1
|
Liu S, Zhu M, Ma W, Wan Y, Liu Y. Effects of calcium ions and cell wall deposition on the pollen viability of Paeonia lactiflora after cryopreservation. PLANTA 2024; 260:96. [PMID: 39278995 DOI: 10.1007/s00425-024-04530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
MAIN CONCLUSION Four cultivars of Paeonia lactiflora pollen have a different viability after cryopreservation, and that the difference of pollen viability is related to calcium ions and cell wall deposition. Cryopreservation is a vital technique for preserving germplasm resources, offering extensive application prospects. Understanding the factors influencing pollen viability after cryopreservation is crucial for the permanent preservation and exchange of pollen resources. This study investigated pollen from four Paeonia lactiflora cultivars with varying viability after cryopreservation, aiming to determine whether calcium ions (Ca2+) and cell wall deposition affect these viability changes. The results showed that Ca2+-ATPase activity and cytoplasmic Ca2+ of all four cultivars exhibited an increasing trend after cryopreservation; the calmodulin (CaM) content varied with cultivars. Correlation analysis showed that fresh pollen viability was significantly negatively correlated with cytoplasmic Ca2+ content and positively correlated with Ca2+-ATPase activity, while pollen viability after cryopreservation exhibited a significantly negative correlation with cytoplasmic Ca2+ content and a positive correlation with CaM content. The pollen cell wall of the cultivar 'Zi Feng Chao Yang' (ZFCY), which showed increased viability after cryopreservation, contained significantly higher levels of low-temperature tolerance-related phospholipids and proteins compared to other cultivars. Additionally, all cultivars maintained a clear Ca2+ gradient at the tips of pollen tubes after cryopreservation, without significant callose accumulation. These findings suggest that differences in Ca2+ signaling and cell wall components deposition influence changes in pollen viability after cryopreservation, and the Ca2+ gradient and callose at the tip of pollen tubes are not responsible for preventing pollen tube growth.
Collapse
Affiliation(s)
- Shangqian Liu
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center for Floriculture, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing, 100083, China
| | - Mengting Zhu
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center for Floriculture, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing, 100083, China
| | - Wenjie Ma
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center for Floriculture, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing, 100083, China
| | - Yingling Wan
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center for Floriculture, Beijing, 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing, 100083, China
| | - Yan Liu
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Research Center for Floriculture, Beijing, 100083, China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing, 100083, China.
| |
Collapse
|
2
|
Rafińska K, Niedojadło K, Świdziński M, Bednarska-Kozakiewicz E. Distribution of exchangeable Ca 2+ during the process of Larix decidua Mill. pollination and germination. Sci Rep 2024; 14:5639. [PMID: 38454044 PMCID: PMC10920793 DOI: 10.1038/s41598-024-54903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
The involvement of Ca2+ ions in angiosperms sexual processes is well established, while in gymnosperms, such knowledge remains limited and is still a topic of discussion. In this study, we focused on Larix decidua, using Alizarin-red S staining and the pyroantimonate method to examine the tissue and subcellular distribution of free and loosely bound Ca2+ ions at different stages of the male gametophyte's development and its interaction with the ovule. Our findings show that in larch, both the germination of pollen grains and the growth of pollen tubes occur in an environment rich in Ca2+. These ions play a crucial role in the adhesion of the pollen grain to the stigmatic tip and its subsequent movement to the micropylar canal. There is a significant presence of free and loosely bound Ca2+ ions in both the fluid of the micropylar canal and the extracellular matrix of the nucellus. As the pollen tube extends through the nucellus, we observed a notable accumulation of Ca2+ ions just above the entry to the mature archegonium, a region likely crucial for the male gametophyte's directional growth. Meanwhile, the localized presence of free and loosely bound Ca2+ ions within the egg cell cytoplasm may inhibit the pollen tubes growth and rupture, playing an important role in fertilization.
Collapse
Affiliation(s)
- Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| | - Michał Świdziński
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
3
|
Bawa G, Liu Z, Zhou Y, Fan S, Ma Q, Tissue DT, Sun X. Cotton proteomics: Dissecting the stress response mechanisms in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:1035801. [PMID: 36466262 PMCID: PMC9714328 DOI: 10.3389/fpls.2022.1035801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
The natural environment of plants comprises a complex set of biotic and abiotic stresses, and plant responses to these stresses are complex as well. Plant proteomics approaches have significantly revealed dynamic changes in plant proteome responses to stress and developmental processes. Thus, we reviewed the recent advances in cotton proteomics research under changing environmental conditions, considering the progress and challenging factors. Finally, we highlight how single-cell proteomics is revolutionizing plant research at the proteomics level. We envision that future cotton proteomics research at the single-cell level will provide a more complete understanding of cotton's response to stresses.
Collapse
Affiliation(s)
- George Bawa
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
4
|
Han M, Yang H, Yu G, Jiang P, You S, Zhang L, Lin H, Liu J, Shu Y. Application of Non-invasive Micro-test Technology (NMT) in environmental fields: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113706. [PMID: 35659702 DOI: 10.1016/j.ecoenv.2022.113706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Non-invasive Micro-test Technology (NMT) is a selective microelectrode technique which can detect the flux rates and three-dimensional motion directions of ions or molecules into and out of living organisms in situ without damaging the sample. It has the advantages of maintaining sample integrity, high temporal and spatial resolution, and being able to measure multiple sites simultaneously. In this paper we provide a comprehensive review on the development of NMT in recent years. Its principles, characteristics, and the differences with other microelectrode techniques are introduced. We discuss the applications of NMT in the field of phytoremediation, plant resistance, water quality monitoring, and toxicity mechanisms of heavy metals on organisms. Furthermore, the challenges and future prospects of NMT in the environmental field are presented.
