprehensive study to characterize O-glycosylation of rFIX using MS-based glycomic and glycoproteomic approaches. Site-specific profiling will be a powerful platform to determine bioequivalence of biosimilars.
Collapse
|
5
|
Largy E, Cantais F, Van Vyncht G, Beck A, Delobel A. Orthogonal liquid chromatography-mass spectrometry methods for the comprehensive characterization of therapeutic glycoproteins, from released glycans to intact protein level. J Chromatogr A 2017; 1498:128-146. [PMID: 28372839 DOI: 10.1016/j.chroma.2017.02.072] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/04/2017] [Accepted: 02/28/2017] [Indexed: 01/16/2023]
Abstract
Proteins are increasingly used as therapeutics. Their characterization is challenging due to their size and inherent heterogeneity notably caused by post-translational modifications, among which glycosylation is probably the most prominent. The glycosylation profile of therapeutic proteins must therefore be thoroughly analyzed. Here, we illustrate how the use of a combination of various cutting-edge LC or LC/MS(/MS) methods, and operating at different levels of analysis allows the comprehensive characterization of both the N- and O-glycosylations of therapeutic proteins without the need for other approaches (capillary electrophoresis, MALDI-TOF). This workflow does not call for the use of highly specialized/custom hardware and software nor an extensive knowledge of glycan analysis. Most notably, we present the point of view of a contract research organization, with the constraints associated to the work in a regulated environment (GxP). Two salient points of this work are i) the use of mixed-mode chromatography as a fast and straightforward mean of profiling N-glycans sialylation as well as an orthogonal method to separate N-glycans co-eluting in the HILIC mode; and ii) the use of widepore HILIC/MS to analyze challenging N/O-glycosylation profiles at both the peptide and subunit levels. A particular attention was given to the sample preparations in terms of duration, specificity, versatility, and robustness, as well as the ease of data processing.
Collapse
Affiliation(s)
- Eric Largy
- Quality Assistance sa, Technoparc de Thudinie 2, 6536, Donstiennes, Belgium
| | - Fabrice Cantais
- Quality Assistance sa, Technoparc de Thudinie 2, 6536, Donstiennes, Belgium
| | - Géry Van Vyncht
- Quality Assistance sa, Technoparc de Thudinie 2, 6536, Donstiennes, Belgium
| | - Alain Beck
- Centre d'Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164, Saint-Julien-en-Genevois, France
| | - Arnaud Delobel
- Quality Assistance sa, Technoparc de Thudinie 2, 6536, Donstiennes, Belgium.
| |
Collapse
|
6
|
Bi C, Jiang R, He X, Chen L, Zhang Y. Synthesis of a hydrophilic maltose functionalized Au NP/PDA/Fe3O4-RGO magnetic nanocomposite for the highly specific enrichment of glycopeptides. RSC Adv 2015. [DOI: 10.1039/c5ra06911d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel approach was developed to synthesize a hydrophilic thiol-terminated maltose-functionalized Au NP/PDA/Fe3O4-RGO nanocomposite which exhibited high selectivity and detection sensitivity in the enrichment of glycopeptides from complex samples.
Collapse
Affiliation(s)
- Changfen Bi
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Ruidong Jiang
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Xiwen He
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Langxing Chen
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Yukui Zhang
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| |
Collapse
|
7
|
Abstract
Glycans on proteins and lipids are known to alter with malignant transformation. The study of these may contribute to the discovery of biomarkers and treatment targets as well as understanding of cancer biology. We here describe the change of glycosylation specifically defining colorectal cancer with view on N-glycans, O-glycans, and glycosphingolipid glycans in colorectal cancer cells and tissues as well as patient sera. Glycan alterations observed in colon cancer include increased β1,6-branching and correlating higher abundance of (poly-)N-acetyllactosamine extensions of N-glycans as well as an increase in (truncated) high-mannose type glycans, while bisected structures decrease. Colorectal cancer-associated O-glycan changes are predominated by reduced expression of core 3 and 4 glycans, whereas higher levels of core 1 glycans, (sialyl) T-antigen, (sialyl) Tn-antigen, and a generally higher density of O-glycans are observed. Specific changes for glycosphingolipid glycans are lower abundances of disialylated structures as well as globo-type glycosphingolipid glycans with exception of Gb3. In general, alterations affecting all discussed glycan types are increased sialylation, fucosylation as well as (sialyl) Lewis-type antigens and type-2 chain glycans. As a consequence, interactions with glycan-binding proteins can be affected and the biological function and cellular consequences of the altered glycosylation with regard to tumorigenesis, metastasis, modulation of immunity, and resistance to antitumor therapy will be discussed. Finally, analytical approaches aiding in the field of glycomics will be reviewed with focus on binding assays and mass spectrometry.
