1
|
Yang H, Wang Y, Liu W, He T, Liao J, Qian Z, Zhao J, Cong Z, Sun D, Liu Z, Wang C, Zhu L, Chen S. Genome-wide pan-GPCR cell libraries accelerate drug discovery. Acta Pharm Sin B 2024; 14:4296-4311. [PMID: 39525595 PMCID: PMC11544303 DOI: 10.1016/j.apsb.2024.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in mediating diverse physiological and pathological processes, rendering them promising targets for drug discovery. GPCRs account for about 40% of FDA-approved drugs, representing the most successful drug targets. However, only approximately 15% of the 800 human GPCRs are targeted by market drugs, leaving numerous opportunities for drug discovery among the remaining receptors. Cell expression systems play crucial roles in the GPCR drug discovery field, including novel target identification, structural and functional characterization, potential ligand screening, signal pathway elucidation, and drug safety evaluation. Here, we discuss the principles, applications, and limitations of widely used cell expression systems in GPCR-targeted drug discovery, GPCR function investigation, signal pathway characterization, and pharmacological property studies. We also propose three strategies for constructing genome-wide pan-GPCR cell libraries, which will provide a powerful platform for GPCR ligand screening, and facilitate the study of GPCR mechanisms and drug safety evaluation, ultimately accelerating the process of GPCR-targeted drug discovery.
Collapse
Affiliation(s)
- Hanting Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yongfu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Taiping He
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayu Liao
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- The Huaxi-Cal Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongzhi Qian
- Chinese Pharmacopoeia Commission, Beijing 100061, China
| | - Jinghao Zhao
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhaotong Cong
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dan Sun
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixiang Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lingping Zhu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
2
|
Ryaboshapkina M, Saitoski K, Hamza GM, Jarnuczak AF, Pechberty S, Berthault C, Sengupta K, Underwood CR, Andersson S, Scharfmann R. Characterization of the Secretome, Transcriptome, and Proteome of Human β Cell Line EndoC-βH1. Mol Cell Proteomics 2022; 21:100229. [PMID: 35378291 PMCID: PMC9062487 DOI: 10.1016/j.mcpro.2022.100229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/26/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022] Open
Abstract
Early diabetes research is hampered by limited availability, variable quality, and instability of human pancreatic islets in culture. Little is known about the human β cell secretome, and recent studies question translatability of rodent β cell secretory profiles. Here, we verify representativeness of EndoC-βH1, one of the most widely used human β cell lines, as a translational human β cell model based on omics and characterize the EndoC-βH1 secretome. We profiled EndoC-βH1 cells using RNA-seq, data-independent acquisition, and tandem mass tag proteomics of cell lysate. Omics profiles of EndoC-βH1 cells were compared to human β cells and insulinomas. Secretome composition was assessed by data-independent acquisition proteomics. Agreement between EndoC-βH1 cells and primary adult human β cells was ∼90% for global omics profiles as well as for β cell markers, transcription factors, and enzymes. Discrepancies in expression were due to elevated proliferation rate of EndoC-βH1 cells compared to adult β cells. Consistently, similarity was slightly higher with benign nonmetastatic insulinomas. EndoC-βH1 secreted 783 proteins in untreated baseline state and 3135 proteins when stressed with nontargeting control siRNA, including known β cell hormones INS, IAPP, and IGF2. Further, EndoC-βH1 secreted proteins known to generate bioactive peptides such as granins and enzymes required for production of bioactive peptides. EndoC-βH1 secretome contained an unexpectedly high proportion of predicted extracellular vesicle proteins. We believe that secretion of extracellular vesicles and bioactive peptides warrant further investigation with specialized proteomics workflows in future studies.