Collapse
Affiliation(s)
- Mengxuan Han
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Huan Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Guo Yu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Pingping Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Shaohong You
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, China.
| | - Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Hua Lin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, China
| | - Yi Shu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| |
Collapse
|
5
|
Breygina M, Klimenko E, Schekaleva O. Pollen Germination and Pollen Tube Growth in Gymnosperms. PLANTS (BASEL, SWITZERLAND) 2021; 10:1301. [PMID: 34206892 PMCID: PMC8309077 DOI: 10.3390/plants10071301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 01/08/2023]
Abstract
Pollen germination and pollen tube growth are common to all seed plants, but these processes first developed in gymnosperms and still serve for their successful sexual reproduction. The main body of data on the reproductive physiology, however, was obtained on flowering plants, and one should be careful to extrapolate the discovered patterns to gymnosperms. In recent years, physiological studies of coniferous pollen have been increasing, and both the features of this group and the similarities with flowering plants have already been identified. The main part of the review is devoted to physiological studies carried out on conifer pollen. The main properties and diversity of pollen grains and pollination strategies in gymnosperms are described.
Collapse
Affiliation(s)
- Maria Breygina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.K.); (O.S.)
| | | | | |
Collapse
|
6
|
Yang L, Yao J, Sun J, Shi L, Chen Y, Sun J. The Ca 2+ signaling, Glu, and GABA responds to Cd stress in duckweed. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105352. [PMID: 31790938 DOI: 10.1016/j.aquatox.2019.105352] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) affects plants and animal health seriously. Ca2+ signals in plant cells are important for adaptive responses to environmental stresses. Here we showed that 50 μM Cd shock stimulated the Ca2+ signal via modifying the instantaneous Ca2+ flux from influx of 17 pmol·cm-2·s-1 to the efflux of 240 pmol·cm-2·s-1 at 100 μm from rhizoid tip. And the Ca2+ signal transferred to the vein and mesophyll cell. The Ca addition decreased the accumulation of Cd. The gene expression of glutamate receptor-like (GLR) proteins, which is activated by Glu and triggers Ca2+ flux, was increased significantly by 24 h Cd stress. Glu content was increased under Cd stress and exogenous Glu triggered the Ca2+ signal in duckweed, while Ca2+ addition caused no influence to Glu content. GABA, which is synthesized from Glu and acts as an inhibitory neurotransmitter, has been decreased with 24 h Cd treatment. GABA addition increased the abscission rate and Glu addition decreased the abscission rate during Cd stress, suggesting that the Glu/GABA ratio is important for responding to Cd. This research shows the sight of the Glu, Ca2+, GABA signaling networks during Cd stress.
Collapse
Affiliation(s)
- Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jie Yao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jinge Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Leqian Shi
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Yikai Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China.
| |
Collapse
|
7
|
Wang F, Zhong X, Huang L, Fang W, Chen F, Teng N. Cellular and molecular characteristics of pollen abortion in chrysanthemum cv. Kingfisher. PLANT MOLECULAR BIOLOGY 2018; 98:233-247. [PMID: 30203234 DOI: 10.1007/s11103-018-0777-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/04/2018] [Indexed: 05/21/2023]
Abstract
Microspore degeneration at the tetrad stage is associated with tapetum degeneration retardation. Some genes and proteins related to cell senescence and death are the key factors for pollen abortion. Chrysanthemum (Chrysanthemum morifolium) is a major floriculture crop in the world, but pollen contamination is an urgent problem to be solved in chrysanthemum production. C. morifolium 'Kingfisher' is a chrysanthemum cultivar that does not contain any pollen in mature anthers, thus it is a very important material for developing chrysanthemum without pollen contamination. However, the mechanism of its pollen abortion remains unclear. In this study, the cellular and molecular mechanisms of 'Kingfisher' pollen abortion were investigated using transmission electron microscopy, RNA sequencing, isobaric tags for relative and absolute quantitation, and bioinformatics. It was found that the meiosis of microspore mother cells was normal before the tetrad stage, the microspores began to degenerate at the tetrad stage, and no microspores were observed in the anthers after the tetrad stage. In addition, transcriptomic and proteomic analyses showed that some genes and proteins related to cell senescence and death were identified to be implicated in chrysanthemum pollen abortion. These results indicated that the tetrad stage was the main period of pollen abortion, and the genes and proteins related to cell senescence and death contributed to pollen abortion. These add to our understanding of chrysanthemum pollen abortion and will be helpful for development of flowers without pollen contamination in the future.
Collapse
Affiliation(s)
- Fan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Xinghua Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Lulu Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China.
| |
Collapse
|
8
|
Loewe V, Navarro-Cerrillo RM, Sánchez Lucas R, Ruiz Gómez FJ, Jorrín-Novo J. Variability studies of allochthonous stone pine (Pinus pinea L.) plantations in Chile through nut protein profiling. J Proteomics 2018; 175:95-104. [PMID: 29337283 DOI: 10.1016/j.jprot.2018.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 12/27/2017] [Accepted: 01/04/2018] [Indexed: 12/11/2022]
Abstract
Stone pine (Pinus pinea) is characterized by low differentiation of growth parameters, high phenotypic plasticity and low genetic variability; detecting its diversity in introduced Chilean populations is therefore relevant for conservation and breeding programs. Here, variability among allochthonous Stone pine populations in Chile was explored using electrophoresis-based proteomic analysis of pine nuts. Cones from 30 populations distributed along a climatic gradient in Chile were surveyed and sampled, and proteins were extracted from seed flour using the TCA-acetone precipitation protocol. Extracts were subjected to SDS-PAGE and 2-DE for protein resolution, gel images captured, and spot or bands intensity quantified and subjected to statistical analysis (ANOVA, unsupervised Hierarchical Analysis Clustering and PLS regression). Protein yield ranged among populations from 161.7 (North populations) to 298.7 (South populations) mg/g dry weight. A total of 50 bands were resolved by SDS-PAGE in the 6.5-200 kDa Mr. range, of which 17 showed quantitative or qualitative differences, with 12 proteins identified. Pine nut extracts from the most distant populations were analyzed by 2-DE and a total of 129 differential spots were observed, out of which 13 were proposed as putative protein markers of variability. Out of the 129 spots, 118 proteins were identified after MALDI-TOF/TOF analysis. Identified proteins were classified into two principal categories: reserve and stress related. We provide the first protein map of P. pinea nuts. The use of a proteomic approach was useful to detect variability of Stone pine across three Chilean macrozones, with correlations between protein profiles and geoclimatic parameters, suggesting a new approach to study the variability of this species. BIOLOGICAL SIGNIFICANCE This study presents the first protein map of Stone pine nuts, relevant for the advancement of protein characterization in pine nuts. Putative protein markers are proposed, evidencing that a proteomic approach may be useful to detect variability of Stone pine across Chilean macrozones, suggesting a new approach to study the variability of this species, which may also be extrapolated to other forest fruit species.
