1
|
Mykles DL. Signaling Pathways That Regulate the Crustacean Molting Gland. Front Endocrinol (Lausanne) 2021; 12:674711. [PMID: 34234741 PMCID: PMC8256442 DOI: 10.3389/fendo.2021.674711] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
A pair of Y-organs (YOs) are the molting glands of decapod crustaceans. They synthesize and secrete steroid molting hormones (ecdysteroids) and their activity is controlled by external and internal signals. The YO transitions through four physiological states over the molt cycle, which are mediated by molt-inhibiting hormone (MIH; basal state), mechanistic Target of Rapamycin Complex 1 (mTORC1; activated state), Transforming Growth Factor-β (TGFβ)/Activin (committed state), and ecdysteroid (repressed state) signaling pathways. MIH, produced in the eyestalk X-organ/sinus gland complex, inhibits the synthesis of ecdysteroids. A model for MIH signaling is organized into a cAMP/Ca2+-dependent triggering phase and a nitric oxide/cGMP-dependent summation phase, which maintains the YO in the basal state during intermolt. A reduction in MIH release triggers YO activation, which requires mTORC1-dependent protein synthesis, followed by mTORC1-dependent gene expression. TGFβ/Activin signaling is required for YO commitment in mid-premolt. The YO transcriptome has 878 unique contigs assigned to 23 KEGG signaling pathways, 478 of which are differentially expressed over the molt cycle. Ninety-nine contigs encode G protein-coupled receptors (GPCRs), 65 of which bind a variety of neuropeptides and biogenic amines. Among these are putative receptors for MIH/crustacean hyperglycemic hormone neuropeptides, corazonin, relaxin, serotonin, octopamine, dopamine, allatostatins, Bursicon, ecdysis-triggering hormone (ETH), CCHamide, FMRFamide, and proctolin. Contigs encoding receptor tyrosine kinase insulin-like receptor, epidermal growth factor (EGF) receptor, and fibroblast growth factor (FGF) receptor and ligands EGF and FGF suggest that the YO is positively regulated by insulin-like peptides and growth factors. Future research should focus on the interactions of signaling pathways that integrate physiological status with environmental cues for molt control.
Collapse
Affiliation(s)
- Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA, United States
| |
Collapse
|
2
|
Sheehan G, Farrell G, Kavanagh K. Immune priming: the secret weapon of the insect world. Virulence 2020; 11:238-246. [PMID: 32079502 PMCID: PMC7051127 DOI: 10.1080/21505594.2020.1731137] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 01/26/2023] Open
Abstract
Insects are a highly successful group of animals that inhabit almost every habitat and environment on Earth. Part of their success is due to a rapid and highly effective immune response that identifies, inactivates, and eliminates pathogens. Insects possess an immune system that shows many similarities to the innate immune system of vertebrates, but they do not possess an equivalent system to the antibody-mediated adaptive immune response of vertebrates. However, some insect do display a process known as immune priming in which prior exposure to a sublethal dose of a pathogen, or pathogen-derived material, leads to an elevation in the immune response rendering the insect resistant to a subsequent lethal infection a short time later. This process is mediated by an increase in the density of circulating hemocytes and increased production of antimicrobial peptides. Immune priming is an important survival strategy for certain insects while other insects that do not show this response may have colony-level behaviors that may serve to limit the success of pathogens. Insects are now widely used as in vivo models for studying microbial pathogens of humans and for assessing the in vivo efficacy of antimicrobial agents. Knowledge of the process of immune priming in insects is essential in these applications as it may operate and augment the perceived in vivo antimicrobial activity of novel compounds.Abbreviations: 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene silver(I) acetate; SBC3: antimicrobial peptides; AMPs: dorsal-related immunity factor; DIF: Down syndrome cell adhesion molecule; Dscam: Lipopolysaccharide; LPS: Pathogen-associated molecular patterns; PAMPS: Patterns recognition receptors; PRR: Prophenoloxidase; PO: Toll-like receptors; TLRs: Toll/IL-1R; TIR, Transgenerational Immune Priming; TgIP: Tumor necrosis factor-α; TNF-α.
Collapse
Affiliation(s)
- Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Gemma Farrell
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
3
|
Ye X, Tang X, Wang X, Che J, Wu M, Liang J, Ye L, Qian Q, Li J, You Z, Zhang Y, Wang S, Zhong B. Improving Silkworm Genome Annotation Using a Proteogenomics Approach. J Proteome Res 2019; 18:3009-3019. [PMID: 31250652 DOI: 10.1021/acs.jproteome.8b00965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The silkworm genome has been deeply sequenced and assembled, but accurate genome annotation, which is important for modern biological research, remains far from complete. To improve silkworm genome annotation, we carried out a proteogenomics analysis using 9.8 million mass spectra collected from different tissues and developmental stages of the silkworm. The results confirmed the translational products of 4307 existing gene models and identified 1701 novel genome search-specific peptides (GSSPs). Using these GSSPs, 74 novel gene-coding sequences were identified, and 121 existing gene models were corrected. We also identified 1182 novel junction peptides based on an exon-skipping database that resulted in the identification of 973 alternative splicing sites. Furthermore, we performed RNA-seq analysis to improve silkworm genome annotation at the transcriptional level. A total of 1704 new transcripts and 1136 new exons were identified, 2581 untranslated regions (UTRs) were revised, and 1301 alternative splicing (AS) genes were identified. The transcriptomics results were integrated with the proteomics data to further complement and verify the new annotations. In addition, 14 incorrect genes and 10 skipped exons were verified using the two analysis methods. Altogether, we identified 1838 new transcripts and 1593 AS genes and revised 5074 existing genes using proteogenomics and transcriptome analyses. Data are available via ProteomeXchange with identifier PXD009672. The large-scale proteogenomics and transcriptome analyses in this study will greatly improve silkworm genome annotation and contribute to future studies.
