1
|
de Freitas Magalhães B, Fan G, Sontag E, Josić K, Bennett MR. Pattern Formation and Bistability in a Synthetic Intercellular Genetic Toggle. ACS Synth Biol 2024; 13:2844-2860. [PMID: 39214591 DOI: 10.1021/acssynbio.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Differentiation within multicellular organisms is a complex process that helps to establish spatial patterning and tissue formation within the body. Often, the differentiation of cells is governed by morphogens and intercellular signaling molecules that guide the fate of each cell, frequently using toggle-like regulatory components. Synthetic biologists have long sought to recapitulate patterned differentiation with engineered cellular communities, and various methods for differentiating bacteria have been invented. Here, we couple a synthetic corepressive toggle switch with intercellular signaling pathways to create a "quorum-sensing toggle". We show that this circuit not only exhibits population-wide bistability in a well-mixed liquid environment but also generates patterns of differentiation in colonies grown on agar containing an externally supplied morphogen. If coupled to other metabolic processes, circuits such as the one described here would allow for the engineering of spatially patterned, differentiated bacteria for use in biomaterials and bioelectronics.
Collapse
Affiliation(s)
| | - Gaoyang Fan
- Department of Mathematics, University of Houston, Houston, Texas 77204, United States
| | - Eduardo Sontag
- Department of Bioengineering and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Krešimir Josić
- Department of Mathematics, University of Houston, Houston, Texas 77204, United States
| | - Matthew R Bennett
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Bland T, Hirani N, Briggs DC, Rossetto R, Ng K, Taylor IA, McDonald NQ, Zwicker D, Goehring NW. Optimized PAR-2 RING dimerization mediates cooperative and selective membrane binding for robust cell polarity. EMBO J 2024; 43:3214-3239. [PMID: 38907033 PMCID: PMC11294563 DOI: 10.1038/s44318-024-00123-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/23/2024] Open
Abstract
Cell polarity networks are defined by quantitative features of their constituent feedback circuits, which must be tuned to enable robust and stable polarization, while also ensuring that networks remain responsive to dynamically changing cellular states and/or spatial cues during development. Using the PAR polarity network as a model, we demonstrate that these features are enabled by the dimerization of the polarity protein PAR-2 via its N-terminal RING domain. Combining theory and experiment, we show that dimer affinity is optimized to achieve dynamic, selective, and cooperative binding of PAR-2 to the plasma membrane during polarization. Reducing dimerization compromises positive feedback and robustness of polarization. Conversely, enhanced dimerization renders the network less responsive due to kinetic trapping of PAR-2 on internal membranes and reduced sensitivity of PAR-2 to the anterior polarity kinase, aPKC/PKC-3. Thus, our data reveal a key role for a dynamically oligomeric RING domain in optimizing interaction affinities to support a robust and responsive cell polarity network, and highlight how optimization of oligomerization kinetics can serve as a strategy for dynamic and cooperative intracellular targeting.
Collapse
Affiliation(s)
- Tom Bland
- Francis Crick Institute, London, NW1 1AT, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | | | | | - Riccardo Rossetto
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - KangBo Ng
- Francis Crick Institute, London, NW1 1AT, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | | | - Neil Q McDonald
- Francis Crick Institute, London, NW1 1AT, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, WC1E 7HX, UK
| | - David Zwicker
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Nathan W Goehring
- Francis Crick Institute, London, NW1 1AT, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| |
Collapse
|
3
|
Menou L, Luo C, Zwicker D. Physical interactions in non-ideal fluids promote Turing patterns. J R Soc Interface 2023; 20:20230244. [PMID: 37434500 PMCID: PMC10336379 DOI: 10.1098/rsif.2023.0244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Turing's mechanism is often invoked to explain periodic patterns in nature, although direct experimental support is scarce. Turing patterns form in reaction-diffusion systems when the activating species diffuse much slower than the inhibiting species, and the involved reactions are highly nonlinear. Such reactions can originate from cooperativity, whose physical interactions should also affect diffusion. We here take direct interactions into account and show that they strongly affect Turing patterns. We find that weak repulsion between the activator and inhibitor can substantially lower the required differential diffusivity and reaction nonlinearity. By contrast, strong interactions can induce phase separation, but the resulting length scale is still typically governed by the fundamental reaction-diffusion length scale. Taken together, our theory connects traditional Turing patterns with chemically active phase separation, thus describing a wider range of systems. Moreover, we demonstrate that even weak interactions affect patterns substantially, so they should be incorporated when modelling realistic systems.