Collapse
Affiliation(s)
- V Loewe
- Chilean Forest Institute (INFOR), Chile.
| | | | | | | | | |
Collapse
|
9
|
Integrating cell biology and proteomic approaches in plants. J Proteomics 2017; 169:165-175. [DOI: 10.1016/j.jprot.2017.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 11/22/2022]
|
10
|
Zhang F, Hua L, Fei J, Wang F, Liao Y, Fang W, Chen F, Teng N. Chromosome doubling to overcome the chrysanthemum cross barrier based on insight from transcriptomic and proteomic analyses. BMC Genomics 2016; 17:585. [PMID: 27506621 PMCID: PMC4979184 DOI: 10.1186/s12864-016-2939-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/14/2016] [Indexed: 12/05/2022] Open
Abstract
Background Cross breeding is the most commonly used method in chrysanthemum (Chrysanthemum morifolium) breeding; however, cross barriers always exist in these combinations. Many studies have shown that paternal chromosome doubling can often overcome hybridization barriers during cross breeding, although the underlying mechanism has seldom been investigated. Results In this study, we performed two crosses: C. morifolium (pollen receptor) × diploid C. nankingense (pollen donor) and C. morifolium × tetraploid C. nankingense. Seeds were obtained only from the latter cross. RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ) were used to investigate differentially expressed genes and proteins during key embryo development stages in the latter cross. A previously performed cross, C. morifolium × diploid C. nankingense, was compared to our results and revealed that transcription factors (i.e., the agamous-like MADS-box protein AGL80 and the leucine-rich repeat receptor protein kinase EXS), hormone-responsive genes (auxin-binding protein 1), genes and proteins related to metabolism (ATP-citrate synthase, citrate synthase and malate dehydrogenase) and other genes reported to contribute to embryo development (i.e., LEA, elongation factor and tubulin) had higher expression levels in the C. morifolium × tetraploid C. nankingense cross. In contrast, genes related to senescence and cell death were down-regulated in the C. morifolium × tetraploid C. nankingense cross. Conclusions The data resources helped elucidate the gene and protein expression profiles and identify functional genes during different development stages. When the chromosomes from the male parent are doubled, the genes contributing to normal embryo developmentare more abundant. However, genes with negative functions were suppressed, suggesting that chromosome doubling may epigenetically inhibit the expression of these genes and allow the embryo to develop normally. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2939-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fengjiao Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, China
| | - Lichun Hua
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiangsong Fei
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China. .,Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, China.
| |
Collapse
|
11
|
Chaturvedi P, Ghatak A, Weckwerth W. Pollen proteomics: from stress physiology to developmental priming. PLANT REPRODUCTION 2016; 29:119-32. [PMID: 27271282 PMCID: PMC4909805 DOI: 10.1007/s00497-016-0283-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/05/2016] [Indexed: 05/19/2023]
Abstract
Pollen development and stress. In angiosperms, pollen or pollen grain (male gametophyte) is a highly reduced two- or three-cell structure which plays a decisive role in plant reproduction. Male gametophyte development takes place in anther locules where diploid sporophytic cells undergo meiotic division followed by two consecutive mitotic processes. A desiccated and metabolically quiescent form of mature pollen is released from the anther which lands on the stigma. Pollen tube growth takes place followed by double fertilization. Apart from its importance in sexual reproduction, pollen is also an interesting model system which integrates fundamental cellular processes like cell division, differentiation, fate determination, polar establishment, cell to cell recognition and communication. Recently, pollen functionality has been studied by multidisciplinary approaches which also include OMICS analyses like transcriptomics, proteomics and metabolomics. Here, we review recent advances in proteomics of pollen development and propose the process of developmental priming playing a key role to guard highly sensitive developmental processes.
Collapse
Affiliation(s)
- Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Sector No-15, CBD, Belapur, Navi Mumbai, India
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Rodríguez de Francisco L, Romero-Rodríguez MC, Navarro-Cerrillo RM, Miniño V, Perdomo O, Jorrín-Novo JV. Characterization of the orthodox Pinus occidentalis seed and pollen proteomes by using complementary gel-based and gel-free approaches. J Proteomics 2016; 143:382-389. [PMID: 27084684 DOI: 10.1016/j.jprot.2016.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/19/2016] [Accepted: 03/28/2016] [Indexed: 01/31/2023]
Abstract
UNLABELLED This work presents an analysis of Pinus occidentalis pollen and seed proteomes, in which both gel-based and gel-free approaches have been used. Proteins were extracted from P. occidentalis seeds and pollen by using the TCA/acetone/phenol precipitation protocol, and protein extracts were subjected to 1- and 2-DE coupled to MALDI-TOF-TOF as well as to shotgun (nLC-LTQ-Orbitrap) analysis. All bands (1-DE) and the most abundant spots (2-DE) were excised, trypsin digested and the resulting peptides analyzed by MALDI TOF/TOF. In order to increase the proteome coverage, a gel free approach was used. Proteins were identified from mass spectra by using three different databases, including UniProtKB, NCBI and a Pinus spp. custom database [2]. The gel-based approach resulted in 42 (seeds) and 94 (pollen) protein identifications, while the shotgun approach permitted the identification of 187 (seed) and 960 (pollen) proteins. Proteins were classified based on their corresponding functional categories. In seeds, storage proteins were the most abundant ones, and some allergens and proteases were also identified. In pollen proteins related to general metabolism were the most predominant. Data are compared and discussed from a methodological and biological point of view, taking into account the particularities of the seed and pollen organs. BIOLOGICAL SIGNIFICANCE In this work we characterized P. occidentalis proteome with seeds and pollen samples implementing two complementary approaches for the analysis. We found a high content of storage protein, stress response and metabolism related proteins in the seed proteome. Similarly, in the pollen proteome we found predominant groups of proteins related to metabolism and stress response.