Collapse
Affiliation(s)
- Xiaogang Ye
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Xiaoli Tang
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Xiaoxiao Wang
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Jiaqian Che
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Meiyu Wu
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Jianshe Liang
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Lupeng Ye
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Qiujie Qian
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Jianying Li
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Zhengying You
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Yuyu Zhang
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Shaohua Wang
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| | - Boxiong Zhong
- College of Animal Sciences , Zhejiang University , Hangzhou , P. R. China
| |
Collapse
|
4
|
Bian HX, Chen DB, Zheng XX, Ma HF, Li YP, Li Q, Xia RX, Wang H, Jiang YR, Liu YQ, Qin L. Transcriptomic analysis of the prothoracic gland from two lepidopteran insects, domesticated silkmoth Bombyx mori and wild silkmoth Antheraea pernyi. Sci Rep 2019; 9:5313. [PMID: 30926938 PMCID: PMC6440963 DOI: 10.1038/s41598-019-41864-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/20/2019] [Indexed: 11/09/2022] Open
Abstract
The prothoracic gland (PG) is an important endocrine organ of synthesis and secretion of ecdysteroids that play critical roles in insects. Here, we used a comparative transcriptomic approach to characterize some common features of PGs from two lepidopteran species Bombyx mori and Antheraea pernyi. Functional and pathway annotations revealed an overall similarity in gene profile between the two PG transcriptomes. As expected, almost all steroid hormone biosynthesis genes and the prothoracicitropic hormone receptor gene (Torso) were well represented in the two PGs. Impressively, two ecdysone receptor genes, eleven juvenile hormone related genes, more than 10 chemosensory protein genes, and a set of genes involved in circadian clock were also presented in the two PGs. Quantitative real time -PCR (qRT-PCR) validated the expression of 8 juvenile hormone and 12 clock related genes in B. mori PG, and revealed a different expression pattern during development in whole fifth larval instar. This contribution to insect PG transcriptome data will extend our understanding of the function and regulation of this important organ.
Collapse
Affiliation(s)
- Hai-Xu Bian
- College of Plant Protection, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.,College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Dong-Bin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Xi-Xi Zheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Hong-Fang Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Yu-Ping Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Qun Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Run-Xi Xia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Huan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Yi-Ren Jiang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.
| | - Yan-Qun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.
| | - Li Qin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| |
Collapse
|
5
|
Kazek M, Kaczmarek A, Wrońska AK, Boguś MI. Diet influences the bacterial and free fatty acid profiles of the cuticle of Galleria mellonella larvae. PLoS One 2019; 14:e0211697. [PMID: 30730940 PMCID: PMC6366757 DOI: 10.1371/journal.pone.0211697] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/19/2019] [Indexed: 11/19/2022] Open
Abstract
The evolutionary success of insects is arguably due to their ability to build up a complex, highly-adaptable and very effective defense system against numerous pathogens, including entomopathogenic fungi. This system relies on the humoral immune system and cellular defense reactions. The first line of defense against biological pathogens is a cuticle formed of several layers. The cuticular lipids may contain hydrocarbons, free fatty acids (FFA), alcohols, waxes, glycerides, aldehydes and sterols. Cuticular fatty acids may also play a role in defending against fungal invasion. Our present findings show that the diet of insects can have a significant effect on their sensitivity and defense response to pathogens; for example, while G. mellonella larvae fed on beeswax had a similar appearance to those reared on a semi-artificial diet, they possessed a different cuticular free fatty acid (FFA) profile to those fed on a semi-artificial diet, and were less sensitive to Conidiobolus coronatus infection. It is possible that the presence of heneicosenoic acid (C21:1) and other long-chain free fatty acids (C22:0, C24:0, C26:0), as well as Brevibacillus laterosporus bacteria, on the cuticle of larvae fed on beeswax, plays a protective role against fungal invasion. Insect pests represent a global problem. An understanding of the basic mechanisms underlying the fungal infection of insects might provide a clearer insight into their defenses, thus allowing the design of more effective, and environmentally-friendly, means of controlling them. The greater wax moth is an excellent model for the study of immunology resistance. Knowledge of the influence of diet on pathogen resistance in insects can be also useful for creating a model of human diseases caused by pathogens, such as Candia albicans.
Collapse
Affiliation(s)
- Michalina Kazek
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Twarda, Poland
| | - Agata Kaczmarek
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Twarda, Poland
| | - Anna Katarzyna Wrońska
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Twarda, Poland
| | - Mieczysława Irena Boguś
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Twarda, Poland
- BIOMIBO, Warsaw, Poland
| |
Collapse
|
6
|
Li JY, Cai F, Ye XG, Liang JS, Li JK, Wu MY, Zhao D, Jiang ZD, You ZY, Zhong BX. Comparative Proteomic Analysis of Posterior Silk Glands of Wild and Domesticated Silkworms Reveals Functional Evolution during Domestication. J Proteome Res 2017; 16:2495-2507. [DOI: 10.1021/acs.jproteome.7b00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian-ying Li
- Institute
of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | | | | | | | - Jian-ke Li
- Institute
of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
7
|
Development of chemical isotope labeling liquid chromatography mass spectrometry for silkworm hemolymph metabolomics. Anal Chim Acta 2016; 942:1-11. [DOI: 10.1016/j.aca.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/15/2016] [Accepted: 06/01/2016] [Indexed: 11/24/2022]
|
8
|
Bovilla VR, Padwal MK, Siripurapu P, Basu B, Mamillapalli A. Developmental proteome dynamics of silk glands in the 5th instar larval stage of Bombyx mori L (CSR2×CSR4). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:860-8. [PMID: 27032299 DOI: 10.1016/j.bbapap.2016.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/23/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED Bivoltine breed of Bombyx mori (B. mori), CSR2×CSR4 is an Indian high yielding silkworm strain. Silk gland proteome of this strain was not studied till now. Methods of improving silk production by chemical approaches have reached saturation and transgenic methods are needed in further to boost silk production. An understanding of proteomic changes during silk gland development helps in designing experiments to enhance silk production by transgenic approaches. The present study reports comprehensive developmental proteomic analysis of CSR2×CSR4, 5th instar whole silk glands. Eighty six unique protein IDs were obtained from the analysis of one hundred and twenty protein spots. Among the identified proteins, majority of the proteins were involved in metabolism (41%) followed by proteins involved in protein homeostasis (30%). Sixty percent of the identified proteins showed dynamic nature by expression analysis from day 1, day 3, day 5 and day 7 gels. In comparison to the published data till now on silk gland proteomics this study reports identification of 20 new proteins from the silk glands for the first time. SIGNIFICANCE The paper reports for the first time proteomic analysis of high yielding silkworm strain of India. The study analyzes whole silk glands to understand the tissue in total during 5th instar development. Lowering fibroin content made us to identify a large number of new proteins which were not reported till now in the silk gland proteome. Proteins which are involved in silk synthesis and release were found to be developmentally regulated. The study identified alanine, serine and glycine tRNA ligases for the first time and also showed their up-regulation on day 7 of 5th instar larval stage. The amino acid repeat of fibroin protein is enriched with the three amino acids, glycine, serine and alanine. The identified proteins could be studied further to understand their functional role in-depth.