Collapse
Affiliation(s)
- Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands; Division of BioAnalytical Chemistry, VU University, Amsterdam, The Netherlands
| | - Yoann Rombouts
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Ongay S, Boichenko A, Govorukhina N, Bischoff R. Glycopeptide enrichment and separation for protein glycosylation analysis. J Sep Sci 2012; 35:2341-72. [DOI: 10.1002/jssc.201200434] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | | | - Rainer Bischoff
- Department of Analytical Biochemistry; University of Groningen; Groningen The Netherlands
| |
Collapse
|
9
|
Nordén R, Nyström K, Adamiak B, Halim A, Nilsson J, Larson G, Trybala E, Olofsson S. Involvement of viral glycoprotein gC-1 in expression of the selectin ligand sialyl-Lewis X induced after infection with herpes simplex virus type 1. APMIS 2012; 121:280-9. [PMID: 23030500 DOI: 10.1111/j.1600-0463.2012.02967.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/29/2012] [Indexed: 01/01/2023]
Abstract
Several herpesviruses induce expression of the selectin receptor sialyl-Lewis X (sLe(x) ) by activating transcription of one or more of silent host FUT genes, each one encoding a fucosyltransferase that catalyses the rate-limiting step of sLe(x) synthesis. The aim here was to identify the identity of the glycoconjugate associated with sLe(x) glycoepitope in herpes simplex virus type 1 (HSV-1) infected human diploid fibroblasts, using immunofluorescence confocal microscopy. Cells infected with all tested HSV-1 strains analysed demonstrated bright sLe(x) fluorescence, except for two mutant viruses that were unable to induce proper expression of viral glycoprotein gC-1: One gC-1 null mutant and another mutant expressing gC-1 devoid of its major O-glycan-containing region (aa 33-116). The sLe(x) reactivity of HSV-1 infected cells was abolished by mild alkali treatment. Altogether the results indicated that the detectable sLe(x) was associated with O-linked glycans, situated in the mucin region of gC-1. No evidence for sLe(x) (i) in other HSV-1 glycoproteins with mucin domains such as gI-1 or (ii) in host cell glycoproteins/glycolipids was found. Thus, the mucin domain of HSV-1 gC-1 may support expression of selectin ligands such as sLe(x) and other larger O-linked glycans in cell types lacking endogenous mucin domain-containing glycoproteins, optimized for O-glycan expression, provided that the adequate host glycosyltransferase genes are activated.
Collapse
Affiliation(s)
- Rickard Nordén
- Department of Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
11
|
Zhu P, Bowden P, Zhang D, Marshall JG. Mass spectrometry of peptides and proteins from human blood. MASS SPECTROMETRY REVIEWS 2011; 30:685-732. [PMID: 24737629 DOI: 10.1002/mas.20291] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 12/09/2009] [Accepted: 01/19/2010] [Indexed: 06/03/2023]
Abstract
It is difficult to convey the accelerating rate and growing importance of mass spectrometry applications to human blood proteins and peptides. Mass spectrometry can rapidly detect and identify the ionizable peptides from the proteins in a simple mixture and reveal many of their post-translational modifications. However, blood is a complex mixture that may contain many proteins first expressed in cells and tissues. The complete analysis of blood proteins is a daunting task that will rely on a wide range of disciplines from physics, chemistry, biochemistry, genetics, electromagnetic instrumentation, mathematics and computation. Therefore the comprehensive discovery and analysis of blood proteins will rank among the great technical challenges and require the cumulative sum of many of mankind's scientific achievements together. A variety of methods have been used to fractionate, analyze and identify proteins from blood, each yielding a small piece of the whole and throwing the great size of the task into sharp relief. The approaches attempted to date clearly indicate that enumerating the proteins and peptides of blood can be accomplished. There is no doubt that the mass spectrometry of blood will be crucial to the discovery and analysis of proteins, enzyme activities, and post-translational processes that underlay the mechanisms of disease. At present both discovery and quantification of proteins from blood are commonly reaching sensitivities of ∼1 ng/mL.