Collapse
Affiliation(s)
- Luis Rodríguez de Francisco
- Laboratorio de Biología, Instituto Tecnológico de Santo Domingo, República Dominicana; Agricultural and Plant Biochemistry and Proteomics Research Group, Dept. of Biochemistry and Molecular Biology, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14071 Córdoba, Spain.
| | - Ma Cristina Romero-Rodríguez
- Departamento de Fitoquímica, Dirección de Investigación de la Facultad de Ciencias Químicas de la Universidad Nacional de Asunción, Paraguay.
| | - Rafael M Navarro-Cerrillo
- Department of Forestry Engineering, ETSIAM, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14071 Córdoba, Spain
| | - Virgilio Miniño
- Laboratorio de Biología, Instituto Tecnológico de Santo Domingo, República Dominicana
| | - Omar Perdomo
- Laboratorio de Biología, Instituto Tecnológico de Santo Domingo, República Dominicana
| | - Jesús V Jorrín-Novo
- Agricultural and Plant Biochemistry and Proteomics Research Group, Dept. of Biochemistry and Molecular Biology, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14071 Córdoba, Spain
| |
Collapse
|
13
|
Zhang F, Wang Z, Dong W, Sun C, Wang H, Song A, He L, Fang W, Chen F, Teng N. Transcriptomic and proteomic analysis reveals mechanisms of embryo abortion during chrysanthemum cross breeding. Sci Rep 2014; 4:6536. [PMID: 25288482 PMCID: PMC4187010 DOI: 10.1038/srep06536] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/26/2014] [Indexed: 12/25/2022] Open
Abstract
Embryo abortion is the main cause of failure in chrysanthemum cross breeding, and the genes and proteins associated with embryo abortion are poorly understood. Here, we applied RNA sequencing and isobaric tags for relative and absolute quantitation (iTRAQ) to analyse transcriptomic and proteomic profiles of normal and abortive embryos. More than 68,000 annotated unigenes and 700 proteins were obtained from normal and abortive embryos. Functional analysis showed that 140 differentially expressed genes (DEGs) and 41 differentially expressed proteins (DEPs) were involved in embryo abortion. Most DEGs and DEPs associated with cell death, protein degradation, reactive oxygen species scavenging, and stress-response transcriptional factors were significantly up-regulated in abortive embryos relative to normal embryos. In contrast, most genes and proteins related to cell division and expansion, the cytoskeleton, protein synthesis and energy metabolism were significantly down-regulated in abortive embryos. Furthermore, abortive embryos had the highest activity of three executioner caspase-like enzymes. These results indicate that embryo abortion may be related to programmed cell death and the senescence- or death-associated genes or proteins contribute to embryo abortion. This adds to our understanding of embryo abortion and will aid in the cross breeding of chrysanthemum and other crops in the future.
Collapse
Affiliation(s)
- Fengjiao Zhang
- 1] College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China [2] Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology &Equipment, Nanjing 210095, China
| | - Zhiquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Dong
- China Rural Technology Development Center, Beijing 100045, China
| | - Chunqing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lizhong He
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- 1] College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China [2] Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology &Equipment, Nanjing 210095, China
| | - Nianjun Teng
- 1] College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China [2] Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology &Equipment, Nanjing 210095, China
| |
Collapse
|
14
|
Rafińska K, Świdziński M, Bednarska-Kozakiewicz E. Homogalacturonan deesterification during pollen-ovule interaction in Larix decidua Mill.: an immunocytochemical study. PLANTA 2014; 240:195-208. [PMID: 24793355 PMCID: PMC4065381 DOI: 10.1007/s00425-014-2074-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/01/2014] [Indexed: 05/07/2023]
Abstract
Studies on angiosperm plants have shown that homogalacturonan present in the extracellular matrix of pistils plays an important role in the interaction with the male gametophyte. However, in gymnosperms, knowledge on the participation of HG in the pollen-ovule interaction is limited, and only a few studies on male gametophytes have been reported. Thus, the aim of this study was to determine the distribution of HG in male gametophytes and ovules during their interaction in Larix decidua Mill. The distribution of HG in pollen grains and unpollinated and pollinated ovules was investigated by immunofluorescence techniques using monoclonal antibodies that recognise high methyl-esterified HG (JIM7), low methyl-esterified HG (JIM5) and calcium cross-linked HG (2F4). All studied categories of HG were detected in the ovule. Highly methyl-esterified HG was present in the cell walls of all cells throughout the interaction; however, the distribution of low methyl-esterified and calcium cross-linked HG changed during the course of interaction. Both of these categories of HG appeared only in the apoplast and the extracellular matrix of the ovule tissues, which interact with the male gametophyte. This finding suggests that in L. decidua, low methyl-esterified and calcium cross-linked HG play an important role in pollen-ovule interaction. The last category of HG is most likely involved in adhesion between the pollen and the ovule and might provide an optimal calcium environment for pollen grain germination and pollen tube growth.