Collapse
Affiliation(s)
- Venugopal Reddy Bovilla
- Department of Biotechnology, GITAM Institute of Science, GITAM University, Visakhapatnam 530045, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Prasanthi Siripurapu
- Department of Biotechnology, GITAM Institute of Science, GITAM University, Visakhapatnam 530045, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Anitha Mamillapalli
- Department of Biotechnology, GITAM Institute of Science, GITAM University, Visakhapatnam 530045, India.
| |
Collapse
|
9
|
Reassessing ecdysteroidogenic cells from the cell membrane receptors' perspective. Sci Rep 2016; 6:20229. [PMID: 26847502 PMCID: PMC4742824 DOI: 10.1038/srep20229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023] Open
Abstract
Ecdysteroids secreted by the prothoracic gland (PG) cells of insects control the
developmental timing of their immature life stages. These cells have been
historically considered as carrying out a single function in insects, namely the
biochemical conversion of cholesterol to ecdysteroids and their secretion. A growing
body of evidence shows that PG cells receive multiple cues during insect development
so we tested the hypothesis that they carry out more than just one function in
insects. We characterised the molecular nature and developmental profiles of cell
membrane receptors in PG cells of Bombyx mori during the final larval stage
and determined what receptors decode nutritional, developmental and physiological
signals. Through iterative approaches we identified a complex repertoire of cell
membrane receptors that are expressed in intricate patterns and activate previously
unidentified signal transduction cascades in PG cells. The expression patterns of
some of these receptors explain precisely the mechanisms that are known to control
ecdysteroidogenesis. However, the presence of receptors for the notch, hedgehog and
wingless signalling pathways and the expression of innate immunity-related receptors
such as phagocytosis receptors, receptors for microbial ligands and Toll-like
receptors call for a re-evaluation of the role these cells play in insects.
Collapse
|
10
|
Li JY, Ye LP, Che JQ, Song J, You ZY, Wang SH, Zhong BX. Proteome identification of the silkworm middle silk gland. Data Brief 2016; 6:903-7. [PMID: 26937469 PMCID: PMC4753389 DOI: 10.1016/j.dib.2016.01.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/21/2015] [Accepted: 01/25/2016] [Indexed: 12/01/2022] Open
Abstract
To investigate the functional differentiation among the anterior (A), middle (M), and posterior (P) regions of silkworm middle silk gland (MSG), their proteomes were characterized by shotgun LC–MS/MS analysis with a LTQ-Orbitrap mass spectrometer. To get better proteome identification and quantification, triplicate replicates of mass spectrometry analysis were performed for each sample. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaíno et al., 2014) [1] via the PRIDE partner repository (Vizcaino, 2013) [2] with the dataset identifier PXD003371. The peptide identifications that were further processed by PeptideProphet program in Trans-Proteomic Pipeline (TPP) after database search with Mascot software were also available in .XML format files. Data presented here are related to a research article published in Journal of Proteomics by Li et al. (2015) [3].
Collapse
Affiliation(s)
- Jian-Ying Li
- Institute of Developmental and Regenerative Biology, Hangzhou Normal University, Hangzhou 310036, PR China; College of Animal Sciences, Zhejiang University, Hangzhou 310029, PR China
| | - Lu-Peng Ye
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, PR China
| | - Jia-Qian Che
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, PR China
| | - Jia Song
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, PR China
| | - Zheng-Ying You
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, PR China
| | - Shao-Hua Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, PR China
| | - Bo-Xiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, PR China
| |
Collapse
|
11
|
Stalmach M, Wilczek G, Homa J, Szulinska E. Antioxidative and immunological responses in the haemolymph of wolf spider Xerolycosa nemoralis (Lycosidae) exposed to starvation and dimethoate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:551-559. [PMID: 26301693 DOI: 10.1016/j.envpol.2015.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/20/2015] [Accepted: 08/06/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to assess the intensity of enzymatic antioxidative parameters [catalase (CAT), glutathione peroxidase (GSTPx), glutathione reductase (GR), total antioxidant capacity (TAC)] and percentage of high granularity cells as well as low to medium granularity cells in haemolymph of wolf spiders Xerolycosa nemoralis exposed to starvation and dimethoate under laboratory conditions. Only in starved males, haemolymph included a lower percentage of high granularity cells, accompanied by high activity of CAT and GSTPx, than in the control. Exposure of males to dimethoate increased CAT activity, after single application, and significantly enhanced GR activity, after five-time application. In females, five-time contact with dimethoate elevated the percentage of high granularity cells. As in comparison to females, male X. nemoralis were more sensitive to the applied stressing factors, it may be concluded that in natural conditions both food deficiency and chemical stress may diminish the immune response of their organisms.
Collapse
Affiliation(s)
- Monika Stalmach
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| | - Grażyna Wilczek
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland.
| | - Joanna Homa
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, Krakow 30-387, Poland
| | - Elżbieta Szulinska
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, Katowice 40-007, Poland
| |
Collapse
|
12
|
Li JY, Ye LP, Che JQ, Song J, You ZY, Yun KC, Wang SH, Zhong BX. Comparative proteomic analysis of the silkworm middle silk gland reveals the importance of ribosome biogenesis in silk protein production. J Proteomics 2015; 126:109-20. [DOI: 10.1016/j.jprot.2015.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/19/2015] [Accepted: 06/01/2015] [Indexed: 01/20/2023]
|
13
|
Dwivedi SB, Muthusamy B, Kumar P, Kim MS, Nirujogi RS, Getnet D, Ahiakonu P, De G, Nair B, Gowda H, Prasad TSK, Kumar N, Pandey A, Okulate M. Brain proteomics of Anopheles gambiae. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:421-37. [PMID: 24937107 DOI: 10.1089/omi.2014.0007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Anopheles gambiae has a well-adapted system for host localization, feeding, and mating behavior, which are all governed by neuronal processes in the brain. However, there are no published reports characterizing the brain proteome to elucidate neuronal signaling mechanisms in the vector. To this end, a large-scale mapping of the brain proteome of An. gambiae was carried out using high resolution tandem mass spectrometry, revealing a repertoire of >1800 proteins, of which 15% could not be assigned any function. A large proportion of the identified proteins were predicted to be involved in diverse biological processes including metabolism, transport, protein synthesis, and olfaction. This study also led to the identification of 10 GPCR classes of proteins, which could govern sensory pathways in mosquitoes. Proteins involved in metabolic and neural processes, chromatin modeling, and synaptic vesicle transport associated with neuronal transmission were predominantly expressed in the brain. Proteogenomic analysis expanded our findings with the identification of 15 novel genes and 71 cases of gene refinements, a subset of which were validated by RT-PCR and sequencing. Overall, our study offers valuable insights into the brain physiology of the vector that could possibly open avenues for intervention strategies for malaria in the future.
Collapse
Affiliation(s)
- Sutopa B Dwivedi
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, Karnataka, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang SH, You ZY, Ye LP, Che J, Qian Q, Nanjo Y, Komatsu S, Zhong BX. Quantitative Proteomic and Transcriptomic Analyses of Molecular Mechanisms Associated with Low Silk Production in Silkworm Bombyx mori. J Proteome Res 2014; 13:735-51. [DOI: 10.1021/pr4008333] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shao-hua Wang
- College
of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Zheng-ying You
- College
of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Lu-peng Ye
- College
of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Jiaqian Che
- College
of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Qiujie Qian
- College
of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Yohei Nanjo
- National
Institute of Crop Science, NARO, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- National
Institute of Crop Science, NARO, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | - Bo-xiong Zhong
- College
of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| |
Collapse
|
15
|
Nucleo-cytoplasmic shuttling of VPg encoded by Wheat yellow mosaic virus requires association with the coat protein. J Gen Virol 2013; 94:2790-2802. [DOI: 10.1099/vir.0.055830-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
VPg (virus protein, genome-linked) is a multifunctional protein that plays important roles in viral multiplication in the cytoplasm. However, a number of VPgs encoded by plant viruses target the nucleus and this appears to be biologically significant. These VPgs may therefore be translocated between nuclear and cytoplasmic compartments during virus infection, but such nucleo-cytoplasmic transport has not been demonstrated. We report that VPg encoded by Wheat yellow mosaic virus (WYMV, genus Bymovirus, family Potyviridae) accumulated in both the nucleus and cytoplasm of infected cells, but localized exclusively in the nucleus when expressed alone in plants. Computational analyses predicted the presence of a nuclear localization signal (NLS) and a nuclear export signal (NES) in WYMV VPg. Mutational analyses showed that both the N-terminal and the NLS domains of VPg contribute to the efficiency of nuclear targeting. In vitro and in planta assays indicated that VPg interacts with WYMV coat protein (CP) and proteinase 1 (P1) proteins. Observation of VPg fused to a fluorescent protein and subcellular fractionation experiments showed that VPg was translocated to the cytoplasm when co-expressed with CP, but not with P1. Mutations in the NES domain or treatment with leptomycin B prevented VPg translocation to the cytoplasm when co-expressed with CP. Our results suggest that association with CP facilitates the nuclear export of VPg during WYMV infection.
Collapse
|
16
|
Zhong XW, Zou Y, Liu SP, Yi QY, Hu CM, Wang C, Xia QY, Zhao P. Proteomic-based insight into Malpighian tubules of silkworm Bombyx mori. PLoS One 2013; 8:e75731. [PMID: 24098719 PMCID: PMC3787086 DOI: 10.1371/journal.pone.0075731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/15/2013] [Indexed: 11/18/2022] Open
Abstract
Malpighian tubules (MTs) are highly specific organs of arthropods (Insecta, Myriapoda and Arachnida) for excretion and osmoregulation. In order to highlight the important genes and pathways involved in multi-functions of MTs, we performed a systematic proteomic analysis of silkworm MTs in the present work. Totally, 1,367 proteins were identified by one-dimensional gel electrophoresis coupled with liquid chromatography-tandem mass spectrometry, and as well as by Trans Proteomic Pipeline (TPP) and Absolute protein expression (APEX) analyses. Forty-one proteins were further identified by two-dimensional gel electrophoresis. Some proteins were revealed to be significantly associated with various metabolic processes, organic solute transport, detoxification and innate immunity. Our results might lay a good foundation for future functional studies of MTs in silkworm and other lepidoptera.
Collapse
Affiliation(s)
- Xiao-wu Zhong
- State Key Laboratory of Silkworm Genome Biology (Southwest University), Chongqing, China
| | - Yong Zou
- State Key Laboratory of Silkworm Genome Biology (Southwest University), Chongqing, China
| | - Shi-ping Liu
- State Key Laboratory of Silkworm Genome Biology (Southwest University), Chongqing, China
| | - Qi-ying Yi
- State Key Laboratory of Silkworm Genome Biology (Southwest University), Chongqing, China
| | - Cui-mei Hu
- State Key Laboratory of Silkworm Genome Biology (Southwest University), Chongqing, China
| | - Chen Wang
- State Key Laboratory of Silkworm Genome Biology (Southwest University), Chongqing, China
| | - Qing-you Xia
- State Key Laboratory of Silkworm Genome Biology (Southwest University), Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology (Southwest University), Chongqing, China
- * E-mail:
| |
Collapse
|
17
|
Zhang YL, Xue RY, Cao GL, Zhu YX, Pan ZH, Gong CL. Shotgun proteomic analysis of wing discs from the domesticated silkworm (Bombyx mori) during metamorphosis. Amino Acids 2013; 45:1231-41. [PMID: 24005483 DOI: 10.1007/s00726-013-1588-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/27/2013] [Indexed: 11/24/2022]
Abstract
Proteomic profiles from the wing discs of silkworms at the larval, pupal, and adult moth stages were determined using shotgun proteomics and MS sequencing. We identified 241, 218, and 223 proteins from the larval, pupal, and adult moth stages, respectively, of which 139 were shared by all three stages. In addition, there were 55, 37, and 43 specific proteins identified at the larval, pupal, and adult moth stages, respectively. More metabolic enzymes were identified among the specific proteins expressed in the wing disc of larvae compared with pupae and moths. The identification of FKBP45 and the chitinase-like protein EN03 as two proteins solely expressed at the larval stage indicate these two proteins may be involved in the immunological functions of larvae. The myosin heavy chain was identified in the pupal wing disc, suggesting its involvement in the formation of wing muscle. Some proteins, such as proteasome alpha 3 subunits and ribosomal proteins, specifically identified from the moth stage may be involved in the degradation of old cuticle proteins and new cuticle protein synthesis. Gene ontology analysis of proteins specific to each of these three stages enabled their association with cellular component, molecular function, and biological process categories. The analysis of similarities and differences in these identified proteins will greatly further our understanding of wing disc development in silkworm and other insects.
Collapse
Affiliation(s)
- Yi-ling Zhang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Chen JE, Li JY, You ZY, Liu LL, Liang JS, Ma YY, Chen M, Zhang HR, Jiang ZD, Zhong BX. Proteome Analysis of Silkworm, Bombyx mori, Larval Gonads: Characterization of Proteins Involved in Sexual Dimorphism and Gametogenesis. J Proteome Res 2013; 12:2422-38. [DOI: 10.1021/pr300920z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jin-e Chen
- College of
Animal Sciences, Zhejiang University, Hangzhou
310058, PR China
- Institute
of Sericultural Research, Zhejiang Academy of Agricultural Sciences, Hangzhou
310021, PR China
| | - Jian-ying Li
- College of
Animal Sciences, Zhejiang University, Hangzhou
310058, PR China
- Institute
of Developmental and
Regenerative Biology, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Zheng-ying You
- College of
Animal Sciences, Zhejiang University, Hangzhou
310058, PR China
| | - Li-li Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jian-she Liang
- College of Environmental and
Resource Sciences, Zhejiang University,
Hangzhou 310058, PR China
| | - Ying-ying Ma
- Zhejiang California International
NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310029, PR China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Hua-rong Zhang
- Zhejiang California International
NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310029, PR China
| | - Zhen-dong Jiang
- College of
Animal Sciences, Zhejiang University, Hangzhou
310058, PR China
| | - Bo-xiong Zhong
- College of
Animal Sciences, Zhejiang University, Hangzhou
310058, PR China
| |
Collapse
|
19
|
Shotgun proteomic analysis on the diapause and non-diapause eggs of domesticated silkworm Bombyx mori. PLoS One 2013; 8:e60386. [PMID: 23580252 PMCID: PMC3620277 DOI: 10.1371/journal.pone.0060386] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 02/27/2013] [Indexed: 12/31/2022] Open
Abstract
To clarify the molecular mechanisms of silkworm diapause, it is necessary to investigate the molecular basis at protein level. Here, the spectra of peptides digested from silkworm diapause and non-diapause eggs were obtained from liquid chromatography tandem mass spectrometry (LC-MS/MS) and were analyzed by bioinformatics methods. A total of 501 and 562 proteins were identified from the diapause and non-diapause eggs respectively, of which 309 proteins were shared commonly. Among these common-expressed proteins, three main storage proteins (vitellogenin precursor, egg-specific protein and low molecular lipoprotein 30 K precursor), nine heat shock proteins (HSP19.9, 20.1, 20.4, 20.8, 21.4, 23.7, 70, 90-kDa heat shock protein and heat shock cognate protein), 37 metabolic enzymes, 22 ribosomal proteins were identified. There were 192 and 253 unique proteins identified in the diapause and non-diapause eggs respectively, of which 24 and 48 had functional annotations, these unique proteins indicated that the metabolism, translation of the mRNA and synthesis of proteins were potentially more highly represented in the non-dipause eggs than that in the diapause eggs. The relative mRNA levels of four identified proteins in the two kinds of eggs were also compared using quantitative reverse transcription PCR (qRT-PCR) and showed some inconsistencies with protein expression. GO signatures of 486 out of the 502 and 545 out of the 562 proteins identified in the diapause and non-diapause eggs respectively were available. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed the Metabolism, Translation and Transcription pathway were potentially more active in the non-dipause eggs at this stage.
Collapse
|
20
|
Shotgun proteomic analysis of plasma from dairy cattle suffering from footrot: characterization of potential disease-associated factors. PLoS One 2013; 8:e55973. [PMID: 23418487 PMCID: PMC3572155 DOI: 10.1371/journal.pone.0055973] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/04/2013] [Indexed: 01/17/2023] Open
Abstract
The plasma proteome of healthy dairy cattle and those with footrot was investigated using a shotgun LC-MS/MS approach. In total, 648 proteins were identified in healthy plasma samples, of which 234 were non-redundant proteins and 123 were high-confidence proteins; 712 proteins were identified from footrot plasma samples, of which 272 were non-redundant proteins and 138 were high-confidence proteins. The high-confidence proteins showed significant differences between healthy and footrot plasma samples in molecular weight, isoelectric points and the Gene Ontology categories. 22 proteins were found that may differentiate between the two sets of plasma proteins, of which 16 potential differential expression (PDE) proteins from footrot plasma involved in immunoglobulins, innate immune recognition molecules, acute phase proteins, regulatory proteins, and cell adhesion and cytoskeletal proteins; 6 PDE proteins from healthy plasma involved in regulatory proteins, cytoskeletal proteins and coagulation factors. Of these PDE proteins, haptoglobin, SERPINA10 protein, afamin precursor, haptoglobin precursor, apolipoprotein D, predicted peptidoglycan recognition protein L (PGRP-L) and keratan sulfate proteoglycan (KS-PG) were suggested to be potential footrot-associated factors. The PDE proteins PGRP-L and KS-PG were highlighted as potential biomarkers of footrot in cattle. The resulting protein lists and potential differentially expressed proteins may provide valuable information to increase understanding of plasma protein profiles in cattle and to assist studies of footrot-associated factors.
Collapse
|
21
|
Banville N, Browne N, Kavanagh K. Effect of nutrient deprivation on the susceptibility of Galleria mellonella larvae to infection. Virulence 2012; 3:497-503. [PMID: 23076277 DOI: 10.4161/viru.21972] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Larvae of Galleria mellonella are widely used to study the virulence of microbial pathogens and for assessing the potency of antimicrobial agents. This work examined the effect of nutritional deprivation on the ability of larvae to withstand infection in order to establish standardized conditions for the treatment of larvae for in vivo testing. Larvae deprived of food for seven days demonstrated an increased susceptibility to infection by the yeast Candida albicans. These larvae displayed a lower density of hemocytes compared with controls but hemocytes from starved and control larvae demonstrated the same ability to kill yeast cells. Hemolymph from starved larvae demonstrated reduced expression of a range of antimicrobial peptides (e.g., lipocalin) and immune proteins (e.g., apolipophorin and arylphorin). Deprivation of G. mellonella larvae of food leads to a reduction in the cellular and immune responses and an increased susceptibility to infection. Researchers utilizing these larvae should ensure adequate food is provided to larvae in order to allow valid comparisons to be made between results from different laboratories.
Collapse
Affiliation(s)
- Nessa Banville
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | | | | |
Collapse
|
22
|
Qin L, Xia H, Shi H, Zhou Y, Chen L, Yao Q, Liu X, Feng F, Yuan Y, Chen K. Comparative proteomic analysis reveals that caspase-1 and serine protease may be involved in silkworm resistance to Bombyx mori nuclear polyhedrosis virus. J Proteomics 2012; 75:3630-8. [PMID: 22546490 DOI: 10.1016/j.jprot.2012.04.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/30/2012] [Accepted: 04/11/2012] [Indexed: 11/17/2022]
Abstract
The silkworm Bombyx mori is of great economic value. The B. mori nuclear polyhedrosis virus (BmNPV) is one of the most common and severe pathogens for silkworm. Although certain immune mechanisms exist in silkworms, most silkworms are still susceptible to BmNPV infection. Interestingly, BmNPV infection resistance in some silkworm strains is varied and naturally existing. We have previously established a silkworm strain NB by genetic cross, which is highly resistant to BmNPV invasion. To investigate the molecular mechanism of silkworm resistance to BmNPV infection, we employed proteomic approach and genetic cross to globally identify proteins differentially expressed in parental silkworms NB and 306, a BmNPV-susceptible strain, and their F(1) hybrids. In all, 53 different proteins were found in direct cross group (NB♀, 306♂, F(1) hybrid) and 21 in reciprocal cross group (306♀, NB♂, F(1) hybrid). Gene ontology and KEGG pathway analyses showed that most of these different proteins are located in cytoplasm and are involved in many important metabolisms. Caspase-1 and serine protease expressed only in BmNPV-resistant silkworms, but not in BmNPV-susceptible silkworms, which was further confirmed by Western blot. Taken together, our data suggests that both caspase-1 and serine protease play a critical role in silkworm resistance against BmNPV infection.
Collapse
Affiliation(s)
- Lvgao Qin
- School of Food and Biological Engineering, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Proteome analysis on lethal effect of l 2 in the sex-linked balanced lethal strains of silkworm, Bombyx mori. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-012-0006-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Ge LQ, Cheng Y, Wu JC, Jahn GC. Proteomic analysis of insecticide triazophos-induced mating-responsive proteins of Nilaparvata lugens Stål (Hemiptera: Delphacidae). J Proteome Res 2011; 10:4597-612. [PMID: 21800909 DOI: 10.1021/pr200414g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), is a classic example of a resurgent pest induced by insecticides. It has been demonstrated that triazophos treatment causes an increase in the content of male accessory gland proteins (Acps) that can be transferred to females via mating, influencing female reproduction. However, the mechanism of this type of insecticide-induced Acps in males and the subsequent stimulation of reproduction in females are not well understood. To identify changes in the types of Acps and reproductive proteins in mated females, we conducted a comparative proteomic analysis. Six samples were categorized into four different groups: (1) untreated unmated males compared to treated unmated males (UUM vs TUM); (2) treated unmated males compared to treated mated males (TUM vs TMM); (3) untreated unmated females compared to treated unmated females (UUF vs TUF); (4) treated unmated females compared to treated mated females (TUF vs TMF). Protein expression changes among the four different groups were examined by two-dimensional gel electrophoresis (2-DE) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Of the 500-600 reproducibly detected protein spots on each gel, 107 protein spots were differentially expressed between the four different groups. Of the 63 proteins identified by LC-MS/MS analysis, 38 were up-regulated and 25 were down-regulated in the four different groups. Some novel proteins related to fecundity were observed including spermatogenesis-associated protein 5, testis development protein NYD-SP6, arginine kinase, actin-5C, vitellogenin, and ovarian serine protease nudel. The elevated expression of novel fecundity proteins in six samples of N. lugens females and males due to exposure to triazophos was confirmed by quantitative real-time PCR (qRT-PCR). The results suggest that these proteins may participate in the reproductive process of N. lugens adult females and males. Our findings fill a gap in understanding the relationship between insecticide-treated males and the stimulated reproduction of N. lugens females.
Collapse
Affiliation(s)
- Lin-Quan Ge
- School of Plant Protection, Yangzhou University , Yangzhou 225009, PR China
| | | | | | | |
Collapse
|
25
|
Hu X, Chen L, Xiang X, Yang R, Yu S, Wu X. Proteomic analysis of peritrophic membrane (PM) from the midgut of fifth-instar larvae, Bombyx mori. Mol Biol Rep 2011; 39:3427-34. [PMID: 21725639 DOI: 10.1007/s11033-011-1114-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 06/17/2011] [Indexed: 02/03/2023]
Abstract
The insect peritrophic membrane (PM), separating midgut epithelium and intestinal contents, is protective lining for the epithelium and plays the important role in absorption of nutrients, and also is the first barrier to the pathogens ingested through oral feeding. In order to understand the biological function of silkworm larval PM, shotgun liquid chromatography tandem mass spectrometry (LC-MS/MS) approach was applied to investigate its protein composition. Total 47 proteins were identified, of which 51.1% of the proteins had the isoelectric point (pI) within the range of 5-7, and 53.2% had molecular weights within the range 15-45 kDa. Most of them were found to be closely related to larval nutrients metabolism and innate immunity. Furthermore, these identified proteins were annotated according to Gene Ontology Annotation in terms of molecular function, biological process and cell localization. Most of the proteins had catalytic activity, binding activity and transport function. The knowledge obtained from this study will favour us to well understand the role of larval PM in larval physiological activities, and also help us to find the potential target and design better biopesticides to control pest, particularly the Lepidoptera insect.
Collapse
Affiliation(s)
- Xiaolong Hu
- College of Animal Science, Zhejiang University, Hangzhou, 310029, China
| | | | | | | | | | | |
Collapse
|
26
|
Li JY, Yang HJ, Lan TY, Wei H, Zhang HR, Chen M, Fan W, Ma YY, Zhong BX. Expression profiling and regulation of genes related to silkworm posterior silk gland development and fibroin synthesis. J Proteome Res 2011; 10:3551-64. [PMID: 21657221 DOI: 10.1021/pr200196x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The posterior silk gland (PSG) is the most important suborgan responsible for the synthesis and secretion of silk core fibroin proteins in silkworm. Here, we performed genome-scale expression profiling analysis of silkworm PSG at the fourth molting (M4) and at day 1 (V1), day 3 (V3), day 5 (V5), and wandering stage (W) of the fifth instar by microarray analysis with 22 987 probes. We found that the five genes of silk proteins secreted from PSG including fibroin heavy (H) and light (L) chains, P25, seroin 1, and seroin 2 basically showed obvious up-regulation at V3 which lasted to V5, while slight down-regulation at W. The expression of translation-related genes including ribosomal proteins and translation initiation factors generally remained stable from M4 to V5, whereas it showed clear down-regulation at W. Clustering analysis of the 643 significantly differentially expressed transcripts revealed that 43 of the important genes including seroin 1 and sugar transporter protein had co-expression patterns which were consistent with the rate changes of fibroin synthesis and PSG growth. Pathway analysis disclosed that the genes in different clusters might have co-regulations and direct interactions. These genes were supposed to be involved in the fibroin synthesis and secretion. The differential expression of several hormone-related genes also suggested their functions on the regulation of PSG development and fibroin synthesis. 2D gel-based proteomics and phosphoproteomics profiling revealed that the phosphorylated proteins accounted for no more than one-sixth of the total proteins at each stage, which was much lower than the level in normal eukaryotic cells. Changes in the phosphorylation status and levels of several proteins such as actin-depolymerizing factor 1 and enolase might be deeply involved in fibroin secretion and tissue development. Shotgun proteomic profiling combined with label-free quantification analysis on the PSG at V3, V5, and W revealed that many small heat shock proteins (sHSP) were specially expressed at W, which was substantially consistent with the results from 2-DE analysis, and implied the close correlations of sHSP with the physiological states of PSG at W. A majority of significantly up-regulated proteins at V5 were related to ribosome pathway, which was different from the microarray results, implying that the translation-level regulation of ribosomal proteins might be critical for fibroin synthesis. In contrast, the ubiquitin-proteasome pathway related proteins appeared obviously up-regulated at W, suggesting that the programmed cell death process of PSG cells might be started before cocooning.
Collapse
Affiliation(s)
- Jian-ying Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yang H, Zhou Z, Zhang H, Chen M, Li J, Ma Y, Zhong B. Shotgun proteomic analysis of the fat body during metamorphosis of domesticated silkworm (Bombyx mori). Amino Acids 2010; 38:1333-42. [PMID: 19730979 DOI: 10.1007/s00726-009-0342-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Accepted: 08/21/2009] [Indexed: 11/25/2022]
Abstract
Protein expression profiles in the fat bodies of larval, pupal, and moth stages of silkworm were determined using shotgun proteomics and MS sequencing. We identified 138, 217, and 86 proteins from the larval, pupal and moth stages, respectively, of which 12 were shared by the 3 stages. There were 92, 150, and 45 specific proteins identified in the larval, pupal and moth stages, respectively, of which 17, 68, and 9 had functional annotations. Among the specific proteins identified in moth fat body, sex-specific storage-protein 1 precursor and chorion protein B8 were unique to the moth stage, indicating that the moth stage fat body is more important for adult sexual characteristics. Many ribosomal proteins (L23, L4, L5, P2, S10, S11, S15A and S3) were found in pupal fat bodies, whereas only three (L14, S20, and S7) and none were identified in larval and moth fat bodies, respectively. Twenty-three metabolic enzymes were identified in the pupal stage, while only four and two were identified in the larval and moth stages, respectively. In addition, an important protein, gloverin2, was only identified in larval fat bodies. Gene ontology (GO) analysis of the proteins specific to the three stages linked them to the cellular component, molecular function, and biological process categories. The most diverse GO functional classes were involved by the relatively less specific proteins identified in larva. GO analysis of the proteins shared among the three stages showed that the pupa and moth stages shared the most similar protein functions in the fat body.
Collapse
Affiliation(s)
- Huijuan Yang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
Li J, Hosseini Moghaddam SH, Chen X, Chen M, Zhong B. Shotgun strategy-based proteome profiling analysis on the head of silkworm Bombyx mori. Amino Acids 2010; 39:751-61. [PMID: 20198493 DOI: 10.1007/s00726-010-0517-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 02/05/2010] [Indexed: 01/09/2023]
Abstract
Insect head is comprised of important sensory systems to communicate with internal and external environment and endocrine organs such as brain and corpus allatum to regulate insect growth and development. To comprehensively understand how all these components act and interact within the head, it is necessary to investigate their molecular basis at protein level. Here, the spectra of peptides digested from silkworm larval heads were obtained from liquid chromatography tandem mass spectrometry (LC-MS/MS) and were analyzed by bioinformatics methods. Totally, 539 proteins with a low false discovery rate (FDR) were identified by searching against an in-house database with SEQUEST and X!Tandem algorithms followed by trans-proteomic pipeline (TPP) validation. Forty-three proteins had the theoretical isoelectric point (pI) greater than 10 which were too difficult to separate by two-dimensional gel electrophoresis (2-DE). Four chemosensory proteins, one odorant-binding protein, two diapause-related proteins, and a lot of cuticle proteins, interestingly including pupal cuticle proteins were identified. The proteins involved in nervous system development, stress response, apoptosis and so forth were related to the physiological status of head. Pathway analysis revealed that many proteins were highly homologous with the human proteins which involved in human neurodegenerative disease pathways, probably implying a symptom of the forthcoming metamorphosis of silkworm. These data and the analysis methods were expected to be of benefit to the proteomics research of silkworm and other insects.
Collapse
Affiliation(s)
- Jianying Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | | | | | | | | |
Collapse
|
29
|
Gan LP, Zhang WY, Niu YS, Xu L, Xi J, Ji MM, Xu SQ. Construction and application of an electronic spatiotemporal expression profile and gene ontology analysis platform based on the EST database of the silkworm, Bombyx mori. JOURNAL OF INSECT SCIENCE (ONLINE) 2010; 10:114. [PMID: 20874595 PMCID: PMC3016962 DOI: 10.1673/031.010.11401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 01/25/2010] [Indexed: 05/29/2023]
Abstract
An Expressed Sequence Tag (EST) is a short sub-sequence of a transcribed cDNA sequence. ESTs represent gene expression and give good clues for gene expression analysis. Based on EST data obtained from NCBI, an EST analysis package was developed (apEST). This tool was programmed for electronic expression, protein annotation and Gene Ontology (GO) category analysis in Bombyx mori (L.) (Lepidoptera: Bombycidae). A total of 245,761 ESTs (as of 01 July 2009) were searched and downloaded in FASTA format, from which information for tissue type, development stage, sex and strain were extracted, classified and summed by running apEST. Then, corresponding distribution profiles were formed after redundant parts had been removed. Gene expression profiles for one tissue of different developmental stages and from one development stage of the different tissues were attained. A housekeeping gene and tissue-and-stage-specific genes were selected by running apEST, contrasting with two other online analysis approaches, microarray-based gene expression profile on SilkDB (BmMDB) and EST profile on NCBI. A spatio-temporal expression profile of catalase run by apEST was then presented as a three-dimensional graph for the intuitive visualization of patterns. A total of 37 query genes confirmed from microarray data and RT-PCR experiments were selected as queries to test apEST. The results had great conformity among three approaches. Nevertheless, there were minor differences between apEST and BmMDB because of the unique items investigated. Therefore, complementary analysis was proposed. Application of apEST also led to the acquisition of corresponding protein annotations for EST datasets and eventually for their functions. The results were presented according to statistical information on protein annotation and Gene Ontology (GO) category. These all verified the reliability of apEST and the operability of this platform. The apEST can also be applied in other species by modifying some parameters and serves as a model for gene expression study for Lepidoptera.
Collapse
Affiliation(s)
- Li- Ping Gan
- National Engineering Laboratory for Modem Silk, Department of Applied Biology, Medical College of Soochow University, Suzhou, 215153, P. R. China
- Biology Department, Chongqing Three Gorges University, Chongqing, 404000, China
| | - Wen-Yu Zhang
- Bioinformatics Department, Medical College, Soochow University, Suzhou, 215153, China
| | - Yan-Shan Niu
- National Engineering Laboratory for Modem Silk, Department of Applied Biology, Medical College of Soochow University, Suzhou, 215153, P. R. China
| | - Li Xu
- National Engineering Laboratory for Modem Silk, Department of Applied Biology, Medical College of Soochow University, Suzhou, 215153, P. R. China
| | - Jian Xi
- National Engineering Laboratory for Modem Silk, Department of Applied Biology, Medical College of Soochow University, Suzhou, 215153, P. R. China
| | - Ming-Ming Ji
- National Engineering Laboratory for Modem Silk, Department of Applied Biology, Medical College of Soochow University, Suzhou, 215153, P. R. China
| | - Shi-Qing Xu
- National Engineering Laboratory for Modem Silk, Department of Applied Biology, Medical College of Soochow University, Suzhou, 215153, P. R. China
| |
Collapse
|
30
|
Li JY, Chen X, Hosseini Moghaddam SH, Chen M, Wei H, Zhong BX. Shotgun proteomics approach to characterizing the embryonic proteome of the silkworm, Bombyx mori, at labrum appearance stage. INSECT MOLECULAR BIOLOGY 2009; 18:649-660. [PMID: 19754742 DOI: 10.1111/j.1365-2583.2009.00903.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The shotgun approach has gained considerable acknowledgement in recent years as a dominant strategy in proteomics. We observed a dramatic increase of specific protein spots in two-dimensional electrophoresis (2-DE) gels of the silkworm (Bombyx mori) embryo at labrum appearance, a characteristic stage during embryonic development of silkworm which is involved with temperature increase by silkworm raiser. We employed shotgun liquid chromatography tandem mass spectrometry (LC-MS/MS) technology to analyse the proteome of B. mori embryos at this stage. A total of 2168 proteins were identified with an in-house database. Approximately 47% of them had isoelectric point (pI) values distributed theoretically in the range pI 5-7 and approximately 60% of them had molecular weights of 15-45 kDa. Furthermore, 111 proteins had an pI greater than 10 and were difficult to separate by 2-DE. Many important functional proteins related to embryonic development, stress response, DNA transcription/translation, cell growth, proliferation and differentiation, organogenesis and reproduction were identified. Among them proteins related to nervous system development were noticeable. All known heat shock proteins (HSPs) were detected in this developmental stage of B. mori embryo. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed energetic metabolism at this stage. These results were expected to provide more information for proteomic monitoring of the insect embryo and better understanding of the spatiotemporal expression of genes during embryonic developmental processes.
Collapse
Affiliation(s)
- J-Y Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, P. R. China
| | | | | | | | | | | |
Collapse
|