Collapse
Affiliation(s)
- Peihong Zhu
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada M5B 2K3
| | | | | | | |
Collapse
|
12
|
Cortes DF, Kabulski JL, Lazar AC, Lazar IM. Recent advances in the MS analysis of glycoproteins: Capillary and microfluidic workflows. Electrophoresis 2011; 32:14-29. [PMID: 21171110 PMCID: PMC3717299 DOI: 10.1002/elps.201000394] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/21/2010] [Accepted: 09/21/2010] [Indexed: 12/26/2022]
Abstract
Recent developments in bioanalytical instrumentation, MS detection, and computational data analysis approaches have provided researchers with capabilities for interrogating the complex cellular glycoproteome, to help gain a better insight into the cellular and physiological processes that are associated with a disease and to facilitate the efforts centered on identifying disease-specific biomarkers. This review describes the progress achieved in the characterization of protein glycosylation by using advanced capillary and microfluidic MS technologies. The major steps involved in large-scale glycoproteomic analysis approaches are discussed, with special emphasis given to workflows that have evolved around complex MS detection functions. In addition, quantitative analysis strategies are assessed, and the bioinformatics aspects of glycoproteomic data processing are summarized. The developments in commercial and custom fabricated microfluidic front-end platforms to ESI- and MALDI-MS instrumentation, for addressing major challenges in carbohydrate analysis such as sensitivity, throughput, and ability to perform structural characterization, are further evaluated and illustrated with relevant examples.
Collapse
Affiliation(s)
- Diego F. Cortes
- Virginia Bioinformatics Institute Virginia Polytechnic Institute and State University Washington St. Bio II/283, Blacksburg, VA 24061
| | - Jarod L. Kabulski
- Virginia Bioinformatics Institute Virginia Polytechnic Institute and State University Washington St. Bio II/283, Blacksburg, VA 24061
| | | | - Iulia M. Lazar
- Virginia Bioinformatics Institute Virginia Polytechnic Institute and State University Washington St. Bio II/283, Blacksburg, VA 24061
- Department of Biological Sciences, Virginia Polytechnic Institute and State University Washington St. Bio II/283, Blacksburg, VA 24061
| |
Collapse
|
13
|
Bai C, Wu G, Zhao L. Mass spectrometry analysis of melanoma related O-glycans in sera. Sci China Chem 2010. [DOI: 10.1007/s11426-010-0057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Bereman MS, Muddiman DC. The effects of abundant plasma protein depletion on global glycan profiling using nanoLC FT-ICR mass spectrometry. Anal Bioanal Chem 2010; 396:1473-9. [PMID: 20087731 PMCID: PMC2866188 DOI: 10.1007/s00216-009-3368-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/26/2022]
Abstract
We report the results of abundant plasma protein depletion on the analysis of underivatized N-linked glycans derived from plasma proteins by nanoLC Fourier-transform ion cyclotron resonance mass spectrometry. N-linked glycan profiles were compared between plasma samples where the six most abundant plasma proteins were depleted (n = 3) through a solid-phase immunoaffinity column and undepleted plasma samples (n = 3). Three exogenous glycan standards were spiked into all samples which allowed for normalization of the N-glycan abundances. The abundances of 20 glycans varying in type, structure, composition, and molecular weight (1,200-3,700 Da) were compared between the two sets of samples. Small fucosylated non-sialylated complex glycans were found to decrease in abundance in the depleted samples (greater than or equal to tenfold) relative to the undepleted samples. Protein depletion was found to marginally effect (less than threefold) the abundance of high mannose, hybrid, and large highly sialylated complex species. The significance of these findings in terms of future biomarker discovery experiments via global glycan profiling is discussed.