Collapse
Affiliation(s)
- Maria Ryaboshapkina
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Kevin Saitoski
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Ghaith M Hamza
- Discovery Sciences, AstraZeneca, Boston, Massachusetts, USA; Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Andrew F Jarnuczak
- Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Séverine Pechberty
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Claire Berthault
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Kaushik Sengupta
- Alliance Management, Business Development, Licensing and Strategy, Biopharmaceuticals R&D, Astra Zeneca, Gothenburg, Sweden
| | - Christina Rye Underwood
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Raphael Scharfmann
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| |
Collapse
|
3
|
Valdez-Lopez JC, Gulati S, Ortiz EA, Palczewski K, Robinson PR. Melanopsin Carboxy-terminus phosphorylation plasticity and bulk negative charge, not strict site specificity, achieves phototransduction deactivation. PLoS One 2020; 15:e0228121. [PMID: 32236094 PMCID: PMC7112210 DOI: 10.1371/journal.pone.0228121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/06/2020] [Indexed: 11/19/2022] Open
Abstract
Melanopsin is a visual pigment expressed in a small subset of ganglion cells in the mammalian retina known as intrinsically photosensitive retinal ganglion cells (ipRGCs) and is implicated in regulating non-image forming functions such as circadian photoentrainment and pupil constriction and contrast sensitivity in image formation. Mouse melanopsin's Carboxy-terminus (C-terminus) possesses 38 serine and threonine residues, which can potentially serve as phosphorylation sites for a G-protein Receptor Kinase (GRK) and be involved in the deactivation of signal transduction. Previous studies suggest that S388, T389, S391, S392, S394, S395 on the proximal region of the C-terminus of mouse melanopsin are necessary for melanopsin deactivation. We expressed a series of mouse melanopsin C-terminal mutants in HEK293 cells and using calcium imaging, and we found that the necessary cluster of six serine and threonine residues, while being critical, are insufficient for proper melanopsin deactivation. Interestingly, the additional six serine and threonine residues adjacent to the required six sites, in either proximal or distal direction, are capable of restoring wild-type deactivation of melanopsin. These findings suggest an element of plasticity in the molecular basis of melanopsin phosphorylation and deactivation. In addition, C-terminal chimeric mutants and molecular modeling studies support the idea that the initial steps of deactivation and β-arrestin binding are centered around these critical phosphorylation sites (S388-S395). The degree of functional versatility described in this study, along with ipRGC biophysical heterogeneity and the possible use of multiple signal transduction cascades, might contribute to the diverse ipRGC light responses for use in non-image and image forming behaviors, even though all six sub types of ipRGCs express the same melanopsin gene OPN4.
Collapse
MESH Headings
- HEK293 Cells
- Humans
- Light Signal Transduction/physiology
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- Phosphorylation/physiology
- Protein Binding
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Rod Opsins/chemistry
- Rod Opsins/genetics
- Rod Opsins/metabolism
- Serine/genetics
- Serine/metabolism
- Threonine/genetics
- Threonine/metabolism
- beta-Arrestin 1/chemistry
- beta-Arrestin 1/metabolism
Collapse
Affiliation(s)
- Juan C. Valdez-Lopez
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Sahil Gulati
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California, United States of America
- Gatan Inc, Pleasanton, California, United States of America
| | - Elelbin A. Ortiz
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California, United States of America
| | - Phyllis R. Robinson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
4
|
Expression, Purification and Characterization of the Human Cannabinoid 1 Receptor. Sci Rep 2018; 8:2935. [PMID: 29440756 PMCID: PMC5811539 DOI: 10.1038/s41598-018-19749-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
The human cannabinoid 1 receptor (hCB1) is involved in numerous physiological processes and therefore provides a wide scope of potential therapeutic opportunities to treat maladies such as obesity, cardio-metabolic disorders, substance abuse, neuropathic pain, and multiple sclerosis. Structure-based drug design using the current knowledge of the hCB1 receptor binding site is limited and requires purified active protein. Heterologous expression and purification of functional hCB1 has been the bottleneck for ligand binding structural studies using biophysical methods such as mass spectrometry, x-ray crystallography and NMR. We constructed several plasmids for in-cell or in vitro Escherichia coli (E. coli) based expression of truncated and stabilized hCB1 receptor (hΔCB1 and hΔCB1T4L) variants and evaluated their competency to bind the CP-55,940 ligand. MALDI-TOF MS analysis of in vitro expressed and purified hΔCB1T4Lhis6 variants, following trypsin digestion, generated ~80% of the receptor sequence coverage. Our data demonstrate the feasibility of a cell-free expression system as a promising part of the strategy for the elucidation of ligand binding sites of the hCB1 receptor using a "Ligand Assisted Protein Structure" (LAPS) approach.
Collapse
|
5
|
Heterodimerization of the prostaglandin E2 receptor EP2 and the calcitonin receptor CTR. PLoS One 2017; 12:e0187711. [PMID: 29095955 PMCID: PMC5667882 DOI: 10.1371/journal.pone.0187711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have been found to form heterodimers and modulate or fine-tune the functions of GPCRs. However, the involvement of GPCR heterodimerization and its functional consequences in gonadal tissues, including granulosa cells, have been poorly investigated, mainly due to the lack of efficient method for identification of novel GPCR heterodimers. In this paper, we identified a novel GPCR heterodimer between prostaglandin E2 (PGE2) receptor 2 (EP2) and calcitonin (CT) receptor (CTR). High-resolution liquid chromatography (LC)-tandem mass spectrometry (MS/MS) of protease-digested EP2-coimmunoprecipitates detected protein fragments of CTR in an ovarian granulosa cell line, OV3121. Western blotting of EP2- and CTR-coimmunoprecipitates detected a specific band for EP2-CTR heterodimer. Specific heterodimerization between EP2 and CTR was also observed by fluorescence resonance energy transfer analysis in HEK293MSR cells expressing cyan- and yellow-fluorescent protein-fused EP2 and CTR, respectively. Collectively, these results provided evidence for heterodimerization between EP2 and CTR. Moreover, Ca2+ mobilization by CT was approximately 40% less potent in HEK293MSR cells expressing an EP2-CTR heterodimer, whereas cAMP production by EP2 or CT was not significantly altered compared with cells expressing EP2- or CTR alone. These functional analyses verified that CTR-mediated Ca2+ mobilization is specifically decreased via heterodimerization with EP2. Altogether, the present study suggests that a novel GPCR heterodimer, EP2-CTR, is involved in some functional regulation, and paves the way for investigation of novel biological roles of CTR and EP2 in various tissues.
Collapse
|
6
|
Janero DR, Korde A, Makriyannis A. Ligand-Assisted Protein Structure (LAPS): An Experimental Paradigm for Characterizing Cannabinoid-Receptor Ligand-Binding Domains. Methods Enzymol 2017; 593:217-235. [DOI: 10.1016/bs.mie.2017.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
7
|
Mass Spectrometry Analysis of Human CB2 Cannabinoid Receptor and Its Associated Proteins. Methods Enzymol 2017; 593:371-386. [DOI: 10.1016/bs.mie.2017.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
8
|
Janero DR, Thakur GA. Leveraging allostery to improve G protein-coupled receptor (GPCR)-directed therapeutics: cannabinoid receptor 1 as discovery target. Expert Opin Drug Discov 2016; 11:1223-1237. [PMID: 27712124 DOI: 10.1080/17460441.2016.1245289] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Allosteric modulators of G-protein coupled receptors (GPCRs) hold the promise of improved pharmacology and safety over typical orthosteric GPCR ligands. These features are particularly relevant to the cannabinoid receptor 1 (CB1R) GPCR, since typical orthosteric CB1R ligands are associated with adverse events that limit their translational potential. Areas covered: The contextual basis for applying allostery to CB1R is considered from pharmacological, drug-discovery, and medicinal standpoints. Rational design of small-molecule CB1R allosteric modulators as potential pharmacotherapeutics would be greatly facilitated by direct experimental characterization of structure-function correlates underlying the biological activity of chemically-diverse CB1R allosteric modulators, CB1R allosteric ligand-binding binding pockets, and amino acid contact residues critical to allosteric ligand engagement and activity. In these regards, designer covalent probes exhibiting well-characterized molecular pharmacology as CB1R allosteric modulators are emerging as valuable molecular reporters enabling experimental interrogation of CB1R allosteric site(s) and informing the design of new CB1R agents as drugs. Expert opinion: Synthesis and pharmacological profiling of CB1R allosteric ligands will continue to provide valuable insights into CB1R structure-function correlates. The resulting data should expand the repertoire of novel agents capable of exerting therapeutic benefit by modulating CB1R-dependent signaling.
Collapse
Affiliation(s)
- David R Janero
- a Center for Drug Discovery; Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences; Department of Chemistry and Chemical Biology, College of Science; and Health Sciences Entrepreneurs , Northeastern University , Boston , MA , USA
| | - Ganesh A Thakur
- b Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences , Northeastern University , Boston , MA , USA
| |
Collapse
|
9
|
Qiao CJ, Ali HI, Ahn KH, Kolluru S, Kendall DA, Lu D. Synthesis and biological evaluation of indole-2-carboxamides bearing photoactivatable functionalities as novel allosteric modulators for the cannabinoid CB1 receptor. Eur J Med Chem 2016; 121:517-529. [PMID: 27318976 DOI: 10.1016/j.ejmech.2016.05.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/25/2022]
Abstract
5-Chloro-3-ethyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (ORG27569, 1) is a prototypical allosteric modulator for the cannabinoid CB1 receptor. Based on this indole-2-carboxamide scaffold, we designed and synthesized novel CB1 allosteric modulators that possess photoactivatable functionalities, which include benzophenone, phenyl azide, aliphatic azide and phenyltrifluoromethyldiazrine. To assess their allosteric effects, the dissociation constant (KB) and allosteric binding cooperativity factor (α) were determined and compared to their parent compounds. Within this series, benzophenone-containing compounds 26 and 27, phenylazide-containing compound 28, and the aliphatic azide containing compound 36b showed allosteric binding parameters (KB and α) comparable to their parent compound 1, 7, 8, and 9, respectively. We further assessed these modulators for their impact on G-protein coupling activity. Interestingly, these compounds exhibited negative allosteric modulator properties in a manner similar to their parent compounds, which antagonize agonist-induced G-protein coupling. These novel CB1 allosteric modulators, possessing photoactivatable functionalities, provide valuable tools for future photo-affinity labeling and mapping the CB1 allosteric binding site(s).
Collapse
Affiliation(s)
- Chang-Jiang Qiao
- Irma Lerma Rangel College of Pharmacy, Health Science Center, Texas A&M University, 1010 West Avenue B, Kingsville, TX 78363, United States; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hamed I Ali
- Irma Lerma Rangel College of Pharmacy, Health Science Center, Texas A&M University, 1010 West Avenue B, Kingsville, TX 78363, United States
| | - Kwang H Ahn
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Srikanth Kolluru
- Irma Lerma Rangel College of Pharmacy, Health Science Center, Texas A&M University, 1010 West Avenue B, Kingsville, TX 78363, United States
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States.
| | - Dai Lu
- Irma Lerma Rangel College of Pharmacy, Health Science Center, Texas A&M University, 1010 West Avenue B, Kingsville, TX 78363, United States.
| |
Collapse
|
10
|
Xiao K, Chung J, Wall A. The power of mass spectrometry in structural characterization of GPCR signaling. J Recept Signal Transduct Res 2015; 35:213-9. [PMID: 26459735 DOI: 10.3109/10799893.2015.1072979] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mass spectrometry (MS)-based proteomics is an unrivaled tool for studying complex biological systems and diseases in the post-genomic era. In recent years, MS has emerged as a powerful structural biological tool to characterize protein conformation and conformational dynamics. The advantages of MS in structural studies are most evident for membrane proteins such as GPCRs (G protein-coupled receptors), where other well-established structural methods such as X-ray crystallography and NMR remain challenging. For proteins with available high-resolution structures, MS-based structural strategies can provide valuable, previously inaccessible information on protein conformational changes and dynamics, protein motion/flexibility, ligand-protein binding, and protein-protein interfaces. In the past several years, we have developed and adapted a number of MS-based structural approaches, such as CDSiL-MS (Conformational changes and Dynamics using Stable-isotope Labeling and MS), CXMS (Crosslinking/MS) and HDXMS (Hydrogen-Deuterium Exchange MS), to study protein structures and conformational dynamics in human β2-adrenegic receptor (β2AR) signaling. In this mini-review, we will highlight several examples demonstrating the power of MS in structural analysis to better elucidate the structural basis of GPCR signaling, particularly through the β-arrestin-mediated GPCR signaling pathway.
Collapse
Affiliation(s)
- Kunhong Xiao
- a Department of Pharmacology and Chemical Biology , University of Pittsburgh , Pittsburgh , PA , USA and.,b Department of Medicine , Duke University Medical Center , Durham , NC , USA
| | - Jeannie Chung
- b Department of Medicine , Duke University Medical Center , Durham , NC , USA
| | - Alissa Wall
- b Department of Medicine , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
11
|
Chidiac P, Hébert TE. GPCR Retreat 2014: a good view leads to many discoveries! J Recept Signal Transduct Res 2015; 35:208-12. [PMID: 26366680 DOI: 10.3109/10799893.2015.1072977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The GPCR gods smiled on us last year as the 15th Annual GPCR Retreat was held last October 2nd-4th in Bromont, Québec. The fall colors were at their peak and the meeting attendees were also in fine form. The program was one of the best we have seen at any GPCR-related meeting in years and there was a great deal of excitement about new methodological approaches to understanding receptor biology, new concepts in GPCR signaling and a continued emphasis on translation of these discoveries. This year was also the first year we opened the meeting with a short course on biased agonism and how to measure and analyze it.
Collapse
Affiliation(s)
- Peter Chidiac
- a Department of Physiology and Pharmacology , Schulich School of Medicine & Dentistry, University of Western Ontario , London , Ontario , Canada and
| | - Terence E Hébert
- b Department of Pharmacology and Therapeutics , McGill University , Montréal, Québec , Canada
| |
Collapse
|
12
|
Rosa M, Bech-Serra JJ, Canals F, Zajac JM, Talmont F, Arsequell G, Valencia G. Optimized Proteomic Mass Spectrometry Characterization of Recombinant Human μ-Opioid Receptor Functionally Expressed in Pichia pastoris Cell Lines. J Proteome Res 2015; 14:3162-73. [PMID: 26090583 DOI: 10.1021/acs.jproteome.5b00104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human μ-opioid receptor (hMOR) is a class-A G-protein-coupled receptor (GPCR), a prime therapeutic target for the management of moderate and severe pain. A chimeric form of the receptor has been cocrystallized with an opioid antagonist and resolved by X-ray diffraction; however, further direct structural analysis is still required to identify the active form of the receptor to facilitate the rational design of hMOR-selective agonist and antagonists with therapeutic potential. Toward this goal and in spite of the intrinsic difficulties posed by the highly hydrophobic transmembrane motives of hMOR, we have comprehensively characterized by mass spectrometry (MS) analysis the primary sequence of the functional hMOR. Recombinant hMOR was overexpressed as a C-terminal c-myc and 6-his tagged protein using an optimized expression procedure in Pichia pastoris cells. After membrane solubilization and metal-affinity chromatography purification, a procedure was devised to enhance the concentration of the receptor. Subsequent combinations of in-solution and in-gel digestions using either trypsin, chymotrypsin, or proteinase K, followed by matrix-assisted laser desorption ionization time-of-flight MS or nanoliquid chromatography coupled with tandem MS analyses afforded an overall sequence coverage of up to >80%, a level of description first attained for an opioid receptor and one of the six such high-coverage MS-based analyses of any GPCR.
Collapse
Affiliation(s)
- Mònica Rosa
- †Unit of Glycoconjugate Chemistry, Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC), 08034 Barcelona, Spain
| | - Joan Josep Bech-Serra
- ‡Proteomics Laboratory, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, ProteoRed ISCIII, 08035 Barcelona, Spain
| | - Francesc Canals
- ‡Proteomics Laboratory, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, ProteoRed ISCIII, 08035 Barcelona, Spain
| | - Jean Marie Zajac
- §Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Franck Talmont
- §Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Gemma Arsequell
- †Unit of Glycoconjugate Chemistry, Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC), 08034 Barcelona, Spain
| | - Gregorio Valencia
- †Unit of Glycoconjugate Chemistry, Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia, Spanish National Research Council (IQAC-CSIC), 08034 Barcelona, Spain
| |
Collapse
|
13
|
Duc NM, Du Y, Zhang C, Lee SY, Thorsen TS, Kobilka BK, Chung KY. Effective application of bicelles for conformational analysis of G protein-coupled receptors by hydrogen/deuterium exchange mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:808-817. [PMID: 25740347 PMCID: PMC4727453 DOI: 10.1007/s13361-015-1083-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 06/04/2023]
Abstract
G protein-coupled receptors (GPCRs) have important roles in physiology and pathology, and 40% of drugs currently on the market target GPCRs for the treatment of various diseases. Because of their therapeutic importance, the structural mechanism of GPCR signaling is of great interest in the field of drug discovery. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a useful tool for analyzing ligand binding sites, the protein-protein interaction interface, and conformational changes of proteins. However, its application to GPCRs has been limited for various reasons, including the hydrophobic nature of GPCRs and the use of detergents in their preparation. In the present study, we tested the application of bicelles as a means of solubilizing GPCRs for HDX-MS studies. GPCRs (e.g., β2-adrenergic receptor [β2AR], μ-opioid receptor, and protease-activated receptor 1) solubilized in bicelles produced better sequence coverage (greater than 90%) than GPCRs solubilized in n-dodecyl-β-D-maltopyranoside (DDM), suggesting that bicelles are a more effective method of solubilization for HDX-MS studies. The HDX-MS profile of β2AR in bicelles showed that transmembrane domains (TMs) undergo lower deuterium uptake than intracellular or extracellular regions, which is consistent with the fact that the TMs are highly ordered and embedded in bicelles. The overall HDX-MS profiles of β2AR solubilized in bicelles and in DDM were similar except for intracellular loop 3. Interestingly, we detected EX1 kinetics, an important phenomenon in protein dynamics, at the C-terminus of TM6 in β2AR. In conclusion, we suggest the application of bicelles as a useful method for solubilizing GPCRs for conformational analysis by HDX-MS.
Collapse
MESH Headings
- Amino Acid Sequence
- Detergents/chemistry
- Deuterium Exchange Measurement
- Feasibility Studies
- Humans
- Kinetics
- Lipid Bilayers/chemistry
- Lipid Bilayers/metabolism
- Maltose/analogs & derivatives
- Maltose/chemistry
- Micelles
- Models, Molecular
- Molecular Sequence Data
- Protein Conformation
- Protein Folding
- Protein Structure, Tertiary
- Receptor, PAR-1/chemistry
- Receptor, PAR-1/genetics
- Receptor, PAR-1/metabolism
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Solubility
- Spectrometry, Mass, Electrospray Ionization
Collapse
Affiliation(s)
- Nguyen Minh Duc
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, South Korea
| | - Yang Du
- Department of Molecular and Cellular Physiology, Stanford University, Medical School, 297 Campus Drive, Beckman Center, Stanford, California, USA
| | - Cheng Zhang
- Department of Molecular and Cellular Physiology, Stanford University, Medical School, 297 Campus Drive, Beckman Center, Stanford, California, USA
| | - Su Youn Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, South Korea
| | - Thor S. Thorsen
- Department of Molecular and Cellular Physiology, Stanford University, Medical School, 297 Campus Drive, Beckman Center, Stanford, California, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, Medical School, 297 Campus Drive, Beckman Center, Stanford, California, USA
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, South Korea
| |
Collapse
|
14
|
Makriyannis A. 2012 Division of medicinal chemistry award address. Trekking the cannabinoid road: a personal perspective. J Med Chem 2014; 57:3891-911. [PMID: 24707904 DOI: 10.1021/jm500220s] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
My involvement with the field of cannabinoids spans close to 3 decades and covers a major part of my scientific career. It also reflects the robust progress in this initially largely unexplored area of biology. During this period of time, I have witnessed the growth of modern cannabinoid biology, starting from the discovery of its two receptors and followed by the characterization of its endogenous ligands and the identification of the enzyme systems involved in their biosynthesis and biotransformation. I was fortunate enough to start at the beginning of this new era and participate in a number of the new discoveries. It has been a very exciting journey. With coverage of some key aspects of my work during this period of "modern cannabinoid research," this Award Address, in part historical, intends to give an account of how the field grew, the key discoveries, and the most promising directions for the future.
Collapse
Affiliation(s)
- Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
Romanova EV, Lee JE, Kelleher NL, Sweedler JV, Gulley JM. Comparative peptidomics analysis of neural adaptations in rats repeatedly exposed to amphetamine. J Neurochem 2012; 123:276-87. [PMID: 22860605 PMCID: PMC3463764 DOI: 10.1111/j.1471-4159.2012.07912.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 01/29/2023]
Abstract
Repeated exposure to amphetamine (AMPH) induces long-lasting behavioral changes, referred to as sensitization, that are accompanied by various neuroadaptations in the brain. To investigate the chemical changes that occur during behavioral sensitization, we applied a comparative proteomics approach to screen for neuropeptide changes in a rodent model of AMPH-induced sensitization. By measuring peptide profiles with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and comparing signal intensities using principal component analysis and variance statistics, subsets of peptides are found with significant differences in the dorsal striatum, nucleus accumbens, and medial prefrontal cortex of AMPH-sensitized male Sprague-Dawley rats. These biomarker peptides, identified in follow-up analyses using liquid chromatography and tandem mass spectrometry, suggest that behavioral sensitization to AMPH is associated with complex chemical adaptations that regulate energy/metabolism, neurotransmission, apoptosis, neuroprotection, and neuritogenesis, as well as cytoskeleton integrity and neuronal morphology. Our data contribute to a growing number of reports showing that in addition to the mesolimbic dopamine system, which is the best known signaling pathway involved with reinforcing the effect of psychostimulants, concomitant chemical changes in other pathways and in neuronal organization may play a part in the overall effect of chronic AMPH exposure on behavior.
Collapse
Affiliation(s)
- Elena V. Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Ji Eun Lee
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Neil L. Kelleher
- Department of Chemistry, Department of Molecular Biosciences, and The Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Rd., Evanston, IL USA
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Joshua M. Gulley
- Neuroscience Program, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 E. Daniel St., Champaign, IL 61820, USA
| |
Collapse
|
16
|
Mercier RW, Pei Y, Pandarinathan L, Janero DR, Zhang J, Makriyannis A. hCB2 ligand-interaction landscape: cysteine residues critical to biarylpyrazole antagonist binding motif and receptor modulation. ACTA ACUST UNITED AC 2011; 17:1132-42. [PMID: 21035736 DOI: 10.1016/j.chembiol.2010.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 08/09/2010] [Accepted: 08/12/2010] [Indexed: 11/19/2022]
Abstract
The human cannabinoid 2 GPCR (hCB2) is a prime therapeutic target. To define potential cysteine-related binding motifs critical to hCB2-ligand interaction, a library of hCB2 cysteine-substitution mutants and a novel, high-affinity biarylpyrazole hCB2 antagonist/inverse agonist (AM1336) functionalized to serve as a covalent affinity probe to target cysteine residues within (or in the microenvironment of) its hCB2 binding pocket were generated. The data provide direct experimental demonstration that both hCB2 TMH7 cysteines [i.e., C7.38(284) and C7.42(288)] are critical to optimal hCB2-AM1336 binding interaction and AM1336 pharmacological activity in a cell-based functional assay (cAMP formation). Elongating the AM1336 aliphatic side chain generated another novel hCB2 inverse agonist that binds covalently and selectively to C7.42(288) only. Identification of specific cysteine residues critical to hCB2 ligand interaction and function informs the structure-based design of hCB2-targeted medicines.
Collapse
Affiliation(s)
- Richard W Mercier
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | |
Collapse
|
17
|
Wiśniewski JR, Nagaraj N, Zougman A, Gnad F, Mann M. Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 2010; 9:3280-9. [PMID: 20415495 DOI: 10.1021/pr1002214] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Taking advantage of the recently developed Filter Assisted Sample Preparation (FASP) method for sample preparation, we performed an in-depth analysis of phosphorylation sites in mouse brain. To maximize the number of detected phosphorylation sites, we fractionated proteins by size exclusion chromatography (SEC) or separated tryptic peptides on an anion exchanger (SAX) prior or after the TiO(2)-based phosphopeptide enrichment, respectively. SEC allowed analysis of minute tissue samples (1 mg total protein), and resulted in identification of more than 4000 sites in a single experiment, comprising eight fractions. SAX in a pipet tip format offered a convenient and rapid way to fractionate phosphopeptides and mapped more than 5000 sites in a single six fraction experiment. To enrich peptides containing phosphotyrosine residues, we describe a filter aided antibody capturing and elution (FACE) method that requires only the uncoupled instead of resin-immobilized capture reagent. In total, we identified 12,035 phosphorylation sites on 4579 brain proteins of which 8446 are novel. Gene Ontology annotation reveals that 23% of identified sites are located on plasma membrane proteins, including a large number of ion channels and transporters. Together with the glycosylation sites from a recent large-scale study, they can confirm or correct predicted membrane topologies of these proteins, as we show for the examples calcium channels and glutamate receptors.
Collapse
Affiliation(s)
- Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, Martinsried near Munich, Germany.
| | | | | | | | | |
Collapse
|
18
|
Meyer B, Papasotiriou DG, Karas M. 100% protein sequence coverage: a modern form of surrealism in proteomics. Amino Acids 2010; 41:291-310. [DOI: 10.1007/s00726-010-0680-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 06/25/2010] [Indexed: 01/11/2023]
|