Collapse
Affiliation(s)
- Katarzyna Rafińska
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Michał Świdziński
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
15
|
Sebastiana M, Vieira B, Lino-Neto T, Monteiro F, Figueiredo A, Sousa L, Pais MS, Tavares R, Paulo OS. Oak root response to ectomycorrhizal symbiosis establishment: RNA-Seq derived transcript identification and expression profiling. PLoS One 2014; 9:e98376. [PMID: 24859293 PMCID: PMC4032270 DOI: 10.1371/journal.pone.0098376] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/01/2014] [Indexed: 11/19/2022] Open
Abstract
Ectomycorrhizal symbiosis is essential for the life and health of trees in temperate and boreal forests where it plays a major role in nutrient cycling and in functioning of the forest ecosystem. Trees with ectomycorrhizal root tips are more tolerant to environmental stresses, such as drought, and biotic stresses such as root pathogens. Detailed information on these molecular processes is essential for the understanding of symbiotic tissue development in order to optimize the benefits of this natural phenomenon. Next generation sequencing tools allow the analysis of non model ectomycorrhizal plant-fungal interactions that can contribute to find the "symbiosis toolkits" and better define the role of each partner in the mutualistic interaction. By using 454 pyrosequencing we compared ectomycorrhizal cork oak roots with non-symbiotic roots. From the two cDNA libraries sequenced, over 2 million reads were obtained that generated 19,552 cork oak root unique transcripts. A total of 2238 transcripts were found to be differentially expressed when ECM roots were compared with non-symbiotic roots. Identification of up- and down-regulated gens in ectomycorrhizal roots lead to a number of insights into the molecular mechanisms governing this important symbiosis. In cork oak roots, ectomycorrhizal colonization resulted in extensive cell wall remodelling, activation of the secretory pathway, alterations in flavonoid biosynthesis, and expression of genes involved in the recognition of fungal effectors. In addition, we identified genes with putative roles in symbiotic processes such as nutrient exchange with the fungal partner, lateral root formation or root hair decay. These findings provide a global overview of the transcriptome of an ectomycorrhizal host root, and constitute a foundation for future studies on the molecular events controlling this important symbiosis.
Collapse
Affiliation(s)
- Mónica Sebastiana
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Bruno Vieira
- Center for Environmental Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Teresa Lino-Neto
- Plant Functional Biology Centre, Center for Biodiversity, Functional and Integrative Genomics, University of Minho, Braga, Portugal
| | - Filipa Monteiro
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Andreia Figueiredo
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Lisete Sousa
- Department of Statistics and Operational Research, Center of Statistics and Applications from Lisbon University, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Maria Salomé Pais
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Rui Tavares
- Plant Functional Biology Centre, Center for Biodiversity, Functional and Integrative Genomics, University of Minho, Braga, Portugal
| | - Octávio S. Paulo
- Center for Environmental Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
16
|
Calcium imaging perspectives in plants. Int J Mol Sci 2014; 15:3842-59. [PMID: 24599077 PMCID: PMC3975371 DOI: 10.3390/ijms15033842] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/26/2022] Open
Abstract
The calcium ion (Ca2+) is a versatile intracellular messenger. It provides dynamic regulation of a vast array of gene transcriptions, protein kinases, transcription factors and other complex downstream signaling cascades. For the past six decades, intracellular Ca2+ concentration has been significantly studied and still many studies are under way. Our understanding of Ca2+ signaling and the corresponding physiological phenomenon is growing exponentially. Here we focus on the improvements made in the development of probes used for Ca2+ imaging and expanding the application of Ca2+ imaging in plant science research.
Collapse
|
17
|
Ischebeck T, Valledor L, Lyon D, Gingl S, Nagler M, Meijón M, Egelhofer V, Weckwerth W. Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol Cell Proteomics 2014; 13:295-310. [PMID: 24078888 PMCID: PMC3879621 DOI: 10.1074/mcp.m113.028100] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 09/24/2013] [Indexed: 01/10/2023] Open
Abstract
Pollen development in angiosperms is one of the most important processes controlling plant reproduction and thus productivity. At the same time, pollen development is highly sensitive to environmental fluctuations, including temperature, drought, and nutrition. Therefore, pollen biology is a major focus in applied studies and breeding approaches for improving plant productivity in a globally changing climate. The most accessible developmental stages of pollen are the mature pollen and the pollen tubes, and these are thus most frequently analyzed. To reveal a complete quantitative proteome map, we additionally addressed the very early stages, analyzing eight stages of tobacco pollen development: diploid microsporocytes, meiosis, tetrads, microspores, polarized microspores, bipolar pollen, desiccated pollen, and pollen tubes. A protocol for the isolation of the early stages was established. Proteins were extracted and analyzed by means of a new gel LC-MS fractionation protocol. In total, 3817 protein groups were identified. Quantitative analysis was performed based on peptide count. Exceedingly stage-specific differential protein regulation was observed during the conversion from the sporophytic to the gametophytic proteome. A map of highly specialized functionality for the different stages could be revealed from the metabolic activity and pronounced differentiation of proteasomal and ribosomal protein complex composition up to protective mechanisms such as high levels of heat shock proteins in the very early stages of development.
Collapse
Affiliation(s)
- Till Ischebeck
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Luis Valledor
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - David Lyon
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Stephanie Gingl
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Matthias Nagler
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Mónica Meijón
- ¶Gregor-Mendel-Institute for Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Volker Egelhofer
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Wolfram Weckwerth
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| |
Collapse
|
18
|
Sebastiana M, Figueiredo A, Monteiro F, Martins J, Franco C, Coelho AV, Vaz F, Simões T, Penque D, Pais MS, Ferreira S. A possible approach for gel-based proteomic studies in recalcitrant woody plants. SPRINGERPLUS 2013; 2:210. [PMID: 23724367 PMCID: PMC3663981 DOI: 10.1186/2193-1801-2-210] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/04/2013] [Indexed: 12/26/2022]
Abstract
Woody plants are particularly difficult to investigate due to high phenolic, resin, and tannin contents and laborious sample preparation. In particular, protein isolation from woody plants for two-dimensional gel electrophoresis (2-DE) is challenging as secondary metabolites negatively interfere with protein extraction and separation. In this study, three protein extraction protocols, using TCA, phenol and ethanol as precipitation or extraction agents, were tested in order to select the more efficient for woody recalcitrant plant gel-based proteomics. Grapevine leaves, pine needles and cork oak ectomycorrhizal roots were used to represent woody plant species and tissues. The phenol protocol produced higher quality 2-DE gels, with increased number of resolved spots, better spot focusing and representation of all molecular mass and isoelectric point ranges tested. In order to test the compatibility of the phenol extracted proteomes with protein identification several spots were excised from the phenol gels and analyzed by mass spectrometry (MALDI-TOF/TOF). Regardless the incomplete genome/protein databases for the plant species under analysis, 49 proteins were identified by Peptide Mass Fingerprint (PMF). Proteomic data have been deposited to the ProteomeXchange with identifier PXD000224. Our results demonstrate the complexity of protein extraction from woody plant tissues and the suitability of the phenol protocol for obtaining high quality protein extracts for efficient 2-DE separation and downstream applications such as protein identification by mass spectrometry.
Collapse
Affiliation(s)
- Mónica Sebastiana
- />Plant Systems Biology Lab, Center of Biodiversity, Functional & Integrative Genomics (BioFIG), Science Faculty of Lisbon University, Lisbon, 1749-016 Portugal
| | - Andreia Figueiredo
- />Plant Systems Biology Lab, Center of Biodiversity, Functional & Integrative Genomics (BioFIG), Science Faculty of Lisbon University, Lisbon, 1749-016 Portugal
| | - Filipa Monteiro
- />Plant Systems Biology Lab, Center of Biodiversity, Functional & Integrative Genomics (BioFIG), Science Faculty of Lisbon University, Lisbon, 1749-016 Portugal
| | - Joana Martins
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da Republica, Oeiras, 2780-157 Portugal
| | - Catarina Franco
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da Republica, Oeiras, 2780-157 Portugal
| | - Ana Varela Coelho
- />Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da Republica, Oeiras, 2780-157 Portugal
| | - Fátima Vaz
- />Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge INSA I.P, Lisbon, Portugal
| | - Tânia Simões
- />Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge INSA I.P, Lisbon, Portugal
| | - Deborah Penque
- />Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge INSA I.P, Lisbon, Portugal
| | - Maria Salomé Pais
- />Plant Systems Biology Lab, Center of Biodiversity, Functional & Integrative Genomics (BioFIG), Science Faculty of Lisbon University, Lisbon, 1749-016 Portugal
| | - Sílvia Ferreira
- />Plant Systems Biology Lab, Center of Biodiversity, Functional & Integrative Genomics (BioFIG), Science Faculty of Lisbon University, Lisbon, 1749-016 Portugal
| |
Collapse
|
19
|
Chen DH, Acharya BR, Liu W, Zhang W. Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks. PLANTS (BASEL, SWITZERLAND) 2013; 2:615-34. [PMID: 27137395 PMCID: PMC4844389 DOI: 10.3390/plants2040615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/17/2022]
Abstract
Calcium (Ca(2+)) plays important roles in plant growth, development, and signal transduction. It is a vital nutrient for plant physical design, such as cell wall and membrane, and also serves as a counter-cation for biochemical, inorganic, and organic anions, and more particularly, its concentration change in cytosol is a ubiquitous second messenger in plant physiological signaling in responses to developmental and environmental stimuli. Actin cytoskeleton is well known for its importance in cellular architecture maintenance and its significance in cytoplasmic streaming and cell division. In plant cell system, the actin dynamics is a process of polymerization and de-polymerization of globular actin and filamentous actin and that acts as an active regulator for calcium signaling by controlling calcium evoked physiological responses. The elucidation of the interaction between calcium and actin dynamics will be helpful for further investigation of plant cell signaling networks at molecular level. This review mainly focuses on the recent advances in understanding the interaction between the two aforementioned signaling components in two well-established model systems of plant, guard cell, and pollen.
Collapse
Affiliation(s)
- Dong-Hua Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan 250100, Shandong, China.
| | - Biswa R Acharya
- Biology Department, Penn State University, University Park, PA 16802, USA.
| | - Wei Liu
- High-Tech Research Center, Shandong Academy of Agricultural Sciences, Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, Shandong, China.
| | - Wei Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
20
|
Takáč T, Pechan T, Samajová O, Samaj J. Vesicular trafficking and stress response coupled to PI3K inhibition by LY294002 as revealed by proteomic and cell biological analysis. J Proteome Res 2013; 12:4435-48. [PMID: 23931732 DOI: 10.1021/pr400466x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
LY294002 is a synthetic quercetin-like compound, which, unlike wortmannin, is more specific inhibitor of phosphatidylinositol 3-kinase (PI3K). It inhibits endocytosis and vacuolar transport. We report here on the proteome-wide effects of LY294002 on Arabidopsis roots focusing on proteins involved in vesicular trafficking and stress response. At the subcellular level, LY294002 caused swelling and clustering of late endosomes leading to inhibition of vacuolar transport. At the proteome level, this compound caused changes in abundances of proteins categorized to 10 functional classes. Among proteins involved in vesicular trafficking, a small GTPase ARFA1f was more abundant, indicating its possible contribution to the aggregation and fusion of late endosomes triggered by LY294002. Our study provides new information on storage proteins and vacuolar hydrolases in vegetative tissues treated by LY294002. Vacuolar hydrolases were downregulated, while storage proteins were more abundant, suggesting that storage proteins were protected from degradation in swollen multivesicular bodies upon LY294002 treatment. Upregulation of 2S albumin was validated by immunoblotting and immunolabeling analyses. Our study also pointed to the control of antioxidant enzyme machinery by PI3K because LY294002 downregulated two isozymes of superoxide dismutase. This most likely occurred via PI3K-mediated downregulation of protein AtDJ1A. Finally, we discuss specificity differences of LY294002 and wortmannin against PI3K, which are reflected at the proteome level. Compared with wortmannin, LY294002 showed more narrow and perhaps also more specific effects on proteins, as suggested by gene ontology functional annotation.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University , Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | |
Collapse
|
21
|
Zhao X, Yang N, Wang T. Comparative proteomic analysis of generative and sperm cells reveals molecular characteristics associated with sperm development and function specialization. J Proteome Res 2013; 12:5058-71. [PMID: 23879389 DOI: 10.1021/pr400291p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In flowering plants, two sperm cells (SCs) are generated from a generative cell (GC) in the developing pollen grain or growing pollen tube and are then delivered to the embryo sac to initiate double fertilization. SC development and function specialization involve the strict control of the protein (gene) expression program and coordination of diverse cellular processes. However, because methods for collecting a large amount of highly purified GCs and SCs for proteomic and transcriptomic studies from a plant are not available, molecular information about the program and the interconnections is lacking. Here, we describe a method for obtaining a large quantity of highly purified GCs and SCs from just-germinated lily pollen grains and growing pollen tubes for proteomic analysis. Our observation showed that SCs had less condensed chromatin and more vacuole-like structures than GCs and that mature SCs were arrested at the G2 phase. Comparison of SC and GC proteomes revealed 101 proteins differentially expressed in the two proteomes. These proteins are involved in diverse cellular and metabolic processes, with preferential involvement in metabolism, the cell cycle, signaling, the ubiquitin/proteasome pathway, and chromatin remodeling. Impressively, almost all proteins in SCF complex-mediated proteolysis and the cell cycle were up-regulated in SCs, whereas those in chromatin remodeling and stress response were down-regulated. Our data also reveal the coordination of SCF complex-mediated proteolysis, cell cycle progression, and DNA repair in SC development and function specialization. This study revealed for the first time a difference in protein profiles between GCs and SCs.
Collapse
Affiliation(s)
- Xin Zhao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences and National Center for Plant Gene Research , Beijing 100093, China
| | | | | |
Collapse
|
22
|
Dai S, Chen S. Single-cell-type proteomics: toward a holistic understanding of plant function. Mol Cell Proteomics 2012; 11:1622-30. [PMID: 22982375 DOI: 10.1074/mcp.r112.021550] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function.
Collapse
Affiliation(s)
- Shaojun Dai
- Department of Biology, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
23
|
Chen Y, Liu P, Hoehenwarter W, Lin J. Proteomic and Phosphoproteomic Analysis of Picea wilsonii Pollen Development under Nutrient Limitation. J Proteome Res 2012; 11:4180-90. [DOI: 10.1021/pr300295m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yanmei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College
of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- Key Laboratory of Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wolfgang Hoehenwarter
- Department Molecular Systems Biology, University of Vienna, Faculty of Life Sciences, Althanstrasse
14, A-1090, Vienna
| | - Jinxing Lin
- Key Laboratory of Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
24
|
Takáč T, Pechan T, Samajová O, Ovečka M, Richter H, Eck C, Niehaus K, Samaj J. Wortmannin treatment induces changes in Arabidopsis root proteome and post-Golgi compartments. J Proteome Res 2012; 11:3127-42. [PMID: 22524784 DOI: 10.1021/pr201111n] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wortmannin is a widely used pharmaceutical compound which is employed to define vesicular trafficking routes of particular proteins or cellular compounds. It targets phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinases in a dose-dependent manner leading to the inhibition of protein vacuolar sorting and endocytosis. Combined proteomics and cell biological approaches have been used in this study to explore the effects of wortmannin on Arabidopsis root cells, especially on proteome and endomembrane trafficking. On the subcellular level, wortmannin caused clustering, fusion, and swelling of trans-Golgi network (TGN) vesicles and multivesicular bodies (MVBs) leading to the formation of wortmannin-induced multivesicular compartments. Appearance of wortmannin-induced compartments was associated with depletion of TGN as revealed by electron microscopy. On the proteome level, wortmannin induced massive changes in protein abundance profiles. Wortmannin-sensitive proteins belonged to various functional classes. An inhibition of vacuolar trafficking by wortmannin was related to the downregulation of proteins targeted to the vacuole, as showed for vacuolar proteases. A small GTPase, RabA1d, which regulates vesicular trafficking at TGN, was identified as a new protein negatively affected by wortmannin. In addition, Sec14 was upregulated and PLD1 alpha was downregulated by wortmannin.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University , Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Huang JC, Chang LC, Wang ML, Guo CL, Chung MC, Jauh GY. Identification and exploration of pollen tube small proteins encoded by pollination-induced transcripts. PLANT & CELL PHYSIOLOGY 2011; 52:1546-59. [PMID: 21771867 DOI: 10.1093/pcp/pcr095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Pollination is composed of cell-cell communication and complicated signaling cascades that regulate pollen tube growth and guidance toward the ovules for double fertilization, and is critical for successful sexual reproduction. Exploring expression profiles of in vivo grown pollen tubes is important. Nevertheless, it is difficult to obtain accessible pollen tubes for profiling studies in most model plants. By taking advantage of the hollow styles of lily (Lilium longiflorum), in vivo pollen tubes harvested from pollinated styles which had been cut open were used here to study their protein and transcript profiles. Pollination quantitatively and qualitatively altered the total protein composition of elongating pollen tubes. cDNAs generated and amplified from total RNAs of 24 h in vivo grown and 12 h in vitro cultured pollen tubes were used for suppression subtractive hybridization analyses and preparation of home-made array chips. Microarray analyses conducted with different probe sets revealed 16 transcripts specifically present and/or enriched in in vivo pollen tubes. Reverse transcription-PCR (RT-PCR), in situ hybridization and Northern blotting were applied to validate their unique pollination-induced expression features. Interestingly, several transcripts were simultaneously detected on the stylar transmitting tract epidermis, where in vivo pollen tubes tightly adhered during pollination. Their deduced amino acid sequences showed that most of them encoded small proteins and could be classified into several families. Transient assay revealed filament-like structures decorated by these proteins and one probably localized in the generative cell. These small peptides might be critical for pollen tube growth during pollination, and further exploration of their biological functions and mechanisms of action are of great interest.
Collapse
Affiliation(s)
- Jong-Chin Huang
- Department of Chemical Biology, National Pingtung University of Education, Pingtung, 90003, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
26
|
Abril N, Gion JM, Kerner R, Müller-Starck G, Cerrillo RMN, Plomion C, Renaut J, Valledor L, Jorrin-Novo JV. Proteomics research on forest trees, the most recalcitrant and orphan plant species. PHYTOCHEMISTRY 2011; 72:1219-42. [PMID: 21353265 DOI: 10.1016/j.phytochem.2011.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/27/2010] [Accepted: 01/06/2011] [Indexed: 05/06/2023]
Abstract
The contribution of proteomics to the knowledge of forest tree (the most recalcitrant and almost forgotten plant species) biology is being reviewed and discussed, based on the author's own research work and papers published up to November 2010. This review is organized in four introductory sections starting with the definition of forest trees (1), the description of the environmental and economic importance (2) and its derived current priorities and research lines for breeding and conservation (3) including forest tree genomics (4). These precede the main body of this review: a general overview to proteomics (5) for introducing the forest tree proteomics section (6). Proteomics, defined as scientific discipline or experimental approach, it will be discussed both from a conceptual and methodological point of view, commenting on realities, challenges and limitations. Proteomics research in woody plants is limited to a reduced number of genera, including Pinus, Picea, Populus, Eucalyptus, and Fagus, mainly using first-generation approaches, e.g., those based on two-dimensional electrophoresis coupled to mass spectrometry. This area joins the own limitations of the technique and the difficulty and recalcitrance of the plant species as an experimental system. Furthermore, it contributes to a deeper knowledge of some biological processes, namely growth, development, organogenesis, and responses to stresses, as it is also used in the characterization and cataloguing of natural populations and biodiversity (proteotyping) and in assisting breeding programmes.
Collapse
Affiliation(s)
- Nieves Abril
- Dpt. of Biochemistry and Molecular Biology, ETSIAM, University of Cordoba, Campus de Rabanales, Ed. Severo Ochoa, Cordoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Takáč T, Pechan T, Samaj J. Differential proteomics of plant development. J Proteomics 2011; 74:577-88. [PMID: 21315196 DOI: 10.1016/j.jprot.2011.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
In this mini-review, recent advances in plant developmental proteomics are summarized. The growing interest in plant proteomics continually produces large numbers of developmental studies on plant cell division, elongation, differentiation, and formation of various organs. The brief overview of changes in proteome profiles emphasizes the participation of stress-related proteins in all developmental processes, which substantially changes the view on functional classification of these proteins. Next, it is noteworthy that proteomics helped to recognize some metabolic and housekeeping proteins as important signaling inducers of developmental pathways. Further, cell division and elongation are dependent on proteins involved in membrane trafficking and cytoskeleton dynamics. These protein groups are less prevalently represented in studies concerning cell differentiation and organ formation, which do not target primarily cell division. The synthesis of new proteins, generally observed during developmental processes, is followed by active protein folding. In this respect, disulfide isomerase was found to be commonly up-regulated during several developmental processes. The future progress in plant proteomics requires new and/or complementary approaches including cell fractionation, specific chemical treatments, molecular cloning and subcellular localization of proteins combined with more sensitive methods for protein detection and identification.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | | |
Collapse
|
28
|
Gao X, Zhang X, Zheng J, He F. Proteomics in China: Ready for prime time. SCIENCE CHINA-LIFE SCIENCES 2010; 53:22-33. [DOI: 10.1007/s11427-010-0027-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 12/28/2009] [Indexed: 12/27/2022]
|
29
|
Pertl H, Schulze WX, Obermeyer G. The Pollen Organelle Membrane Proteome Reveals Highly Spatial−Temporal Dynamics during Germination and Tube Growth of Lily Pollen. J Proteome Res 2009; 8:5142-52. [DOI: 10.1021/pr900503f] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Heidi Pertl
- Molecular Plant Biophysics and Biochemistry, Deptartment of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria, and Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | - Waltraud X. Schulze
- Molecular Plant Biophysics and Biochemistry, Deptartment of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria, and Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | - Gerhard Obermeyer
- Molecular Plant Biophysics and Biochemistry, Deptartment of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria, and Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| |
Collapse
|
30
|
Wang Q, Chen B, Liu P, Zheng M, Wang Y, Cui S, Sun D, Fang X, Liu CM, Lucas WJ, Lin J. Calmodulin binds to extracellular sites on the plasma membrane of plant cells and elicits a rise in intracellular calcium concentration. J Biol Chem 2009; 284:12000-7. [PMID: 19254956 PMCID: PMC2673269 DOI: 10.1074/jbc.m808028200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/31/2008] [Indexed: 11/06/2022] Open
Abstract
Calmodulin (CaM) is a highly conserved intracellular calcium sensor. In plants, CaM also appears to be present in the apoplasm, and application of exogenous CaM has been shown to influence a number of physiological functions as a polypeptide signal; however, the existence and localization of its corresponding apoplasmic binding sites remain controversial. To identify the site(s) of action, a CaM-conjugated quantum dot (QD) system was employed for single molecule level detection at the surface of plant cells. Using this approach, we show that QD-CaM binds selectively to sites on the outer surface of the plasma membrane, which was further confirmed by high resolution transmission electron microscopy. Measurements of Ca(2+) fluxes across the plasma membrane, using ion-selective microelectrodes, demonstrated that exogenous CaM induces a net influx into protoplasts. Consistent with these flux studies, calcium-green-dextran and FRET experiments confirmed that applied CaM/QD-CaM elicited an increase in cytoplasmic Ca(2+) levels. These results support the hypothesis that apoplasmic CaM can act as a signaling agent. These findings are discussed in terms of CaM acting as an apoplasmic peptide ligand to mediate transmembrane signaling in the plant kingdom.
Collapse
Affiliation(s)
- Qinli Wang
- Key Laboratory of Photosynthesis and Molecular Environment Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|