Collapse
Affiliation(s)
- Michael S. Bereman
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - David C. Muddiman
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
15
|
Bereman MS, Young DD, Deiters A, Muddiman DC. Development of a robust and high throughput method for profiling N-linked glycans derived from plasma glycoproteins by NanoLC-FTICR mass spectrometry. J Proteome Res 2009; 8:3764-70. [PMID: 19435342 DOI: 10.1021/pr9002323] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent investigations continue to emphasize the importance of glycosylation in various diseases including cancer. In this work, we present a step-by-step protocol describing a method for N-linked glycan profiling of plasma glycoproteins by nanoflow liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). A large experimental space was initially explored and is described herein. Three internal standards were spiked into the sample and provided normalization of plasma glycan abundance across different experimental conditions. Incubation methods and times and the effect of NP40 detergent on glycan abundance were explored. It was found that an 18-h incubation with no detergent led to the greatest ion abundance; however, data could be obtained in less than one day from raw plasma samples utilizing microwave irradiation or shorter incubation periods. The intersample precision of three different glycans was less than 5.5% (RSD) when the internal standards were added prior to the initial processing step. The high mass measurement accuracy (<3 ppm) afforded by the FTICR mass spectrometer provided confident identifications of several glycan species.
Collapse
Affiliation(s)
- Michael S Bereman
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
16
|
Sampson JS, Murray KK, Muddiman DC. Intact and top-down characterization of biomolecules and direct analysis using infrared matrix-assisted laser desorption electrospray ionization coupled to FT-ICR mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:667-73. [PMID: 19185512 PMCID: PMC3717316 DOI: 10.1016/j.jasms.2008.12.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 05/09/2023]
Abstract
We report the implementation of an infrared laser onto our previously reported matrix-assisted laser desorption electrospray ionization (MALDESI) source with ESI post-ionization yielding multiply charged peptides and proteins. Infrared (IR)-MALDESI is demonstrated for atmospheric pressure desorption and ionization of biological molecules ranging in molecular weight from 1.2 to 17 kDa. High resolving power, high mass accuracy single-acquisition Fourier transform ion cyclotron resonance (FT-ICR) mass spectra were generated from liquid- and solid-state peptide and protein samples by desorption with an infrared laser (2.94 mum) followed by ESI post-ionization. Intact and top-down analysis of equine myoglobin (17 kDa) desorbed from the solid state with ESI post-ionization demonstrates the sequencing capabilities using IR-MALDESI coupled to FT-ICR mass spectrometry. Carbohydrates and lipids were detected through direct analysis of milk and egg yolk using both UV- and IR-MALDESI with minimal sample preparation. Three of the four classes of biological macromolecules (proteins, carbohydrates, and lipids) have been ionized and detected using MALDESI with minimal sample preparation. Sequencing of O-linked glycans, cleaved from mucin using reductive beta-elimination chemistry, is also demonstrated.
Collapse
Affiliation(s)
- Jason S. Sampson
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Kermit K. Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA
| | - David C. Muddiman
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
17
|
Bereman MS, Williams TI, Muddiman DC. Development of a nanoLC LTQ orbitrap mass spectrometric method for profiling glycans derived from plasma from healthy, benign tumor control, and epithelial ovarian cancer patients. Anal Chem 2009; 81:1130-6. [PMID: 19113831 PMCID: PMC3739471 DOI: 10.1021/ac802262w] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the development of split-less nano-flow liquid chromatography mass spectrometric analysis of glycans chemically cleaved from glycoproteins in plasma. Porous graphitized carbon operating under reverse-phase conditions and an amide-based stationary phase operating under hydrophilic interaction conditions are quantitatively compared for glycan separation. Both stationary phases demonstrated similar column efficiencies and excellent retention time reproducibility without an internal standard to correct for retention time shift. The 95% confidence intervals of the mean retention times were +/-4 s across 5 days of analysis for both stationary phases; however, the amide stationary phase was observed to be more robust. The high mass measurement accuracy of less than 2 ppm and fragmentation spectra provided highly confident identifications along with structural information. In addition, data are compared among samples derived from 10 healthy controls, 10 controls with a differential diagnosis of benign gynecologic tumors, and 10 diseased epithelial ovarian cancer patients (EOC). Two fucosylated glycans were found to be up-regulated in healthy controls and provided an accurate diagnostic value with an area under the receiver operator characteristic curve of 0.87. However, these same glycans provided a significantly less diagnostic value when used to differentiate EOC from benign tumor control samples with an area under the curve of 0.73.
Collapse
Affiliation(s)
- Michael S Bereman
- W.M Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|