Collapse
Affiliation(s)
- Lucas Menou
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, Göttingen 37077, Germany
| | - Chengjie Luo
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, Göttingen 37077, Germany
| | - David Zwicker
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, Göttingen 37077, Germany
| |
Collapse
|
4
|
Pelz M, Ward MJ. The emergence of spatial patterns for compartmental reaction kinetics coupled by two bulk diffusing species with comparable diffusivities. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220089. [PMID: 36842990 DOI: 10.1098/rsta.2022.0089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Originating from the pioneering study of Alan Turing, the bifurcation analysis predicting spatial pattern formation from a spatially uniform state for diffusing morphogens or chemical species that interact through nonlinear reactions is a central problem in many chemical and biological systems. From a mathematical viewpoint, one key challenge with this theory for two component systems is that stable spatial patterns can typically only occur from a spatially uniform state when a slowly diffusing 'activator' species reacts with a much faster diffusing 'inhibitor' species. However, from a modelling perspective, this large diffusivity ratio requirement for pattern formation is often unrealistic in biological settings since different molecules tend to diffuse with similar rates in extracellular spaces. As a result, one key long-standing question is how to robustly obtain pattern formation in the biologically realistic case where the time scales for diffusion of the interacting species are comparable. For a coupled one-dimensional bulk-compartment theoretical model, we investigate the emergence of spatial patterns for the scenario where two bulk diffusing species with comparable diffusivities are coupled to nonlinear reactions that occur only in localized 'compartments', such as on the boundaries of a one-dimensional domain. The exchange between the bulk medium and the spatially localized compartments is modelled by a Robin boundary condition with certain binding rates. As regulated by these binding rates, we show for various specific nonlinearities that our one-dimensional coupled PDE-ODE model admits symmetry-breaking bifurcations, leading to linearly stable asymmetric steady-state patterns, even when the bulk diffusing species have equal diffusivities. Depending on the form of the nonlinear kinetics, oscillatory instabilities can also be triggered. Moreover, the analysis is extended to treat a periodic chain of compartments. This article is part of the theme issue 'New trends in pattern formation and nonlinear dynamics of extended systems'.
Collapse
Affiliation(s)
- Merlin Pelz
- Department of Mathematics, UBC, Vancouver, British Columbia, Canada
| | - Michael J Ward
- Department of Mathematics, UBC, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Roy U, Singh D, Vincent N, Haritas CK, Jolly MK. Spatiotemporal Patterning Enabled by Gene Regulatory Networks. ACS OMEGA 2023; 8:3713-3725. [PMID: 36743018 PMCID: PMC9893257 DOI: 10.1021/acsomega.2c04581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/24/2022] [Indexed: 06/18/2023]
Abstract
Spatiotemporal pattern formation plays a key role in various biological phenomena including embryogenesis and neural network formation. Though the reaction-diffusion systems enabling pattern formation have been studied phenomenologically, the biomolecular mechanisms behind these processes have not been modeled in detail. Here, we study the emergence of spatiotemporal patterns due to simple, synthetic and commonly observed two- and three-node gene regulatory network motifs coupled with their molecular diffusion in one- and two-dimensional space. We investigate the patterns formed due to the coupling of inherent multistable and oscillatory behavior of the toggle switch, toggle switch with double self-activation, toggle triad, and repressilator with the effect of spatial diffusion of these molecules. We probe multiple parameter regimes corresponding to different regions of stability (monostable, multistable, oscillatory) and assess the impact of varying diffusion coefficients. This analysis offers valuable insights into the design principles of pattern formation facilitated by these network motifs, and it suggests the mechanistic underpinnings of biological pattern formation.
Collapse
Affiliation(s)
- Ushasi Roy
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore560012, India
| | - Divyoj Singh
- Undergraduate
Programme, Indian Institute of Science, Bangalore560012, India
| | - Navin Vincent
- Undergraduate
Programme, Indian Institute of Science, Bangalore560012, India
| | - Chinmay K. Haritas
- Undergraduate
Programme, Indian Institute of Science, Bangalore560012, India
| | - Mohit Kumar Jolly
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore560012, India
| |
Collapse
|
6
|
Escárcega-Bobadilla MV, Maldonado-Domínguez M, Romero-Ávila M, Zelada-Guillén GA. Turing patterns by supramolecular self-assembly of a single salphen building block. iScience 2022; 25:104545. [PMID: 35747384 PMCID: PMC9209723 DOI: 10.1016/j.isci.2022.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
In the 1950s, Alan Turing showed that concerted reactions and diffusion of activating and inhibiting chemical species can autonomously generate patterns without previous positional information, thus providing a chemical basis for morphogenesis in Nature. However, access to these patterns from only one molecular component that contained all the necessary information to execute agonistic and antagonistic signaling is so far an elusive goal, since two or more participants with different diffusivities are a must. Here, we report on a single-molecule system that generates Turing patterns arrested in the solid state, where supramolecular interactions are used instead of chemical reactions, whereas diffusional differences arise from heterogeneously populated self-assembled products. We employ a family of hydroxylated organic salphen building blocks based on a bis-Schiff-base scaffold with portions responsible for either activation or inhibition of assemblies at different hierarchies through purely supramolecular reactions, only depending upon the solvent dielectric constant and evaporation as fuel.
Collapse
Affiliation(s)
- Martha V Escárcega-Bobadilla
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Mauricio Maldonado-Domínguez
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, 04510 Mexico City, Mexico.,Department of Computational Chemistry, J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Margarita Romero-Ávila
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Gustavo A Zelada-Guillén
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, 04510 Mexico City, Mexico
| |
Collapse
|
7
|
Pramanik D, Jolly MK, Bhat R. Matrix adhesion and remodeling diversifies modes of cancer invasion across spatial scales. J Theor Biol 2021; 524:110733. [PMID: 33933478 DOI: 10.1016/j.jtbi.2021.110733] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
The metastasis of malignant epithelial tumors begins with the egress of transformed cells from the confines of their basement membrane (BM) to their surrounding collagen-rich stroma. Invasion can be morphologically diverse: when breast cancer cells are separately cultured within BM-like matrix, collagen I (Coll I), or a combination of both, they exhibit collective-, dispersed mesenchymal-, and a mixed collective-dispersed (multimodal)- invasion, respectively. In this paper, we asked how distinct these invasive modes are with respect to the cellular and microenvironmental cues that drive them. A rigorous computational exploration of invasion was performed within an experimentally motivated Cellular Potts-based modeling environment. The model comprised of adhesive interactions between cancer cells, BM- and Coll I-like extracellular matrix (ECM), and reaction-diffusion-based remodeling of ECM. The model outputs were parameters cognate to dispersed- and collective- invasion. A clustering analysis of the output distribution curated through a careful examination of subsumed phenotypes suggested at least four distinct invasive states: dispersed, papillary-collective, bulk-collective, and multimodal, in addition to an indolent/non-invasive state. Mapping input values to specific output clusters suggested that each of these invasive states are specified by distinct input signatures of proliferation, adhesion and ECM remodeling. In addition, specific input perturbations allowed transitions between the clusters and revealed the variation in the robustness between the invasive states. Our systems-level approach proffers quantitative insights into how the diversity in ECM microenvironments may steer invasion into diverse phenotypic modes during early dissemination of breast cancer and contributes to tumor heterogeneity.
Collapse
Affiliation(s)
- D Pramanik
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India; Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - M K Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - R Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
8
|
Duran-Nebreda S, Pla J, Vidiella B, Piñero J, Conde-Pueyo N, Solé R. Synthetic Lateral Inhibition in Periodic Pattern Forming Microbial Colonies. ACS Synth Biol 2021; 10:277-285. [PMID: 33449631 PMCID: PMC8486170 DOI: 10.1021/acssynbio.0c00318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multicellular entities are characterized by intricate spatial patterns, intimately related to the functions they perform. These patterns are often created from isotropic embryonic structures, without external information cues guiding the symmetry breaking process. Mature biological structures also display characteristic scales with repeating distributions of signals or chemical species across space. Many candidate patterning modules have been used to explain processes during development and typically include a set of interacting and diffusing chemicals or agents known as morphogens. Great effort has been put forward to better understand the conditions in which pattern-forming processes can occur in the biological domain. However, evidence and practical knowledge allowing us to engineer symmetry-breaking is still lacking. Here we follow a different approach by designing a synthetic gene circuit in E. coli that implements a local activation long-range inhibition mechanism. The synthetic gene network implements an artificial differentiation process that changes the physicochemical properties of the agents. Using both experimental results and modeling, we show that the proposed system is capable of symmetry-breaking leading to regular spatial patterns during colony growth. Studying how these patterns emerge is fundamental to further our understanding of the evolution of biocomplexity and the role played by self-organization. The artificial system studied here and the engineering perspective on embryogenic processes can help validate developmental theories and identify universal properties underpinning biological pattern formation, with special interest for the area of synthetic developmental biology.
Collapse
Affiliation(s)
- Salva Duran-Nebreda
- Institut de Biologia Evolutiva (CSIC-UPF), 08003 Barcelona, Spain
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Evolution of Technology Lab, Institut de Biologia Evolutiva (CSIC-UPF), 08003 Barcelona, Spain
| | - Jordi Pla
- Institut de Biologia Evolutiva (CSIC-UPF), 08003 Barcelona, Spain
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Blai Vidiella
- Institut de Biologia Evolutiva (CSIC-UPF), 08003 Barcelona, Spain
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Jordi Piñero
- Institut de Biologia Evolutiva (CSIC-UPF), 08003 Barcelona, Spain
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Nuria Conde-Pueyo
- Institut de Biologia Evolutiva (CSIC-UPF), 08003 Barcelona, Spain
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Ricard Solé
- Institut de Biologia Evolutiva (CSIC-UPF), 08003 Barcelona, Spain
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, United States
| |
Collapse
|
9
|
Davies JA, Glykofrydis F. Engineering pattern formation and morphogenesis. Biochem Soc Trans 2020; 48:1177-1185. [PMID: 32510150 PMCID: PMC7329343 DOI: 10.1042/bst20200013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
The development of natural tissues, organs and bodies depends on mechanisms of patterning and of morphogenesis, typically (but not invariably) in that order, and often several times at different final scales. Using synthetic biology to engineer patterning and morphogenesis will both enhance our basic understanding of how development works, and provide important technologies for advanced tissue engineering. Focusing on mammalian systems built to date, this review describes patterning systems, both contact-mediated and reaction-diffusion, and morphogenetic effectors. It also describes early attempts to connect the two to create self-organizing physical form. The review goes on to consider how these self-organized systems might be modified to increase the complexity and scale of the order they produce, and outlines some possible directions for future research and development.
Collapse
Affiliation(s)
- Jamie A. Davies
- Deanery of Biomedical Sciences and Centre for Mammalian Synthetic Biology, University of Edinburgh, U.K
| | - Fokion Glykofrydis
- Deanery of Biomedical Sciences and Centre for Mammalian Synthetic Biology, University of Edinburgh, U.K
| |
Collapse
|
10
|
Liu T, Dou X, Xu Y, Chen Y, Han Y. In Situ Investigation of Dynamic Silver Crystallization Driven by Chemical Reaction and Diffusion. RESEARCH 2020; 2020:4370817. [PMID: 32118207 PMCID: PMC7035454 DOI: 10.34133/2020/4370817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/09/2020] [Indexed: 11/06/2022]
Abstract
Rational synthesis of materials is a long-term challenging issue due to the poor understanding on the formation mechanism of material structure and the limited capability in controlling nanoscale crystallization. The emergent in situ electron microscope provides an insight to this issue. By employing an in situ scanning electron microscope, silver crystallization is investigated in real time, in which a reversible crystallization is observed. To disclose this reversible crystallization, the radicals generated by the irradiation of electron beam are calculated. It is found that the concentrations of radicals are spatiotemporally variable in the liquid cell due to the diffusion and reaction of radicals. The fluctuation of the reductive hydrated electrons and the oxidative hydroxyl radicals in the cell leads to the alternative dominance of the reduction and oxidation reactions. The reduction leads to the growth of silver crystals while the oxidation leads to their dissolution, which results in the reversible silver crystallization. A regulation of radical distribution by electron dose rates leads to the formation of diverse silver structures, confirming the dominant role of local chemical concentration in the structure evolution of materials.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China.,State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 570228 Haikou, China
| | - Xiangyu Dou
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yonghui Xu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yongjun Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 570228 Haikou, China
| | - Yongsheng Han
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
11
|
A Comprehensive Network Atlas Reveals That Turing Patterns Are Common but Not Robust. Cell Syst 2019; 9:243-257.e4. [DOI: 10.1016/j.cels.2019.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/19/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022]
|
12
|
Pally D, Pramanik D, Bhat R. An Interplay Between Reaction-Diffusion and Cell-Matrix Adhesion Regulates Multiscale Invasion in Early Breast Carcinomatosis. Front Physiol 2019; 10:790. [PMID: 31456688 PMCID: PMC6700745 DOI: 10.3389/fphys.2019.00790] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
The progression of cancer in the breast involves multiple reciprocal interactions between malignantly transformed epithelia, surrounding untransformed but affected stromal cells, and the extracellular matrix (ECM) that is remodeled during the process. A quantitative understanding of the relative contribution of such interactions to phenotypes associated with cancer cells can be arrived at through the construction of increasingly complex experimental and computational models. Herein, we introduce a multiscale three-dimensional (3D) organo- and pathotypic experimental assay that approximates, to an unprecedented extent, the histopathological complexity of a tumor disseminating into its surrounding stromal milieu via both bulk and solitary motility dynamics. End point and time-lapse microscopic observations of this assay allow us to study the earliest steps of cancer invasion as well as the dynamical interactions between the epithelial and stromal compartments. We then simulate our experimental observations using the modeling environment Compucell3D that is based on the Glazier-Graner-Hogeweg model. The computational model, which comprises adhesion between cancer cells and the matrices, cell proliferation and apoptosis, and matrix remodeling through reaction-diffusion-based morphogen dynamics, is first trained to phenocopy controls run with the experimental model, wherein one or the other matrices have been removed. The trained computational model successfully predicts phenotypes of the experimental counterparts that are subjected to pharmacological treatments (inhibition of N-linked glycosylation and matrix metalloproteinase activity) and scaffold modulation (alteration of collagen density). Further parametric exploration-based simulations suggest that specific permissive regimes of cell-cell and cell-matrix adhesions, operating in the context of a reaction-diffusion-regulated ECM dynamics, promote multiscale invasion of breast cancer cells and determine the extent to which the latter migrate through their surrounding stroma.
Collapse
Affiliation(s)
| | | | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
13
|
Smith S, Grima R. Spatial Stochastic Intracellular Kinetics: A Review of Modelling Approaches. Bull Math Biol 2019; 81:2960-3009. [PMID: 29785521 PMCID: PMC6677717 DOI: 10.1007/s11538-018-0443-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/03/2018] [Indexed: 01/22/2023]
Abstract
Models of chemical kinetics that incorporate both stochasticity and diffusion are an increasingly common tool for studying biology. The variety of competing models is vast, but two stand out by virtue of their popularity: the reaction-diffusion master equation and Brownian dynamics. In this review, we critically address a number of open questions surrounding these models: How can they be justified physically? How do they relate to each other? How do they fit into the wider landscape of chemical models, ranging from the rate equations to molecular dynamics? This review assumes no prior knowledge of modelling chemical kinetics and should be accessible to a wide range of readers.
Collapse
Affiliation(s)
- Stephen Smith
- School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, Scotland, UK
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, Scotland, UK.
| |
Collapse
|
14
|
Smith S, Dalchau N. Model reduction enables Turing instability analysis of large reaction-diffusion models. J R Soc Interface 2019. [PMID: 29540540 PMCID: PMC5908523 DOI: 10.1098/rsif.2017.0805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Synthesizing a genetic network which generates stable Turing patterns is one of the great challenges of synthetic biology, but a significant obstacle is the disconnect between the mathematical theory and the biological reality. Current mathematical understanding of patterning is typically restricted to systems of two or three chemical species, for which equations are tractable. However, when models seek to combine descriptions of intercellular signal diffusion and intracellular biochemistry, plausible genetic networks can consist of dozens of interacting species. In this paper, we suggest a method for reducing large biochemical systems that relies on removing the non-diffusible species, leaving only the diffusibles in the model. Such model reduction enables analysis to be conducted on a smaller number of differential equations. We provide conditions to guarantee that the full system forms patterns if the reduced system does, and vice versa. We confirm our technique with three examples: the Brusselator, an example proposed by Turing, and a biochemically plausible patterning system consisting of 17 species. These examples show that our method significantly simplifies the study of pattern formation in large systems where several species can be considered immobile.
Collapse
Affiliation(s)
- Stephen Smith
- Biological Computation group, Microsoft Research, Cambridge CB1 2FB, UK.,School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Neil Dalchau
- Biological Computation group, Microsoft Research, Cambridge CB1 2FB, UK
| |
Collapse
|
15
|
Djouda BS, Moukam Kakmeni FM, Guemkam Ghomsi P, Ndjomatchoua FT, Tchawoua C, Tonnang HEZ. Theoretical analysis of spatial nonhomogeneous patterns of entomopathogenic fungi growth on insect pest. CHAOS (WOODBURY, N.Y.) 2019; 29:053134. [PMID: 31154798 DOI: 10.1063/1.5043612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
This paper presents the study of the dynamics of intrahost (insect pests)-pathogen [entomopathogenic fungi (EPF)] interactions. The interaction between the resources from the insect pest and the mycelia of EPF is represented by the Holling and Powell type II functional responses. Because the EPF's growth is related to the instability of the steady state solution of our system, particular attention is given to the stability analysis of this steady state. Initially, the stability of the steady state is investigated without taking into account diffusion and by considering the behavior of the system around its equilibrium states. In addition, considering small perturbation of the stable singular point due to nonlinear diffusion, the conditions for Turing instability occurrence are deduced. It is observed that the absence of the regeneration feature of insect resources prevents the occurrence of such phenomena. The long time evolution of our system enables us to observe both spot and stripe patterns. Moreover, when the diffusion of mycelia is slightly modulated by a weak periodic perturbation, the Floquet theory and numerical simulations allow us to derive the conditions in which diffusion driven instabilities can occur. The relevance of the obtained results is further discussed in the perspective of biological insect pest control.
Collapse
Affiliation(s)
- Byliole S Djouda
- Laboratory of Mechanics, Materials and Structures, Research and Postgraduate Training Unit for Physics and Applications, Postgraduate School of Science, Technology and Geosciences, Department of Physics, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Ngoa Ekelle, Yaoundé, Cameroon
| | - F M Moukam Kakmeni
- Complex Systems and Theoretical Biology Group, Laboratory of Research on Advanced Materials and Nonlinear Science (LaRAMaNS), Department of Physics, Faculty of Science, University of Buéa, P. O. Box 63, Buéa, Cameroon
| | - P Guemkam Ghomsi
- Laboratory of Mechanics, Materials and Structures, Research and Postgraduate Training Unit for Physics and Applications, Postgraduate School of Science, Technology and Geosciences, Department of Physics, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Ngoa Ekelle, Yaoundé, Cameroon
| | - Frank T Ndjomatchoua
- Sustainable Impact Platform, Adaptive Agronomy and Pest Ecology Cluster, International Rice Research Institute (IRRI), DAPO Box 7777-1301, Metro Manila, Philippines
| | - Clément Tchawoua
- Laboratory of Mechanics, Materials and Structures, Research and Postgraduate Training Unit for Physics and Applications, Postgraduate School of Science, Technology and Geosciences, Department of Physics, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Ngoa Ekelle, Yaoundé, Cameroon
| | - Henri E Z Tonnang
- International Institute of Tropical Agriculture (IITA), 08 BP 0932, Tri Postal Abomey Calavi, Cotonou, Benin
| |
Collapse
|
16
|
Santos‐Moreno J, Schaerli Y. Using Synthetic Biology to Engineer Spatial Patterns. ACTA ACUST UNITED AC 2018; 3:e1800280. [DOI: 10.1002/adbi.201800280] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/14/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Javier Santos‐Moreno
- Department of Fundamental MicrobiologyUniversity of LausanneBiophore Building 1015 Lausanne Switzerland
| | - Yolanda Schaerli
- Department of Fundamental MicrobiologyUniversity of LausanneBiophore Building 1015 Lausanne Switzerland
| |
Collapse
|
17
|
Scholes NS, Isalan M. A three-step framework for programming pattern formation. Curr Opin Chem Biol 2017; 40:1-7. [DOI: 10.1016/j.cbpa.2017.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022]
|
18
|
Senthivel VR, Sturrock M, Piedrafita G, Isalan M. Identifying ultrasensitive HGF dose-response functions in a 3D mammalian system for synthetic morphogenesis. Sci Rep 2016; 6:39178. [PMID: 27982133 PMCID: PMC5159920 DOI: 10.1038/srep39178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/18/2016] [Indexed: 02/06/2023] Open
Abstract
Nonlinear responses to signals are widespread natural phenomena that affect various cellular processes. Nonlinearity can be a desirable characteristic for engineering living organisms because it can lead to more switch-like responses, similar to those underlying the wiring in electronics. Steeper functions are described as ultrasensitive, and can be applied in synthetic biology by using various techniques including receptor decoys, multiple co-operative binding sites, and sequential positive feedbacks. Here, we explore the inherent non-linearity of a biological signaling system to identify functions that can potentially be exploited using cell genome engineering. For this, we performed genome-wide transcription profiling to identify genes with ultrasensitive response functions to Hepatocyte Growth Factor (HGF). We identified 3,527 genes that react to increasing concentrations of HGF, in Madin-Darby canine kidney (MDCK) cells, grown as cysts in 3D collagen cell culture. By fitting a generic Hill function to the dose-responses of these genes we obtained a measure of the ultrasensitivity of HGF-responsive genes, identifying a subset with higher apparent Hill coefficients (e.g. MMP1, TIMP1, SNORD75, SNORD86 and ERRFI1). The regulatory regions of these genes are potential candidates for future engineering of synthetic mammalian gene circuits requiring nonlinear responses to HGF signalling.
Collapse
Affiliation(s)
- Vivek Raj Senthivel
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.,EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marc Sturrock
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gabriel Piedrafita
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.,Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
19
|
Duran-Nebreda S, Solé RV. Toward Synthetic Spatial Patterns in Engineered Cell Populations with Chemotaxis. ACS Synth Biol 2016; 5:654-61. [PMID: 27009520 DOI: 10.1021/acssynbio.5b00254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A major force shaping form and patterns in biology is based in the presence of amplification mechanisms able to generate ordered, large-scale spatial structures out of local interactions and random initial conditions. Turing patterns are one of the best known candidates for such ordering dynamics, and their existence has been proven in both chemical and physical systems. Their relevance in biology, although strongly supported by indirect evidence, is still under discussion. Extensive modeling approaches have stemmed from Turing's pioneering ideas, but further confirmation from experimental biology is required. An alternative possibility is to engineer cells so that self-organized patterns emerge from local communication. Here we propose a potential synthetic design based on the interaction between population density and a diffusing signal, including also directed motion in the form of chemotaxis. The feasibility of engineering such a system and its implications for developmental biology are also assessed.
Collapse
Affiliation(s)
- Salva Duran-Nebreda
- ICREA-Complex
Systems Lab, Universitat Pompeu Fabra, Barcelona, 08003, Spain
- Institute of Evolutionary
Biology, UPF-CSIC, Barcelona, 08003, Spain
| | - Ricard V. Solé
- ICREA-Complex
Systems Lab, Universitat Pompeu Fabra, Barcelona, 08003, Spain
- Institute of Evolutionary
Biology, UPF-CSIC, Barcelona, 08003, Spain
- Santa Fe Institute, 1399 Hyde
Park Road, Santa Fe, New
Mexico 87501, United States
| |
Collapse
|
20
|
Borek B, Hasty J, Tsimring L. Turing Patterning Using Gene Circuits with Gas-Induced Degradation of Quorum Sensing Molecules. PLoS One 2016; 11:e0153679. [PMID: 27148743 PMCID: PMC4858293 DOI: 10.1371/journal.pone.0153679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/01/2016] [Indexed: 01/30/2023] Open
Abstract
The Turing instability was proposed more than six decades ago as a mechanism leading to spatial patterning, but it has yet to be exploited in a synthetic biology setting. Here we characterize the Turing instability in a specific gene circuit that can be implemented in vitro or in populations of clonal cells producing short-range activator N-Acyl homoserine lactone (AHL) and long-range inhibitor hydrogen peroxide (H2O2) gas. Slowing the production rate of the AHL-degrading enzyme, AiiA, generates stable fixed states, limit cycle oscillations and Turing patterns. Further tuning of signaling parameters determines local robustness and controls the range of unstable wavenumbers in the patterning regime. These findings provide a roadmap for optimizing spatial patterns of gene expression based on familiar quorum and gas sensitive E. coli promoters. The circuit design and predictions may be useful for (re)programming spatial dynamics in synthetic and natural gene expression systems.
Collapse
Affiliation(s)
- Bartłomiej Borek
- BioCircuits Institute, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92037-0328, United States of America
- San Diego Center for Systems Biology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92037-0375, United States of America
| | - Jeff Hasty
- BioCircuits Institute, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92037-0328, United States of America
- San Diego Center for Systems Biology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92037-0375, United States of America
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92037-0412, United States of America
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92037-0116, United States of America
| | - Lev Tsimring
- BioCircuits Institute, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92037-0328, United States of America
- San Diego Center for Systems Biology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92037-0375, United States of America
| |
Collapse
|
21
|
Guisoni N, Monteoliva D, Diambra L. Promoters Architecture-Based Mechanism for Noise-Induced Oscillations in a Single-Gene Circuit. PLoS One 2016; 11:e0151086. [PMID: 26958852 PMCID: PMC4784906 DOI: 10.1371/journal.pone.0151086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/23/2016] [Indexed: 12/20/2022] Open
Abstract
It is well known that single-gene circuits with negative feedback loop can lead to oscillatory gene expression when they operate with time delay. In order to generate these oscillations many processes can contribute to properly timing such delay. