1
|
Bawa G, Liu Z, Zhou Y, Fan S, Ma Q, Tissue DT, Sun X. Cotton proteomics: Dissecting the stress response mechanisms in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:1035801. [PMID: 36466262 PMCID: PMC9714328 DOI: 10.3389/fpls.2022.1035801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
The natural environment of plants comprises a complex set of biotic and abiotic stresses, and plant responses to these stresses are complex as well. Plant proteomics approaches have significantly revealed dynamic changes in plant proteome responses to stress and developmental processes. Thus, we reviewed the recent advances in cotton proteomics research under changing environmental conditions, considering the progress and challenging factors. Finally, we highlight how single-cell proteomics is revolutionizing plant research at the proteomics level. We envision that future cotton proteomics research at the single-cell level will provide a more complete understanding of cotton's response to stresses.
Collapse
Affiliation(s)
- George Bawa
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Zhou Z, Zheng S, Haq SIU, Zheng D, Qiu QS. Regulation of pollen tube growth by cellular pH and ions. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153792. [PMID: 35973258 DOI: 10.1016/j.jplph.2022.153792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Tip growth of the pollen tube is a model system for the study of cell polarity establishment in flowering plants. The tip growth of the pollen tube displays an oscillating pattern corresponding to cellular ion and pH dynamics. Therefore, cellular pH and ions play an important role in pollen growth and development. In this review, we summarized the current advances in understanding the function of cellular pH and ions in regulating pollen tube growth. We analyzed the physiological roles and underlying mechanisms of cellular pH and ions, including Ca2+, K+, and Cl-, in regulating pollen tube growth. We further examined the function of Ca2+ in regulating cytoskeletons, small G proteins, and cell wall development in relation to pollen tube growth. We also examined the regulatory roles of cellular pH in pollen tube growth as well as pH regulation of ion flow, cell wall development, auxin signaling, and cytoskeleton function in pollen. In addition, we assessed the regulation of pollen tube growth by proton pumps and the maintenance of pH homeostasis in the trans-Golgi network by ion transporters. The interplay of ion homeostasis and pH dynamics was also assessed. We discussed the unanswered questions regarding pollen tube growth that need to be addressed in the future.
Collapse
Affiliation(s)
- Zhenguo Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China.
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
3
|
Pertl-Obermeyer H, Gimeno A, Kuchler V, Servili E, Huang S, Fang H, Lang V, Sydow K, Pöckl M, Schulze WX, Obermeyer G. pH modulates interaction of 14-3-3 proteins with pollen plasma membrane H+ ATPases independently from phosphorylation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:168-181. [PMID: 34467995 DOI: 10.1093/jxb/erab387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Pollen grains transport the sperm cells through the style tissue via a fast-growing pollen tube to the ovaries where fertilization takes place. Pollen tube growth requires a precisely regulated network of cellular as well as molecular events including the activity of the plasma membrane H+ ATPase, which is known to be regulated by reversible protein phosphorylation and subsequent binding of 14-3-3 isoforms. Immunodetection of the phosphorylated penultimate threonine residue of the pollen plasma membrane H+ ATPase (LilHA1) of Lilium longiflorum pollen revealed a sudden increase in phosphorylation with the start of pollen tube growth. In addition to phosphorylation, pH modulated the binding of 14-3-3 isoforms to the regulatory domain of the H+ ATPase, whereas metabolic components had only small effects on 14-3-3 binding, as tested with in vitro assays using recombinant 14-3-3 isoforms and phosphomimicking substitutions of the threonine residue. Consequently, local H+ influxes and effluxes as well as pH gradients in the pollen tube tip are generated by localized regulation of the H+ ATPase activity rather than by heterogeneous localized distribution in the plasma membrane.
Collapse
Affiliation(s)
- Heidi Pertl-Obermeyer
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
- MorphoPhysics, Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, 5020 Salzburg, Austria
| | - Ana Gimeno
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Verena Kuchler
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Evrim Servili
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
- Inst. Recherche Experimentale & Clinique, University of Louvain, Ave. Hippocrate, Woluwe-Saint Lambert, Belgium
| | - Shuai Huang
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
- Southern University of Science and Technology, Shenzen, PR China
| | - Han Fang
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
- Spinal Chord Injury & Tissue Regeneration Centre, Paracelsus Medical University, Strubergasse, Salzburg, Austria
| | - Veronika Lang
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
- STRATEC GmbH, Sonystraße 20, Anif, Austria
| | - Katharina Sydow
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Magdalena Pöckl
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Waltraud X Schulze
- Plant Systems Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Gerhard Obermeyer
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| |
Collapse
|
4
|
Zhang Z, Hu M, Feng X, Gong A, Cheng L, Yuan H. Proteomes and Phosphoproteomes of Anther and Pollen: Availability and Progress. Proteomics 2018; 17. [PMID: 28665021 DOI: 10.1002/pmic.201600458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 06/02/2017] [Indexed: 12/24/2022]
Abstract
In flowering plants, anther development plays crucial role in sexual reproduction. Within the anther, microspore mother cells meiosis produces microspores, which further develop into pollen grains that play decisive role in plant reproduction. Previous studies on anther biology mainly focused on single gene functions relying on genetic and molecular methods. Recently, anther development has been expanded from multiple OMICS approaches like transcriptomics, proteomics/phosphoproteomics, and metabolomics. The development of proteomics techniques allowing increased proteome coverage and quantitative measurements of proteins which can characterize proteomes and their modulation during normal development, biotic and abiotic stresses in anther development. In this review, we summarize the achievements of proteomics and phosphoproteomics with anther and pollen organs from model plant and crop species (i.e. Arabidopsis, rice, tobacco). The increased proteomic information facilitated translation of information from the models to crops and thus aid in agricultural improvement.
Collapse
Affiliation(s)
- Zaibao Zhang
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Menghui Hu
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Xiaobing Feng
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Andong Gong
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Lin Cheng
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Hongyu Yuan
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| |
Collapse
|
5
|
Paul P, Chaturvedi P, Mesihovic A, Ghatak A, Weckwerth W, Schleiff E. Protocol for Enrichment of the Membrane Proteome of Mature Tomato Pollen. Bio Protoc 2017; 7:e2315. [PMID: 34541080 DOI: 10.21769/bioprotoc.2315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/01/2017] [Accepted: 05/02/2017] [Indexed: 11/02/2022] Open
Abstract
We established and elaborated on a method to enrich the membrane proteome of mature pollen from economically relevant crop using the example of Solanum lycopersicum (tomato). To isolate the pollen protein fraction enriched in membrane proteins, a high salt concentration (750 mM of sodium chloride) was used. The membrane protein-enriched fraction was then subjected to shotgun proteomics for identification of proteins, followed by in silico analysis to annotate and classify the detected proteins.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany.,Current address: Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, USA
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria
| | - Anida Mesihovic
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany.,Cluster of Excellence, Goethe University, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany, Germany
| |
Collapse
|
6
|
Pertl-Obermeyer H, Wu XN, Schrodt J, Müdsam C, Obermeyer G, Schulze WX. Identification of Cargo for Adaptor Protein (AP) Complexes 3 and 4 by Sucrose Gradient Profiling. Mol Cell Proteomics 2016; 15:2877-89. [PMID: 27371946 DOI: 10.1074/mcp.m116.060129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/06/2022] Open
Abstract
Intracellular vesicle trafficking is a fundamental process in eukaryotic cells. It enables cellular polarity and exchange of proteins between subcellular compartments such as the plasma membrane or the vacuole. Adaptor protein complexes participate in the vesicle formation by specific selection of the transported cargo. We investigated the role of the adaptor protein complex 3 (AP-3) and adaptor protein complex 4 (AP-4) in this selection process by screening for AP-3 and AP-4 dependent cargo proteins. Specific cargo proteins are expected to be mis-targeted in knock-out mutants of adaptor protein complex components. Thus, we screened for altered distribution profiles across a density gradient of membrane proteins in wild type versus ap-3β and ap-4β knock-out mutants. In ap-3β mutants, especially proteins with transport functions, such as aquaporins and plasma membrane ATPase, as well as vesicle trafficking proteins showed differential protein distribution profiles across the density gradient. In the ap-4β mutant aquaporins but also proteins from lipid metabolism were differentially distributed. These proteins also showed differential phosphorylation patterns in ap-3β and ap-4β compared with wild type. Other proteins, such as receptor kinases were depleted from the AP-3 mutant membrane system, possibly because of degradation after mis-targeting. In AP-4 mutants, membrane fractions were depleted for cytochrome P450 proteins, cell wall proteins and receptor kinases. Analysis of water transport capacity in wild type and mutant mesophyll cells confirmed aquaporins as cargo proteins of AP-3 and AP-4. The combination of organelle density gradients with proteome analysis turned out as a suitable experimental strategy for large-scale analyses of protein trafficking.
Collapse
Affiliation(s)
- Heidi Pertl-Obermeyer
- From the ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Xu Na Wu
- From the ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jens Schrodt
- From the ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Christina Müdsam
- ¶Molecular Plant Physiology, University of Erlangen, Staudtstraβe 5, 91058 Erlangen, Germany
| | - Gerhard Obermeyer
- §Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of Salzburg, Billrothstraβe 11, 5020 Salzburg, Austria
| | - Waltraud X Schulze
- From the ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany;
| |
Collapse
|
7
|
Paul P, Röth S, Schleiff E. Importance of organellar proteins, protein translocation and vesicle transport routes for pollen development and function. PLANT REPRODUCTION 2016; 29:53-65. [PMID: 26874709 DOI: 10.1007/s00497-016-0274-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/18/2016] [Indexed: 05/27/2023]
Abstract
Protein translocation. Cellular homeostasis strongly depends on proper distribution of proteins within cells and insertion of membrane proteins into the destined membranes. The latter is mediated by organellar protein translocation and the complex vesicle transport system. Considering the importance of protein transport machineries in general it is foreseen that these processes are essential for pollen function and development. However, the information available in this context is very scarce because of the current focus on deciphering the fundamental principles of protein transport at the molecular level. Here we review the significance of protein transport machineries for pollen development on the basis of pollen-specific organellar proteins as well as of genetic studies utilizing mutants of known organellar proteins. In many cases these mutants exhibit morphological alterations highlighting the requirement of efficient protein transport and translocation in pollen. Furthermore, expression patterns of genes coding for translocon subunits and vesicle transport factors in Arabidopsis thaliana are summarized. We conclude that with the exception of the translocation systems in plastids-the composition and significance of the individual transport systems are equally important in pollen as in other cell types. Apparently for plastids only a minimal translocon, composed of only few subunits, exists in the envelope membranes during maturation of pollen. However, only one of the various transport systems known from thylakoids seems to be required for the function of the "simple thylakoid system" existing in pollen plastids. In turn, the vesicle transport system is as complex as seen for other cell types as it is essential, e.g., for pollen tube formation.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany.
- Cluster of Excellence Frankfurt, Goethe University, 60438, Frankfurt Am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt Am Main, Germany.
| |
Collapse
|
8
|
Ambrosino L, Bostan H, Ruggieri V, Chiusano ML. Bioinformatics resources for pollen. PLANT REPRODUCTION 2016; 29:133-147. [PMID: 27271281 DOI: 10.1007/s00497-016-0284-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
Bioinformatics for Pollen. Pollen plays a key role in crop production, and its development is the most delicate phase in reproduction. Different metabolic pathways are involved in pollen development, and changes in the level of some metabolites, as well as responses to stress, are correlated with the reduction in pollen viability, leading consequently to a decrease in the fruit production. However, studies on pollen may be hard because gamete development and fertilization are complex processes that occur during a short window of time. The rise of the so-called -omics sciences provided key strategies to promote molecular research in pollen tissues, starting from model organisms and moving to increasing number of species. An integrated multi-level approach based on investigations from genomics, transcriptomics, proteomics and metabolomics appears now feasible to clarify key molecular processes in pollen development and viability. To this aim, bioinformatics has a fundamental role for data production and analysis, contributing varied and ad hoc methodologies, endowed with different sensitivity and specificity, necessary for extracting added-value information from the large amount of molecular data achievable. Bioinformatics is also essential for data management, organization, distribution and integration in suitable resources. This is necessary to catch the biological features of the pollen tissues and to design effective approaches to identifying structural or functional properties, enabling the modeling of the major involved processes in normal or in stress conditions. In this review, we provide an overview of the available bioinformatics resources for pollen, ranging from raw data collections to complete databases or platforms, when available, which include data and/or results from -omics efforts on the male gametophyte. Perspectives in the fields will also be described.
Collapse
Affiliation(s)
- Luca Ambrosino
- Department of Agricultural Sciences, University of Naples "Federico II", via Università 100, Portici (NA), 80055, Italy
| | - Hamed Bostan
- Department of Agricultural Sciences, University of Naples "Federico II", via Università 100, Portici (NA), 80055, Italy
| | - Valentino Ruggieri
- Department of Agricultural Sciences, University of Naples "Federico II", via Università 100, Portici (NA), 80055, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples "Federico II", via Università 100, Portici (NA), 80055, Italy.
| |
Collapse
|
9
|
Chaturvedi P, Ghatak A, Weckwerth W. Pollen proteomics: from stress physiology to developmental priming. PLANT REPRODUCTION 2016; 29:119-32. [PMID: 27271282 PMCID: PMC4909805 DOI: 10.1007/s00497-016-0283-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/05/2016] [Indexed: 05/19/2023]
Abstract
Pollen development and stress. In angiosperms, pollen or pollen grain (male gametophyte) is a highly reduced two- or three-cell structure which plays a decisive role in plant reproduction. Male gametophyte development takes place in anther locules where diploid sporophytic cells undergo meiotic division followed by two consecutive mitotic processes. A desiccated and metabolically quiescent form of mature pollen is released from the anther which lands on the stigma. Pollen tube growth takes place followed by double fertilization. Apart from its importance in sexual reproduction, pollen is also an interesting model system which integrates fundamental cellular processes like cell division, differentiation, fate determination, polar establishment, cell to cell recognition and communication. Recently, pollen functionality has been studied by multidisciplinary approaches which also include OMICS analyses like transcriptomics, proteomics and metabolomics. Here, we review recent advances in proteomics of pollen development and propose the process of developmental priming playing a key role to guard highly sensitive developmental processes.
Collapse
Affiliation(s)
- Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Sector No-15, CBD, Belapur, Navi Mumbai, India
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Zhao F, Elkelish A, Durner J, Lindermayr C, Winkler JB, Ruёff F, Behrendt H, Traidl-Hoffmann C, Holzinger A, Kofler W, Braun P, von Toerne C, Hauck SM, Ernst D, Frank U. Common ragweed (Ambrosia artemisiifolia L.): allergenicity and molecular characterization of pollen after plant exposure to elevated NO2. PLANT, CELL & ENVIRONMENT 2016; 39:147-64. [PMID: 26177592 DOI: 10.1111/pce.12601] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 05/27/2023]
Abstract
Ragweed pollen is the main cause of allergenic diseases in Northern America, and the weed has become a spreading neophyte in Europe. Climate change and air pollution are speculated to affect the allergenic potential of pollen. The objective of this study was to investigate the effects of NO2 , a major air pollutant, under controlled conditions, on the allergenicity of ragweed pollen. Ragweed was exposed to different levels of NO2 throughout the entire growing season, and its pollen further analysed. Spectroscopic analysis showed increased outer cell wall polymers and decreased amounts of pectin. Proteome studies using two-dimensional difference gel electrophoresis and liquid chromatography-tandem mass spectrometry indicated increased amounts of several Amb a 1 isoforms and of another allergen with great homology to enolase Hev b 9 from rubber tree. Analysis of protein S-nitrosylation identified nitrosylated proteins in pollen from both conditions, including Amb a 1 isoforms. However, elevated NO2 significantly enhanced the overall nitrosylation. Finally, we demonstrated increased overall pollen allergenicity by immunoblotting using ragweed antisera, showing a significantly higher allergenicity for Amb a 1. The data highlight a direct influence of elevated NO2 on the increased allergenicity of ragweed pollen and a direct correlation with an increased risk for human health.
Collapse
Affiliation(s)
- Feng Zhao
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Amr Elkelish
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Biochemical Plant Pathology, Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Freising, 85350, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Franziska Ruёff
- Clinic and Polyclinic for Dermatology and Allergology, Faculty of Medicine, LMU München, Munich, 80337, Germany
| | - Heidrun Behrendt
- Center of Allergy & Environment München (ZAUM), Technische Universität and Helmholtz Zentrum München, Munich, 80802, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| | - Claudia Traidl-Hoffmann
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
- Institute of Environmental Medicine, UNIKA-T, Technische Universität München, Augsburg, 86156, Germany
| | - Andreas Holzinger
- Institute for Botany, Leopold-Franzens Universität Innsbruck, Innsbruck, 6020, Austria
| | - Werner Kofler
- Institute for Botany, Leopold-Franzens Universität Innsbruck, Innsbruck, 6020, Austria
| | - Paula Braun
- Department of Applied Sciences and Mechanotronics, University of Applied Science Munich, Munich, 80335, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| | - Ulrike Frank
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| |
Collapse
|
11
|
Paul P, Chaturvedi P, Selymesi M, Ghatak A, Mesihovic A, Scharf KD, Weckwerth W, Simm S, Schleiff E. The membrane proteome of male gametophyte in Solanum lycopersicum. J Proteomics 2016; 131:48-60. [DOI: 10.1016/j.jprot.2015.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/21/2015] [Accepted: 10/08/2015] [Indexed: 12/11/2022]
|
12
|
Li M, Wang K, Li S, Yang P. Exploration of rice pistil responses during early post-pollination through a combined proteomic and transcriptomic analysis. J Proteomics 2015; 131:214-226. [PMID: 26546731 DOI: 10.1016/j.jprot.2015.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 11/27/2022]
Abstract
UNLABELLED Pollen-stigma interaction is a multi-step and complex physiological process which contains different signaling and biochemical pathways. However, little is known about the molecular mechanism underlying this process in rice (Oryza sativa). In this study, the changes of gene expression were investigated through a combination study of transcriptome and proteome profiles in rice pistil during pollination. Totally, 1117 differentially expressed genes were identified, among which 962 and 167 were detected at transcriptional and protein level respectively. Functional categorization analysis showed that the genes involved in central metabolism were up-regulated, which can lead to the enhancement of these metabolisms. The reactive oxygen species (ROS) were over-accumulated in the stigma. In response to this, the proteins or transcripts involved in redox homeostasis regulation were differentially expressed. Furthermore, significant changes of protein ubiquitination and its related genes or proteins, especially some E3 ligases encoding genes, indicate that protein ubiquitination might play important roles in cell signal transduction during the pollination process. Our study sheds some lights on gene and protein expression profiles of rice pistil pollination process, and gives us a comprehensive understanding of the basic molecular mechanisms controlling pollination in rice. BIOLOGICAL SIGNIFICANCE Using RNA-seq, 2-DE and iTRAQ assays, we have generated the large-scale transcriptomic and proteomic data containing abundant information on genes involved in pollen and pistil interaction. Our results showed that ROS were significantly accumulated in stigma after pollination, and the abundance of genes involve in redox homeostasis system were changed variously. We also show that, changes of some E3 ligases encoding genes might indicate that protein ubiquitination play important roles in cell signal transduction during the pollination process. Data in this study might be helpful to deeply understand the pollination in rice.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Kun Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
13
|
Safiarian MJ, Pertl-Obermeyer H, Lughofer P, Hude R, Bertl A, Obermeyer G. Lost in traffic? The K(+) channel of lily pollen, LilKT1, is detected at the endomembranes inside yeast cells, tobacco leaves, and lily pollen. FRONTIERS IN PLANT SCIENCE 2015; 6:47. [PMID: 25713578 PMCID: PMC4322604 DOI: 10.3389/fpls.2015.00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/16/2015] [Indexed: 05/26/2023]
Abstract
Fertilization in plants relies on fast growth of pollen tubes through the style tissue toward the ovules. This polarized growth depends on influx of ions and water to increase the tube's volume. K(+) inward rectifying channels were detected in many pollen species, with one identified in Arabidopsis. Here, an Arabidopsis AKT1-like channel (LilKT1) was identified from Lilium longiflorum pollen. Complementation of K(+) uptake deficient yeast mutants was only successful when the entire LilKT1 C-terminus was replaced by the AKT1 C-terminus. No signals were observed in the plasma membrane (PM) of pollen tubes after expression of fluorescence-tagged LilKT1 nor were any LilKT1-derived peptides detectable in the pollen PM by mass spectrometry analysis. In contrast, fluorescent LilKT1 partly co-localized with the lily PM H(+) ATPase LilHA2 in the PM of tobacco leaf cells, but exhibited a punctual fluorescence pattern and also sub-plasma membrane localization. Thus, incorporation of LilKT1 into the pollen PM seems tighter controlled than in other cells with still unknown trafficking signals in LilKT1's C-terminus, resulting in channel densities below detection limits. This highly controlled incorporation might have physiological reasons: an uncontrolled number of K(+) inward channels in the pollen PM will give an increased water influx due to the raising cytosolic K(+) concentration, and finally, causing the tube to burst.
Collapse
Affiliation(s)
- Minou J. Safiarian
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Heidi Pertl-Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
- Plant Systems Biology, University of HohenheimStuttgart, Germany
| | - Peter Lughofer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Rene Hude
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| | - Adam Bertl
- Yeast Membrane Biology, Department of Biology, Darmstadt University of TechnologyDarmstadt, Germany
| | - Gerhard Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of SalzburgSalzburg, Austria
| |
Collapse
|
14
|
Lang V, Usadel B, Obermeyer G. De novo sequencing and analysis of the lily pollen transcriptome: an open access data source for an orphan plant species. PLANT MOLECULAR BIOLOGY 2015; 87:69-80. [PMID: 25341867 DOI: 10.1007/s11103-014-0261-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Pollen grains of Lilium longiflorum are a long-established model system for pollen germination and tube tip growth. Due to their size, protein content and almost synchronous germination in synthetic media, they provide a simple system for physiological measurements as well as sufficient material for biochemical studies like protein purifications, enzyme assays, organelle isolation or determination of metabolites during germination and pollen tube elongation. Despite recent progresses in molecular biology techniques, sequence information of expressed proteins or transcripts in lily pollen is still scarce. Using a next generation sequencing strategy (RNAseq), the lily pollen transcriptome was investigated resulting in more than 50 million high quality reads with a length of 90 base pairs. Sequenced transcripts were assembled and annotated, and finally visualized with MAPMAN software tools and compared with other RNAseq or genome data including Arabidopsis pollen, Lilium vegetative tissues and the Amborella trichopoda genome. All lily pollen sequence data are provided as open access files with suitable tools to search sequences of interest.
Collapse
Affiliation(s)
- Veronika Lang
- Molecular Plant Biophysics and Biochemistry, Depatment of Molecular Biology, University of Salzburg, Billrothstr.11, 5020, Salzburg, Austria
| | | | | |
Collapse
|
15
|
Wang K, Zhao Y, Li M, Gao F, Yang MK, Wang X, Li S, Yang P. Analysis of phosphoproteome in rice pistil. Proteomics 2014; 14:2319-34. [PMID: 25074045 DOI: 10.1002/pmic.201400004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/19/2014] [Accepted: 07/28/2014] [Indexed: 11/07/2022]
Abstract
As the female reproductive part of a flower, the pistil consists of the ovary, style, and stigma, and is a critical organ for the process from pollen recognition to fertilization and seed formation. Previous studies on pollen-pistil interaction mainly focused on gene expression changes with comparative transcriptomics or proteomics method. However, studies on protein PTMs are still lacking. Here we report a phosphoproteomic study on mature pistil of rice. Using IMAC enrichment, hydrophilic interaction chromatography fraction and high-accuracy MS instrument (TripleTOF 5600), 2347 of high-confidence (Ascore ≥ 19, p ≤ 0.01), phosphorylation sites corresponding to 1588 phosphoproteins were identified. Among them, 1369 phosphorylation sites within 654 phosphoproteins were newly identified; 41 serine phosphorylation motifs, which belong to three groups: proline-directed, basophilic, and acidic motifs were identified after analysis by motif-X. Two hundred and one genes whose phosphopeptides were identified here showed tissue-specific expression in pistil based on information mining of previous microarray data. All MS data have been deposited in the ProteomeXchange with identifier PXD000923 (http://proteomecentral.proteomexchange.org/dataset/PXD000923). This study will help us to understand pistil development and pollination on the posttranslational level.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Pertl-Obermeyer H, Schulze WX, Obermeyer G. In vivo cross-linking combined with mass spectrometry analysis reveals receptor-like kinases and Ca2+ signalling proteins as putative interaction partners of pollen plasma membrane H+ ATPases. J Proteomics 2014; 108:17-29. [DOI: 10.1016/j.jprot.2014.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/23/2014] [Accepted: 05/01/2014] [Indexed: 10/25/2022]
|
17
|
Liu W, Fan J, Li J, Song Y, Li Q, Zhang Y, Xue Y. SCF(SLF)-mediated cytosolic degradation of S-RNase is required for cross-pollen compatibility in S-RNase-based self-incompatibility in Petunia hybrida. Front Genet 2014; 5:228. [PMID: 25101113 PMCID: PMC4106197 DOI: 10.3389/fgene.2014.00228] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 06/30/2014] [Indexed: 01/21/2023] Open
Abstract
Many flowering plants adopt self-incompatibility (SI) to maintain their genetic diversity. In species of Solanaceae, Plantaginaceae, and Rosaceae, SI is genetically controlled by a single S-locus with multiple haplotypes. The S-locus has been shown to encode S-RNases expressed in pistil and multiple SLF (S-locus F-box) proteins in pollen controlling the female and male specificity of SI, respectively. S-RNases appear to function as a cytotoxin to reject self-pollen. In addition, SLFs have been shown to form SCF (SKP1/Cullin1/F-box) complexes to serve as putative E3 ubiquitin ligase to interact with S-RNases. Previously, two different mechanisms, the S-RNase degradation and the S-RNase compartmentalization, have been proposed as the restriction mechanisms of S-RNase cytotoxicity allowing compatible pollination. In this study, we have provided several lines of evidence in support of the S-RNase degradation mechanism by a combination of cellular, biochemical and molecular biology approaches. First, both immunogold labeling and subcellular fractionation assays showed that two key pollen SI factors, PhS3L-SLF1 and PhSSK1 (SLF-interacting SKP1-like1) from Petunia hybrida, a Solanaceous species, are co-localized in cytosols of both pollen grains and tubes. Second, PhS3L-RNases are mainly detected in the cytosols of both self and non-self-pollen tubes after pollination. Third, we found that PhS-RNases selectively interact with PhSLFs by yeast two-hybrid and co-immunoprecipitation assays. Fourth, S-RNases are specifically degraded in compatible pollen tubes by non-self SLF action. Taken together, our results demonstrate that SCF(SLF-mediated) non-self S-RNase degradation occurs in the cytosol of pollen tube through the ubiquitin/26S proteasome system serving as the major mechanism to neutralize S-RNase cytotoxicity during compatible pollination in P. hybrida.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Jiangbo Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Junhui Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Yanzhai Song
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Qun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China
| | - Yu'e Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China
| | - Yongbiao Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China
| |
Collapse
|
18
|
Arrivault S, Guenther M, Florian A, Encke B, Feil R, Vosloh D, Lunn JE, Sulpice R, Fernie AR, Stitt M, Schulze WX. Dissecting the subcellular compartmentation of proteins and metabolites in arabidopsis leaves using non-aqueous fractionation. Mol Cell Proteomics 2014; 13:2246-59. [PMID: 24866124 DOI: 10.1074/mcp.m114.038190] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Non-aqueous fractionation is a technique for the enrichment of different subcellular compartments derived from lyophilized material. It was developed to study the subcellular distribution of metabolites. Here we analyzed the distribution of about 1,000 proteins and 70 metabolites, including 22 phosphorylated intermediates in wild-type Arabidopsis rosette leaves, using non-aqueous gradients divided into 12 fractions. Good separation of plastidial, cytosolic, and vacuolar metabolites and proteins was achieved, but cytosolic, mitochondrial, and peroxisomal proteins clustered together. There was considerable heterogeneity in the fractional distribution of transcription factors, ribosomal proteins, and subunits of the vacuolar-ATPase, indicating diverse compartmental location. Within the plastid, sub-organellar separation of thylakoids and stromal proteins was observed. Metabolites from the Calvin-Benson cycle, photorespiration, starch and sucrose synthesis, glycolysis, and the tricarboxylic acid cycle grouped with their associated proteins of the respective compartment. Non-aqueous fractionation thus proved to be a powerful method for the study of the organellar, and in some cases sub-organellar, distribution of proteins and their association with metabolites. It remains the technique of choice for the assignment of subcellular location to metabolites in intact plant tissues, and thus the technique of choice for doing combined metabolite-protein analysis on a single tissue sample.
Collapse
Affiliation(s)
- Stéphanie Arrivault
- From the ‡Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Manuela Guenther
- From the ‡Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alexandra Florian
- From the ‡Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Beatrice Encke
- From the ‡Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Regina Feil
- From the ‡Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Daniel Vosloh
- From the ‡Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; §Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - John E Lunn
- From the ‡Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ronan Sulpice
- From the ‡Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; ¶National University of Ireland, University Rd., Galway, Ireland
| | - Alisdair R Fernie
- From the ‡Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- From the ‡Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Waltraud X Schulze
- From the ‡Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; ‖Department of Plant Systems Biology, Universität Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
19
|
Lang V, Pertl-Obermeyer H, Safiarian MJ, Obermeyer G. Pump up the volume - a central role for the plasma membrane H(+) pump in pollen germination and tube growth. PROTOPLASMA 2014; 251:477-88. [PMID: 24097309 DOI: 10.1007/s00709-013-0555-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/19/2013] [Indexed: 05/10/2023]
Abstract
The plasma membrane H(+) ATPase is a member of the P-ATPase family transporting H(+) from the cytosol to the extracellular space and thus energizing the plasma membrane for the uptake of ions and nutrients. As a housekeeping gene, this protein can be detected in almost every plant cell including the exclusive expression of specific isoforms in pollen grains and tubes where its activity is a prerequisite for successful germination and growth of pollen tubes. This review summarizes the current knowledge on pollen PM H(+) ATPases and hypothesizes a central role for pollen-specific isoforms of this protein in tube growth. External as well as cytosolic signals from signal transduction and metabolic pathways are integrated by the PM H(+) ATPase and directly translated to tube growth rates, allocating the PM H(+) ATPase to an essential node in the signalling network of pollen tubes in their race to the ovule.
Collapse
Affiliation(s)
- Veronika Lang
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of Salzburg, Billrothstr. 11, 5020, Salzburg, Austria
| | | | | | | |
Collapse
|
20
|
Abstract
The quality of the collected experimental data very much depends on the quality of the biological starting material. Especially the proteome analysis of a highly dynamic system like the germinating and tube-growing pollen grain needs several precautions which allow an accurate and acceptable interpretation of the obtained results. Optimized protocols for pollen collection, storage, and in vitro culture as well as pollen organelle separations are described which help to obtain well-defined and reproducible experimental conditions for the subsequent proteomic analysis.
Collapse
Affiliation(s)
- Heidi Pertl-Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
21
|
Ischebeck T, Valledor L, Lyon D, Gingl S, Nagler M, Meijón M, Egelhofer V, Weckwerth W. Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol Cell Proteomics 2014; 13:295-310. [PMID: 24078888 PMCID: PMC3879621 DOI: 10.1074/mcp.m113.028100] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 09/24/2013] [Indexed: 01/10/2023] Open
Abstract
Pollen development in angiosperms is one of the most important processes controlling plant reproduction and thus productivity. At the same time, pollen development is highly sensitive to environmental fluctuations, including temperature, drought, and nutrition. Therefore, pollen biology is a major focus in applied studies and breeding approaches for improving plant productivity in a globally changing climate. The most accessible developmental stages of pollen are the mature pollen and the pollen tubes, and these are thus most frequently analyzed. To reveal a complete quantitative proteome map, we additionally addressed the very early stages, analyzing eight stages of tobacco pollen development: diploid microsporocytes, meiosis, tetrads, microspores, polarized microspores, bipolar pollen, desiccated pollen, and pollen tubes. A protocol for the isolation of the early stages was established. Proteins were extracted and analyzed by means of a new gel LC-MS fractionation protocol. In total, 3817 protein groups were identified. Quantitative analysis was performed based on peptide count. Exceedingly stage-specific differential protein regulation was observed during the conversion from the sporophytic to the gametophytic proteome. A map of highly specialized functionality for the different stages could be revealed from the metabolic activity and pronounced differentiation of proteasomal and ribosomal protein complex composition up to protective mechanisms such as high levels of heat shock proteins in the very early stages of development.
Collapse
Affiliation(s)
- Till Ischebeck
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Luis Valledor
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - David Lyon
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Stephanie Gingl
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Matthias Nagler
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Mónica Meijón
- ¶Gregor-Mendel-Institute for Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Volker Egelhofer
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Wolfram Weckwerth
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| |
Collapse
|
22
|
Zhao X, Yang N, Wang T. Comparative proteomic analysis of generative and sperm cells reveals molecular characteristics associated with sperm development and function specialization. J Proteome Res 2013; 12:5058-71. [PMID: 23879389 DOI: 10.1021/pr400291p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In flowering plants, two sperm cells (SCs) are generated from a generative cell (GC) in the developing pollen grain or growing pollen tube and are then delivered to the embryo sac to initiate double fertilization. SC development and function specialization involve the strict control of the protein (gene) expression program and coordination of diverse cellular processes. However, because methods for collecting a large amount of highly purified GCs and SCs for proteomic and transcriptomic studies from a plant are not available, molecular information about the program and the interconnections is lacking. Here, we describe a method for obtaining a large quantity of highly purified GCs and SCs from just-germinated lily pollen grains and growing pollen tubes for proteomic analysis. Our observation showed that SCs had less condensed chromatin and more vacuole-like structures than GCs and that mature SCs were arrested at the G2 phase. Comparison of SC and GC proteomes revealed 101 proteins differentially expressed in the two proteomes. These proteins are involved in diverse cellular and metabolic processes, with preferential involvement in metabolism, the cell cycle, signaling, the ubiquitin/proteasome pathway, and chromatin remodeling. Impressively, almost all proteins in SCF complex-mediated proteolysis and the cell cycle were up-regulated in SCs, whereas those in chromatin remodeling and stress response were down-regulated. Our data also reveal the coordination of SCF complex-mediated proteolysis, cell cycle progression, and DNA repair in SC development and function specialization. This study revealed for the first time a difference in protein profiles between GCs and SCs.
Collapse
Affiliation(s)
- Xin Zhao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences and National Center for Plant Gene Research , Beijing 100093, China
| | | | | |
Collapse
|
23
|
Obermeyer G, Fragner L, Lang V, Weckwerth W. Dynamic adaption of metabolic pathways during germination and growth of lily pollen tubes after inhibition of the electron transport chain. PLANT PHYSIOLOGY 2013; 162:1822-33. [PMID: 23660836 PMCID: PMC3729764 DOI: 10.1104/pp.113.219857] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/08/2013] [Indexed: 05/19/2023]
Abstract
Investigation of the metabolome and the transcriptome of pollen of lily (Lilium longiflorum) gave a comprehensive overview of metabolic pathways active during pollen germination and tube growth. More than 100 different metabolites were determined simultaneously by gas chromatography coupled to mass spectrometry, and expressed genes of selected metabolic pathways were identified by next-generation sequencing of lily pollen transcripts. The time-dependent changes in metabolite abundances, as well as the changes after inhibition of the mitochondrial electron transport chain, revealed a fast and dynamic adaption of the metabolic pathways in the range of minutes. The metabolic state prior to pollen germination differed clearly from the metabolic state during pollen tube growth, as indicated by principal component analysis of all detected metabolites and by detailed observation of individual metabolites. For instance, the amount of sucrose increased during the first 60 minutes of pollen culture but decreased during tube growth, while glucose and fructose showed the opposite behavior. Glycolysis, tricarbonic acid cycle, glyoxylate cycle, starch, and fatty acid degradation were activated, providing energy during pollen germination and tube growth. Inhibition of the mitochondrial electron transport chain by antimycin A resulted in an immediate production of ethanol and a fast rearrangement of metabolic pathways, which correlated with changes in the amounts of the majority of identified metabolites, e.g. a rapid increase in γ-aminobutyric acid indicated the activation of a γ-aminobutyric acid shunt in the tricarbonic acid cycle, while ethanol fermentation compensated the reduced ATP production after inhibition of the oxidative phosphorylation.
Collapse
Affiliation(s)
- Gerhard Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria.
| | | | | | | |
Collapse
|
24
|
Wang K, Peng X, Ji Y, Yang P, Zhu Y, Li S. Gene, protein, and network of male sterility in rice. FRONTIERS IN PLANT SCIENCE 2013; 4:92. [PMID: 23596452 PMCID: PMC3622893 DOI: 10.3389/fpls.2013.00092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/26/2013] [Indexed: 05/18/2023]
Abstract
Rice is one of the most important model crop plants whose heterosis has been well-exploited in commercial hybrid seed production via a variety of types of male-sterile lines. Hybrid rice cultivation area is steadily expanding around the world, especially in Southern Asia. Characterization of genes and proteins related to male sterility aims to understand how and why the male sterility occurs, and which proteins are the key players for microspores abortion. Recently, a series of genes and proteins related to cytoplasmic male sterility (CMS), photoperiod-sensitive male sterility, self-incompatibility, and other types of microspores deterioration have been characterized through genetics or proteomics. Especially the latter, offers us a powerful and high throughput approach to discern the novel proteins involving in male-sterile pathways which may help us to breed artificial male-sterile system. This represents an alternative tool to meet the critical challenge of further development of hybrid rice. In this paper, we reviewed the recent developments in our understanding of male sterility in rice hybrid production across gene, protein, and integrated network levels, and also, present a perspective on the engineering of male-sterile lines for hybrid rice production.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, People's Republic of China
| | - Xiaojue Peng
- Key Laboratory of Molecular Biology and Gene Engineering, College of Life Science, Nanchang UniversityNanchang, People's Republic of China
| | - Yanxiao Ji
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, People's Republic of China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
| |
Collapse
|
25
|
Dai S, Chen S. Single-cell-type proteomics: toward a holistic understanding of plant function. Mol Cell Proteomics 2012; 11:1622-30. [PMID: 22982375 DOI: 10.1074/mcp.r112.021550] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function.
Collapse
Affiliation(s)
- Shaojun Dai
- Department of Biology, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
26
|
Lopez-Casado G, Covey PA, Bedinger PA, Mueller LA, Thannhauser TW, Zhang S, Fei Z, Giovannoni JJ, Rose JKC. Enabling proteomic studies with RNA-Seq: The proteome of tomato pollen as a test case. Proteomics 2012; 12:761-74. [PMID: 22539427 DOI: 10.1002/pmic.201100164] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Effective proteome profiling is generally considered to depend heavily on the availability of a high-quality DNA reference database. As such, proteomics has long been taxonomically restricted, with limited inroads being made into the proteomes of "non-model" organisms. However, next generation sequencing (NGS), and particularly RNA-Seq, now allows deep coverage detection of expressed genes at low cost, which in turn potentially facilitates the matching of peptide mass spectra with cognate gene sequence. To test this, we performed a quantitative analysis of the proteomes of pollen from domesticated tomato (Solanum lycopersicum) and two wild relatives that exhibit differences in mating systems and in interspecific reproductive barriers. Using a custom tomato RNA-Seq database created through 454 pyrosequencing, more than 1200 proteins were identified, with subsets showing expression differences between genotypes or in the accumulation of the corresponding transcripts. Importantly, no major qualitative or quantitative differences were observed in the characterized proteomes when mass spectra were used to interrogate either a highly curated community database of tomato sequences generated through traditional sequencing technologies, or the RNA-Seq database. We conclude that RNA-Seq provides a cost-effective and robust platform for protein identification and will be increasingly valuable to the field of proteomics.
Collapse
|
27
|
Pacini E, Jacquard C, Clément C. Pollen vacuoles and their significance. PLANTA 2011; 234:217-27. [PMID: 21706335 DOI: 10.1007/s00425-011-1462-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/08/2011] [Indexed: 05/23/2023]
Abstract
Vacuoles of several types can be observed in pollen throughout its development. Their physiological significance reflects the complexity of the biological process leading to functional pollen grains. Vacuolisation always occurs during pollen development but when ripe pollen is shed the extensive translucent vacuoles present in the vegetative parts in previous stages are absent. Vacuole functions vary according to developmental stage but in ripe pollen they are mainly storage sites for reserves. Vacuoles cause pollen to increase in size by water accumulation and therefore confer some degree of resistance to water stress. Modalities of vacuolisation occur in pollen in the same manner as in other tissues. In most cases, autophagic vacuoles degrade organelles, as in the microspore after meiosis, and can be regarded as cytoplasm clean-up following the transition from the diploid sporophytic to the haploid gametophytic state. This also occurs in the generative cell but not in sperm cells. Finally, vacuoles have a function when microspores are used for pollen embryogenesis in biotechnology being targets for stress induction and afterwards contributing to cytoplasmic rearrangement in competent microspores.
Collapse
Affiliation(s)
- Ettore Pacini
- Dipartamento di Scienze Ambientali Giacomino Sarfatti, Universita degli Studi di Siena, via PA Mattioli 4, 53100, Siena, Italy
| | | | | |
Collapse
|
28
|
Ge W, Song Y, Zhang C, Zhang Y, Burlingame AL, Guo Y. Proteomic analyses of apoplastic proteins from germinating Arabidopsis thaliana pollen. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1964-73. [PMID: 21798377 DOI: 10.1016/j.bbapap.2011.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/28/2011] [Accepted: 07/13/2011] [Indexed: 12/30/2022]
Abstract
Pollen grains play important roles in the reproductive processes of flowering plants. The roles of apoplastic proteins in pollen germination and in pollen tube growth are comparatively less well understood. To investigate the functions of apoplastic proteins in pollen germination, the global apoplastic proteins of mature and germinated Arabidopsis thaliana pollen grains were prepared for differential analyses by using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE) saturation labeling techniques. One hundred and three proteins differentially expressed (p value≤0.01) in pollen germinated for 6h compared with un-germination mature pollen, and 98 spots, which represented 71 proteins, were identified by LC-MS/MS. By bioinformatics analysis, 50 proteins were identified as secreted proteins. These proteins were mainly involved in cell wall modification and remodeling, protein metabolism and signal transduction. Three of the differentially expressed proteins were randomly selected to determine their subcellular localizations by transiently expressing YFP fusion proteins. The results of subcellular localization were identical with the bioinformatics prediction. Based on these data, we proposed a model for apoplastic proteins functioning in pollen germination and pollen tube growth. These results will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- Weina Ge
- Institute of Molecular Cell Biology, Hebei Normal University, Shijiazhuang, Hebei Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
29
|
Matros A, Kaspar S, Witzel K, Mock HP. Recent progress in liquid chromatography-based separation and label-free quantitative plant proteomics. PHYTOCHEMISTRY 2011; 72:963-74. [PMID: 21176926 DOI: 10.1016/j.phytochem.2010.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/05/2010] [Accepted: 11/09/2010] [Indexed: 05/26/2023]
Abstract
Recent innovations in liquid chromatography-mass spectrometry (LC-MS)-based methods have facilitated quantitative and functional proteomic analyses of large numbers of proteins derived from complex samples without any need for protein or peptide labelling. Regardless of its great potential, the application of these proteomics techniques to plant science started only recently. Here we present an overview of label-free quantitative proteomics features and their employment for analysing plants. Recent methods used for quantitative protein analyses by MS techniques are summarized and major challenges associated with label-free LC-MS-based approaches, including sample preparation, peptide separation, quantification and kinetic studies, are discussed. Database search algorithms and specific aspects regarding protein identification of non-sequenced organisms are also addressed. So far, label-free LC-MS in plant science has been used to establish cellular or subcellular proteome maps, characterize plant-pathogen interactions or stress defence reactions, and for profiling protein patterns during developmental processes. Improvements in both, analytical platforms (separation technology and bioinformatics/statistical analysis) and high throughput nucleotide sequencing technologies will enhance the power of this method.
Collapse
Affiliation(s)
- A Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Corrensstrasse 3, D-06466 Gatersleben, Germany
| | | | | | | |
Collapse
|
30
|
Vertommen A, Panis B, Swennen R, Carpentier SC. Challenges and solutions for the identification of membrane proteins in non-model plants. J Proteomics 2011; 74:1165-81. [PMID: 21354347 DOI: 10.1016/j.jprot.2011.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/04/2011] [Accepted: 02/16/2011] [Indexed: 01/27/2023]
Abstract
The workhorse for proteomics in non-model plants is classical two-dimensional electrophoresis, a combination of iso-electric focusing and SDS-PAGE. However, membrane proteins with multiple membrane spanning domains are hardly detected on classical 2-DE gels because of their low abundance and poor solubility in aqueous media. In the current review, solutions that have been proposed to handle these two problems in non-model plants are discussed. An overview of alternative techniques developed for membrane proteomics is provided together with a comparison of their strong and weak points. Subsequently, strengths and weaknesses of the different techniques and methods to evaluate the identification of membrane proteins are discussed. Finally, an overview of recent plant membrane proteome studies is provided with the used separation technique and the number of identified membrane proteins listed.
Collapse
Affiliation(s)
- A Vertommen
- Laboratory of Tropical Crop Improvement, Department of Biosystems, K.U. Leuven, Kasteelpark Arenberg 13, B-3001 Heverlee, Belgium
| | | | | | | |
Collapse
|
31
|
Takáč T, Pechan T, Samaj J. Differential proteomics of plant development. J Proteomics 2011; 74:577-88. [PMID: 21315196 DOI: 10.1016/j.jprot.2011.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
In this mini-review, recent advances in plant developmental proteomics are summarized. The growing interest in plant proteomics continually produces large numbers of developmental studies on plant cell division, elongation, differentiation, and formation of various organs. The brief overview of changes in proteome profiles emphasizes the participation of stress-related proteins in all developmental processes, which substantially changes the view on functional classification of these proteins. Next, it is noteworthy that proteomics helped to recognize some metabolic and housekeeping proteins as important signaling inducers of developmental pathways. Further, cell division and elongation are dependent on proteins involved in membrane trafficking and cytoskeleton dynamics. These protein groups are less prevalently represented in studies concerning cell differentiation and organ formation, which do not target primarily cell division. The synthesis of new proteins, generally observed during developmental processes, is followed by active protein folding. In this respect, disulfide isomerase was found to be commonly up-regulated during several developmental processes. The future progress in plant proteomics requires new and/or complementary approaches including cell fractionation, specific chemical treatments, molecular cloning and subcellular localization of proteins combined with more sensitive methods for protein detection and identification.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | | |
Collapse
|
32
|
Cai G, Cresti M. Microtubule motors and pollen tube growth--still an open question. PROTOPLASMA 2010; 247:131-43. [PMID: 20922548 DOI: 10.1007/s00709-010-0214-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 09/16/2010] [Indexed: 05/24/2023]
Abstract
The growth of pollen tubes is supported by the continuous supply of secretory vesicles in the tip area. Movement and accumulation of vesicles is driven by the dynamic interplay between the actin cytoskeleton and motor proteins of the myosin family. A combination of the two protein systems is also responsible for the bidirectional movement of larger organelle classes. In contrast, the role of microtubules and microtubule-based motors is less clear and often ambiguous. Nevertheless, there is evidence which shows that the pollen tube contains a number of microtubule-based motors of the kinesin family. These motor proteins are likely to be associated with pollen tube organelles and, consequently, they have been hypothesized to participate in the distribution of organelles during pollen tube growth. Whether microtubule motor proteins take part in either the transport or positioning of organelles is not known for sure, but there is evidence for this second possibility. This review will discuss the current knowledge of microtubule-based motor proteins (including kinesins and hypothetical dyneins) and will make some hypothesis about their role in the pollen tube.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento Scienze Ambientali G. Sarfatti, Università di Siena, via Mattioli 4, 53100 Siena, Italy.
| | | |
Collapse
|
33
|
Pertl H, Pöckl M, Blaschke C, Obermeyer G. Osmoregulation in Lilium pollen grains occurs via modulation of the plasma membrane H+ ATPase activity by 14-3-3 proteins. PLANT PHYSIOLOGY 2010; 154:1921-8. [PMID: 20974894 PMCID: PMC2996032 DOI: 10.1104/pp.110.165696] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/24/2010] [Indexed: 05/18/2023]
Abstract
To allow successful germination and growth of a pollen tube, mature and dehydrated pollen grains (PGs) take up water and have to adjust their turgor pressure according to the water potential of the surrounding stigma surface. The turgor pressure of PGs of lily (Lilium longiflorum) was measured with a modified pressure probe for simultaneous recordings of turgor pressure and membrane potential to investigate the relation between water and electrogenic ion transport in osmoregulation. Upon hyperosmolar shock, the turgor pressure decreased, and the plasma membrane (PM) hyperpolarizes in parallel, whereas depolarization of the PM was observed with hypoosmolar treatment. An acidification and alkalinization of the external medium was monitored after hyper- and hypoosmotic treatments, respectively, and pH changes were blocked by vanadate, indicating a putative role of the PM H(+) ATPase. Indeed, an increase in PM-associated 14-3-3 proteins and an increase in PM H(+) ATPase activity were detected in PGs challenged by hyperosmolar medium. We therefore suggest that in PGs the PM H(+) ATPase via modulation of its activity by 14-3-3 proteins is involved in the regulation of turgor pressure.
Collapse
Affiliation(s)
| | | | | | - Gerhard Obermeyer
- Plant Molecular Biophysics and Biochemistry, Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
34
|
Han B, Chen S, Dai S, Yang N, Wang T. Isobaric tags for relative and absolute quantification- based comparative proteomics reveals the features of plasma membrane-associated proteomes of pollen grains and pollen tubes from Lilium davidii. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:1043-1058. [PMID: 21106004 DOI: 10.1111/j.1744-7909.2010.00996.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mature pollen grains (PGs) from most plant species are metabolically quiescent. However, once pollinated onto stigma, they quickly hydrate and germinate. A PG can give rise to a vegetative cell-derived polarized pollen tube (PT), which represents a specialized polar cell. The polarized PT grows by the tip and requires interaction of different signaling molecules localized in the apical plasma membrane and active membrane trafficking. The mechanisms underlying the interaction and membrane trafficking are not well understood. In this work, we purified PG and PT plasma-membrane vesicles from Lilium davidii Duch. using the aqueous two-phase partition technique, then enriched plasma membrane proteins by using Brij58 and KCl to remove loosely bound contaminants. We identified 223 integral and membrane-associated proteins in the plasma membrane of PGs and PTs by using isobaric tags for relative and absolute quantification (iTRAQ) and 2-D high-performance liquid chromatography-tandem mass spectrometry. More than 68% of the proteins have putative transmembrane domains and/or lipid-modified motifs. Proteins involved in signal transduction, membrane trafficking and transport are predominant in the plasma-membrane proteome. We revealed most components of the clathrin-dependent endocytosis pathway. Statistical analysis revealed 14 proteins differentially expressed in the two development stages: in PTs, six upregulated and eight downregulated are mainly involved in signaling, transport and membrane trafficking. These results provide novel insights into polarized PT growth.
Collapse
Affiliation(s)
- Bing Han
- Research Center for Molecular & Developmental Biology, Key Laboratory of Photosynthesis & Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100093, China
| | | | | | | | | |
Collapse
|
35
|
Abstract
Quo Vadis: where are you going? Advances in MS-based proteomics have enabled research to move from obtaining the basic protein inventory of cells and organelles to the ability of monitoring their dynamics, including changes in abundance, location and various PTMs. In this respect, the cellular plasma membrane is of particular interest, by not only serving as a barrier between the "cell interior" and the external environment, but moreover by organizing and clustering essential components to enable dynamic responses to internal and external stimuli. Defining and characterizing the dynamic plasma membrane proteome is crucial for understanding fundamental biological processes, disease mechanisms and for finding drug targets. Protein identification, characterization of dynamic PTMs and protein-ligand interactions, and determination of transient changes in protein expression and composition are among the challenges in functional proteomic studies of the plasma membrane. We review the recent progress in MS-based plasma membrane proteomics by presenting key examples from eukaryotic systems, including mammals, yeast and plants. We highlight the importance of enrichment and quantification technologies required for detailed functional and comparative analysis of the dynamic plasma membrane proteome.
Collapse
Affiliation(s)
- Richard R Sprenger
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | |
Collapse
|
36
|
Miernyk JA, Preťová A, Olmedilla A, Klubicová K, Obert B, Hajduch M. Using proteomics to study sexual reproduction in angiosperms. ACTA ACUST UNITED AC 2010; 24:9-22. [PMID: 20830489 DOI: 10.1007/s00497-010-0149-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 08/21/2010] [Indexed: 12/18/2022]
Abstract
While a relative latecomer to the postgenomics era of functional biology, the application of mass spectrometry-based proteomic analysis has increased exponentially over the past 10 years. Some of this increase is the result of transition of chemists, physicists, and mathematicians to the study of biology, and some is due to improved methods, increased instrument sensitivity, and better techniques of bioinformatics-based data analysis. Proteomic Biological processes are typically studied in isolation, and seldom are efforts made to coordinate results obtained using structural, biochemical, and molecular-genetic strategies. Mass spectrometry-based proteomic analysis can serve as a platform to bridge these disparate results and to additionally incorporate both temporal and anatomical considerations. Recently, proteomic analyses have transcended their initial purely descriptive applications and are being employed extensively in studies of posttranslational protein modifications, protein interactions, and control of metabolic networks. Herein, we provide a brief introduction to sample preparation, comparison of gel-based versus gel-free methods, and explanation of data analysis emphasizing plant reproductive applications. We critically review the results from the relatively small number of extant proteomics-based analyses of angiosperm reproduction, from flowers to seedlings, and speculate on the utility of this strategy for future developments and directions.
Collapse
Affiliation(s)
- Ján A Miernyk
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovak Republic
| | | | | | | | | | | |
Collapse
|
37
|
Covey PA, Subbaiah CC, Parsons RL, Pearce G, Lay FT, Anderson MA, Ryan CA, Bedinger PA. A pollen-specific RALF from tomato that regulates pollen tube elongation. PLANT PHYSIOLOGY 2010; 153:703-15. [PMID: 20388667 PMCID: PMC2879774 DOI: 10.1104/pp.110.155457] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/07/2010] [Indexed: 05/18/2023]
Abstract
Rapid Alkalinization Factors (RALFs) are plant peptides that rapidly increase the pH of plant suspension cell culture medium and inhibit root growth. A pollen-specific tomato (Solanum lycopersicum) RALF (SlPRALF) has been identified. The SlPRALF gene encodes a preproprotein that appears to be processed and released from the pollen tube as an active peptide. A synthetic SlPRALF peptide based on the putative active peptide did not affect pollen hydration or viability but inhibited the elongation of normal pollen tubes in an in vitro growth system. Inhibitory effects of SlPRALF were detectable at concentrations as low as 10 nm, and complete inhibition was observed at 1 mum peptide. At least 10-fold higher levels of alkSlPRALF, which lacks disulfide bonds, were required to see similar effects. A greater effect of peptide was observed in low-pH-buffered medium. Inhibition of pollen tube elongation was reversible if peptide was removed within 15 min of exposure. Addition of 100 nm SlPRALF to actively growing pollen tubes inhibited further elongation until tubes were 40 to 60 mum in length, after which pollen tubes became resistant to the peptide. The onset of resistance correlated with the timing of the exit of the male germ unit from the pollen grain into the tube. Thus, exogenous SlPRALF acts as a negative regulator of pollen tube elongation within a specific developmental window.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Patricia A. Bedinger
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523–1878 (P.A.C., C.C.S., R.L.P., P.A.B.); Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (G.P., C.A.R.); Department of Biochemistry, La Trobe University, Melbourne, Victoria 3086, Australia (F.T.L., M.A.A.)
| |
Collapse
|