1
|
Blundell R, Camilleri E, Baral B, Karpiński TM, Neza E, Atrooz OM. The Phytochemistry of Ganoderma Species and their Medicinal Potentials. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:859-882. [PMID: 36999543 DOI: 10.1142/s0192415x23500404] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Ganoderma genus is known for its diverse use as a functional food and therapeutic agent. This fungus has over 428 species, with Ganoderma lucidum being the most studied. The Ganoderma species produce several secondary metabolites and bioactive compounds like polysaccharides, phenols, and triterpenes, which are largely responsible for their therapeutic properties. Throughout this review, several extracts obtained from Ganoderma species have been studied to delve into their therapeutic characteristics and mechanisms. Such properties like immunomodulation, antiaging, antimicrobial, and anticancer activities have been demonstrated by several Ganoderma species and are supported by a large body of evidence. Although its phytochemicals play a vital role in its therapeutic properties, identifying the therapeutic potentials of fungal-secreted metabolites for human health-promoting benefits is a challenging task. Identification of novel compounds with distinct chemical scaffolds and their mechanism of action could help suppress the spread of rising pathogens. Thus, this review provides an updated and comprehensive overview of the bioactive components in different Ganoderma species and the underlying physiological mechanisms.
Collapse
Affiliation(s)
- Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Imsida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Imsida, Malta
| | - Emma Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Imsida, Malta
| | - Bikash Baral
- Institute of Biological Resources (IBR), Kathmandu, Nepal
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
| | - Edlira Neza
- Western Balkans University, Autostrada Tirane-Durres km 7, Albania
| | - Omar M Atrooz
- Department of Biological Sciences, Mutah University, P. O. Box (7), Mutah, Jordan
| |
Collapse
|
2
|
Chan SW, Tomlinson B, Chan P, Lam CWK. The beneficial effects of Ganoderma lucidum on cardiovascular and metabolic disease risk. PHARMACEUTICAL BIOLOGY 2021; 59:1161-1171. [PMID: 34465259 PMCID: PMC8409941 DOI: 10.1080/13880209.2021.1969413] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/12/2021] [Indexed: 05/16/2023]
Abstract
CONTEXT Various herbal medicines are thought to be useful in the management of cardiometabolic disease and its risk factors. Ganoderma lucidum (Curtis) P. Karst. (Ganodermataceae), also known as Lingzhi, has received considerable attention for various indications, including some related to the prevention and treatment of cardiovascular and metabolic disease by ameliorating major cardiovascular risk factors. OBJECTIVE This review focuses on the major studies of the whole plant, plant extract, and specific active compounds isolated from G. lucidum in relation to the main risk factors for cardiometabolic disease. METHODS References from major databases including PubMed, Web of Science, and Google Scholar were compiled. The search terms used were Ganoderma lucidum, Lingzhi, Reishi, cardiovascular, hypoglycaemic, diabetes, dyslipidaemia, antihypertensive, and anti-inflammatory. RESULTS A number of in vitro studies and in vivo animal models have found that G. lucidum possesses antioxidative, antihypertensive, hypoglycaemic, lipid-lowering, and anti-inflammatory properties, but the health benefits in clinical trials are inconsistent. Among these potential health benefits, the most compelling evidence thus far is its hypoglycaemic effects in patients with type 2 diabetes or hyperglycaemia. CONCLUSIONS The inconsistent evidence about the potential health benefits of G. lucidum is possibly because of the use of different Ganoderma formulations and different study populations. Further large controlled clinical studies are therefore needed to clarify the potential benefits of G. lucidum preparations standardised by known active components in the prevention and treatment of cardiometabolic disease.
Collapse
Affiliation(s)
- Sze Wa Chan
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong SAR, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| | - Paul Chan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | | |
Collapse
|
3
|
Fu R, Shi M, Deng C, Zhang Y, Zhang X, Wang Y, Kai G. Improved phenolic acid content and bioactivities of Salvia miltiorrhiza hairy roots by genetic manipulation of RAS and CYP98A14. Food Chem 2020; 331:127365. [DOI: 10.1016/j.foodchem.2020.127365] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/29/2020] [Accepted: 06/14/2020] [Indexed: 12/30/2022]
|
4
|
Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma Lucidum Terpenoids and Polysaccharides: A Review. Molecules 2018. [PMID: 29534044 PMCID: PMC6017764 DOI: 10.3390/molecules23030649] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ganoderma lucidum (Reishi) is a popular medicinal mushroom and has been used in oriental medicine because of its promoting effects on health and life expectancy. G. lucidum contains various compounds with a high grade of biological activty, which increase the immunity and show antitumour, antimicrobial, anti-inflammatory, antioxidant and acetylcholinesterase inhibitory activity. Several of these substances belong to the triterpenoids and polysaccharides classes. Proteins, lipids, phenols, sterols, etc. are also present. In the present review, an extensive overview of the presence of antitumour, antimicrobial, antioxidant and antiacetylcholinesterase compounds in G. lucidum extracts will be given, along with an evaluation of their therapeutic effects.
Collapse
|
5
|
Guan Y, Du Z, Gao N, Cao Y, Wang X, Scott P, Song H, Ren J, Qu X. Stereochemistry and amyloid inhibition: Asymmetric triplex metallohelices enantioselectively bind to Aβ peptide. SCIENCE ADVANCES 2018; 4:eaao6718. [PMID: 29372182 PMCID: PMC5775025 DOI: 10.1126/sciadv.aao6718] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/11/2017] [Indexed: 05/05/2023]
Abstract
Stereochemistry is vital for pharmaceutical development and can determine drug efficacy. Herein, 10 pairs of asymmetric triplex metallohelix enantiomers as a library were used to screen inhibitors of amyloid β (Aβ) aggregation via a fluorescent cell-based high-throughput method. Intriguingly, Λ enantiomers show a stronger inhibition effect than Δ enantiomers. In addition, the metallohelices with aromatic substituents are more effective than those without, revealing that these groups play a key role in the Aβ interaction. Fluorescence stopped-flow kinetic studies indicate that binding of the Λ enantiomer to Aβ is much faster than that of the Δ enantiomer. Furthermore, studies in enzyme digestion, isothermal titration calorimetry, nuclear magnetic resonance, and computational docking demonstrate that the enantiomers bind to the central hydrophobic α-helical region of Aβ13-23, although with different modes for the Λ and Δ enantiomers. Finally, an in vivo study showed that these metallohelices extend the life span of the Caenorhabditis elegans CL2006 strain by attenuating Aβ-induced toxicity. Our work will shed light on the design and screening of a metal complex as an amyloid inhibitor against Alzheimer's disease.
Collapse
Affiliation(s)
- Yijia Guan
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhi Du
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Nan Gao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yue Cao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Peter Scott
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Hualong Song
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Corresponding author.
| |
Collapse
|
6
|
Synthesis of Nm-PHB (nanomelanin-polyhydroxy butyrate) nanocomposite film and its protective effect against biofilm-forming multi drug resistant Staphylococcus aureus. Sci Rep 2017; 7:9167. [PMID: 28831068 PMCID: PMC5567312 DOI: 10.1038/s41598-017-08816-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 07/19/2017] [Indexed: 12/30/2022] Open
Abstract
Melanin is a dark brown ubiquitous photosynthetic pigment which have many varied and ever expanding applications in fabrication of radio-protective materials, food packaging, cosmetics and in medicine. In this study, melanin production in a Pseudomonas sp. which was isolated from the marine sponge Tetyrina citirna was optimized employing one-factor at a time experiments and characterized for chemical nature and stability. Following sonication nucleated nanomelanin (Nm) particles were formed and evaluated for antibacterial and antioxidant properties. Nanocomposite film was fabricated using combinations (% w/v) of polyhydroxy butyrate-nanomelanin (PHB:Nm) blended with 1% glycerol. The Nm was found to be spherical in shape with a diameter of 100-140 nm and showed strong antimicrobial activity against both Gram positive and Gram negative bacteria. The Nm-PHB nanocomposite film was homogeneous, smooth, without any cracks, and flexible. XRD and DSC data indicated that the film was crystalline in nature, and was thermostable up to 281.87 °C. This study represents the first report on the synthesis of Nm and fabrication of Nm-PHB nanocomposite film which show strong protective effect against multidrug resistant Staphyloccoccus aureus. Thus this Nm-PHB nanocomposite film may find utility as packaging material for food products by protecting the food products from oxidation and bacterial contamination.
Collapse
|
7
|
Sa-ard P, Sarnthima R, Khammuang S, Kanchanarach W. Antioxidant, antibacterial and DNA protective activities of protein extracts from Ganoderma lucidum. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:2966-73. [PMID: 25892797 PMCID: PMC4397306 DOI: 10.1007/s13197-014-1343-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/08/2014] [Accepted: 03/26/2014] [Indexed: 11/30/2022]
Abstract
Crude proteins of cultured mycelia and fruiting bodies of Ganoderma lucidum were investigated for antioxidant, antibacterial and DNA protective activities. It was found that the half maximal inhibitory concentration (IC50) of the mycelia protein and fruiting bodies protein extracts against 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) radical (ABTS(•+)) were 2.47 ± 0.01 and 2.77 ± 0.11 μg protein/ml and against 2,2-diphenylpicrylhydrazyl radical (DPPH(•)) were 2.5 ± 0.01 and 3.42 ± 0.01 μg protein/ml, respectively. The ferric reducing-antioxidant power (FRAP) values of those samples were 1.73 ± 0.01 and 2.62 ± 0.01 μmole trolox/μg protein respectively. Protein hydrolysates prepared by pronase exhibited a weaker antioxidant activity. Both crude proteins showed antibacterial activity, whereas only the mycelia protein extract could protect DNA damage by hydroxyl ((•)OH) radicals. This protein extract was partial purified by Diethyl amino ethyl (DEAE)-Sepharose column and Sulfopropyl (SP)-Sepharose column, obtained major protein with molecular weight about 45 kilo Dalton (kDa). In conclusion, G. lucidum protein extracts have promise potential for applications as antioxidant and antibacterial agents.
Collapse
Affiliation(s)
- Piyawan Sa-ard
- />Protein and Enzyme Technology Research Unit, and Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150 Thailand
| | - Rakrudee Sarnthima
- />Protein and Enzyme Technology Research Unit, and Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150 Thailand
| | - Saranyu Khammuang
- />Protein and Enzyme Technology Research Unit, and Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150 Thailand
| | - Watchara Kanchanarach
- />Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150 Thailand
| |
Collapse
|
8
|
Yu GJ, Yin YL, Yu WH, Liu W, Jin YX, Shrestha A, Yang Q, Ye XD, Sun H. Proteome exploration to provide a resource for the investigation of Ganoderma lucidum. PLoS One 2015; 10:e0119439. [PMID: 25756518 PMCID: PMC4355618 DOI: 10.1371/journal.pone.0119439] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/13/2015] [Indexed: 12/16/2022] Open
Abstract
Ganoderma lucidum is a basidiomycete white rot fungus that has been used for medicinal purposes worldwide. Although information concerning its genome and transcriptome has recently been reported, relatively little information is available for G. lucidum at the proteomic level. In this study, protein fractions from G. lucidum at three developmental stages (16-day mycelia, and fruiting bodies at 60 and 90 days) were prepared and subjected to LC-MS/MS analysis. A search against the G. lucidum genome database identified 803 proteins. Among these proteins, 61 lignocellulose degrading proteins were detected, most of which (49 proteins) were found in the 90-day fruiting bodies. Fourteen TCA-cycle related proteins, 17 peptidases, two argonaute-like proteins, and two immunomodulatory proteins were also detected. A majority (470) of the 803 proteins had GO annotations and were classified into 36 GO terms, with "binding", "catalytic activity", and "hydrolase activity" having high percentages. Additionally, 357 out of the 803 proteins were assigned to at least one COG functional category and grouped into 22 COG classifications. Based on the results from the proteomic and sequence alignment analyses, a potentially new immunomodulatory protein (GL18769) was expressed and shown to have high immunomodulatory activity. In this study, proteomic and biochemical analyses of G. lucidum were performed for the first time, revealing that proteins from this fungus can play significant bioactive roles and providing a new foundation for the further functional investigations that this fungus merits.
Collapse
Affiliation(s)
- Guo-Jun Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ya-Lin Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen-Hui Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan-Xia Jin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Alok Shrestha
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qing Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiang-Dong Ye
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| |
Collapse
|
9
|
Li M, Howson SE, Dong K, Gao N, Ren J, Scott P, Qu X. Chiral metallohelical complexes enantioselectively target amyloid β for treating Alzheimer's disease. J Am Chem Soc 2014; 136:11655-63. [PMID: 25062433 DOI: 10.1021/ja502789e] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stereochemistry is a very important issue for the pharmaceutical industry and can determine drug efficacy. The design and synthesis of small molecules, especially chiral molecules, which selectively target and inhibit amyloid-β (Aβ) aggregation, represent valid therapeutic strategies for treatment of Alzheimer's disease (AD). Herein we report that two triple-helical dinuclear metallosupramolecular complexes can act as a novel class of chiral amyloid-β inhibitors. Through targeting α/β-discordant stretches at the early steps of aggregation, these metal complexes can enantioselectively inhibit Aβ aggregation, which is demonstrated using fluorescent living cell-based screening and multiple biophysical and biochemical approaches. To the best of our knowledge, this is the first report of enantioselective inhibition of Aβ aggregation. Intriguingly, as a promising candidate for AD treatment, the chiral metal complex can cross the blood-brain barrier and have superoxide dismutase activity. It is well-known that chiral discrimination is important for understanding chiral drug action. Generally, one enantiomer is pharmaceutically active while the other is inactive or exerts severe side effects. Chiral discrimination should be important for AD treatment. Our work provides new insights into chiral inhibition of Aβ aggregation and opens a new avenue for design and screening of chiral agents as Aβ inhibitors against AD.
Collapse
Affiliation(s)
- Meng Li
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Changchun, Jilin 130022, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Gottardi D, Hong PK, Ndagijimana M, Betti M. Conjugation of gluten hydrolysates with glucosamine at mild temperatures enhances antioxidant and antimicrobial properties. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Kai G, Zhang A, Guo Y, Li L, Cui L, Luo X, Liu C, Xiao J. Enhancing the production of tropane alkaloids in transgenic Anisodus acutangulus hairy root cultures by over-expressing tropinone reductase I and hyoscyamine-6β-hydroxylase. MOLECULAR BIOSYSTEMS 2012; 8:2883-90. [PMID: 22955966 DOI: 10.1039/c2mb25208b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tropane alkaloids (TA) including hyoscyamine, anisodamine, scopolamine and anisodine, are used medicinally as anticholinergic agents with increasing market demand, so it is very important to improve TA production by metabolic engineering strategy. Here, we report the simultaneous introduction of genes encoding the branch-controlling enzyme tropinone reductase I (TRI, EU424321) and the downstream rate-limiting enzyme hyoscyamine-6β-hydroxylase (H6H, EF187826) involved in TA biosynthesis into Anisodus acutangulus hairy roots by Agrobacterium-mediated gene transfer technology. Transgenic hairy root lines expressing both TRI and H6H (TH lines) produced significantly higher (P < 0.05) levels of TA compared with the control and single gene transformed lines (T or H lines). The best double gene transformed line (TH53) produced 4.293 mg g(-1) TA, which was about 4.49-fold higher than that of the control lines (0.96 mg g(-1)). As far as it is known, this is the first report on simultaneous introduction of TRI and H6H genes into TA-producing plant by biotechnological approaches. Besides, the content of anisodine was also greatly improved in A. acutangulus by over-expression of AaTRI and AaH6H genes. The average content of anisodine in TH lines was 0.984 mg g(-1) dw, about 18.57-fold of BC lines (0.053 mg g(-1) dw). This is the first time that this phenomenon has been found in TA-producing plants.
Collapse
Affiliation(s)
- Guoyin Kai
- Department of Biology, College of Life & Environment Science, Shanghai Normal University, Shanghai 200234, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Geng J, Li M, Wu L, Ren J, Qu X. Liberation of copper from amyloid plaques: making a risk factor useful for Alzheimer's disease treatment. J Med Chem 2012; 55:9146-55. [PMID: 22663067 DOI: 10.1021/jm3003813] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a complex multifactorial syndrome. Metal chelator and Aβ inhibitor are showing promise against AD. In this report, three small hybrid compounds (1, 2, and 3) have been designed and synthesized utilizing salicylaldehyde (SA) based Schiff bases as the chelators and benzothiazole (BT) as the recognition moiety for AD treatment. These conjugates can capture Cu(2+) from Aβ and become dimers upon Cu(2+) coordination and show high efficiency for both Cu(2+) elimination and Aβ assembly inhibition. Besides, the complexes have superoxide dismutase (SOD) activity and significant antioxidant capacity and are capable of decreasing intracellular reactive oxygen species (ROS) and increasing cell viability. All these results indicate that the multifunctional metal complexes which have Aβ specific recognition moiety and metal ion chelating elements show the potential for AD treatment. Therefore, our work will provide new insights into exploration of more potent amyloid inhibitors.
Collapse
Affiliation(s)
- Jie Geng
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
| | | | | | | | | |
Collapse
|
13
|
Girjal VU, Neelagund S, Krishnappa M. Antioxidant Properties of the Peptides Isolated From Ganoderma lucidum Fruiting Body. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9303-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
MANASSEH AT, Godwin JT, EMANGHE EU, Borisde OO. Phytochemical properties of Ganoderma applanatum as potential agents in the application of nanotechnology in modern day medical practice. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60277-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
15
|
Kai G, Yang S, Luo X, Zhou W, Fu X, Zhang A, Zhang Y, Xiao J. Co-expression of AaPMT and AaTRI effectively enhances the yields of tropane alkaloids in Anisodus acutangulus hairy roots. BMC Biotechnol 2011; 11:43. [PMID: 21526999 PMCID: PMC3111346 DOI: 10.1186/1472-6750-11-43] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 04/28/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tropane alkaloids (TA) including anisodamine, anisodine, hyoscyamine and scopolamine are a group of important anticholinergic drugs with rapidly increasing market demand, so it is significant to improve TA production by biotechnological approaches. Putrescine N-methyltransferase (PMT) was considered as the first rate-limiting upstream enzyme while tropinone reductase I (TRI) was an important branch-controlling enzyme involved in TA biosynthesis. However, there is no report on simultaneous introduction of PMT and TRI genes into any TA-producing plant including Anisodus acutangulus (A. acutangulus), which is a Solanaceous perennial plant that is endemic to China and is an attractive resource plant for production of TA. RESULTS In this study, 21 AaPMT and AaTRI double gene transformed lines (PT lines), 9 AaPMT single gene transformed lines (P lines) and 5 AaTRI single gene transformed lines (T lines) were generated. RT-PCR and real-time fluorescence quantitative analysis results revealed that total AaPMT (AaPMT T) and total AaTRI (AaTRI T) gene transcripts in transgenic PT, P and T lines showed higher expression levels than native AaPMT (AaPMT E) and AaTRI (AaTRI E) gene transcripts. As compared to the control and single gene transformed lines (P or T lines), PT transgenic hairy root lines produced significantly higher levels of TA. The highest yield of TA was detected as 8.104 mg/g dw in line PT18, which was 8.66, 4.04, and 3.11-times higher than those of the control (0.935 mg/g dw), P3 (highest in P lines, 2.004 mg/g dw) and T12 (highest in T lines, 2.604 mg/g dw), respectively. All the tested samples were found to possess strong radical scavenging capacity, which were similar to control. CONCLUSION In the present study, the co-expression of AaPMT and AaTRI genes in A. acutangulus hairy roots significantly improved the yields of TA and showed higher antioxidant activity than control because of higher total TA content, which is the first report on simultaneous introduction of PMT and TRI genes into TA-producing plant by biotechnological approaches.
Collapse
Affiliation(s)
- Guoyin Kai
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai, Normal University, Shanghai 200234, China
| | - Sheng Yang
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai, Normal University, Shanghai 200234, China
| | - Xiuqin Luo
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai, Normal University, Shanghai 200234, China
| | - Wentao Zhou
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai, Normal University, Shanghai 200234, China
| | - Xueqing Fu
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai, Normal University, Shanghai 200234, China
| | - Ang Zhang
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai, Normal University, Shanghai 200234, China
| | - Yan Zhang
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai, Normal University, Shanghai 200234, China
| | - Jianbo Xiao
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai, Normal University, Shanghai 200234, China
| |
Collapse
|
16
|
Kai G, Xu H, Zhou C, Liao P, Xiao J, Luo X, You L, Zhang L. Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 2011; 13:319-27. [PMID: 21335099 DOI: 10.1016/j.ymben.2011.02.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/27/2010] [Accepted: 02/08/2011] [Indexed: 02/05/2023]
Abstract
Tanshinone is a group of active diterpenes widely used in treatment of cardiovascular diseases. Here, we report the introduction of genes encoding 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and geranylgeranyl diphosphate synthase (GGPPS) involved in tanshinone biosynthesis into Salvia miltiorrhiza hairy roots by Agrobacterium-mediated gene transfer technology. Overexpression of SmGGPPS and/or SmHMGR as well as SmDXS in transgenic hairy root lines can significantly enhance the production of tanshinone to levels higher than that of the control (P<0.05). SmDXS showed much more powerful pushing effect than SmHMGR in tanshinone production, while SmGGPPS plays a more important role in stimulating tanshinone accumulation than the upstream enzyme SmHMGR or SmDXS in S. miltiorrhiza. Co-expression of SmHMGR and SmGGPPS resulted in highest production of tanshinone (about 2.727 mg/g dw) in line HG9, which was about 4.74-fold higher than that of the control (0.475 mg/g dw). All the tested transgenic hairy root lines showed higher antioxidant activity than the control. To our knowledge, this is the first report on enhancement of tanshinone content and antioxidant activity achieved through metabolic engineering of hairy roots by push-pull strategy in S. miltiorrhiza.
Collapse
Affiliation(s)
- Guoyin Kai
- Laboratory of Plant Biotechnology, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
La Ferla B, Airoldi C, Zona C, Orsato A, Cardona F, Merlo S, Sironi E, D'Orazio G, Nicotra F. Natural glycoconjugates with antitumor activity. Nat Prod Rep 2010; 28:630-48. [PMID: 21120227 DOI: 10.1039/c0np00055h] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer is one of the major causes of death worldwide. As a consequence, many different therapeutic approaches, including the use of glycosides as anticancer agents, have been developed. Various glycosylated natural products exhibit high activity against a variety of microbes and human tumors. In this review we classify glycosides according to the nature of their aglycone (non-saccharidic) part. Among them, we describe anthracyclines, aureolic acids, enediyne antibiotics, macrolide and glycopeptides presenting different strengths and mechanisms of action against human cancers. In some cases, the glycosidic residue is crucial for their activity, such as in anthracycline, aureolic acid and enediyne antibiotics; in other cases, Nature has exploited glycosylation to improve solubility or pharmacokinetic properties, as in the glycopeptides. In this review we focus our attention on natural glycoconjugates with anticancer properties. The structure of several of the carbohydrate moieties found in these conjugates and their role are described. The structure–activity relationship of some of these compounds, together with the structural features of their interaction with the biological targets, are also reported. Taken together, all this information is useful for the design of new potential anti-tumor drugs.
Collapse
Affiliation(s)
- Barbara La Ferla
- Department of Biotechnology and Bioscience, University of Milano Bicocca, Piazza della Scienza 2, I-20126, Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Karaman M, Jovin E, Malbaša R, Matavuly M, Popović M. Medicinal and edible lignicolous fungi as natural sources of antioxidative and antibacterial agents. Phytother Res 2010; 24:1473-81. [DOI: 10.1002/ptr.2969] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Abstract
AbstractAs a result of an interest in natural derived metabolites, lignicolous fungi have taken on great importance in biochemical investigations. In the present study, antioxidative screening analyses have included in vitro testing of different extracts (aqueous, methanol, chloroform) of four fungal species using three different assays: Fe2+/ascorbate-induced lipid peroxidation by TBA assay, the neutralisation of OH· radicals and the radical scavenging capacity with the DPPHk]assay. TLC analysis confirmed the existance of phenolics in the extracts, but also indicates the presence of some other compounds. The obtained results indicate that MeOH extracts manifested a degree of activity higher than that of CHCl3 extracts. With respect to antioxidative activity, the extracts can be ranged in the following declining order: G. lucidum, G. applanatum, M. giganteus and F. velutipes. These results suggest that analyzed fungi are of potential interest as sources of strong natural antioxidants that could be used in the food industries and nutrition.
Collapse
|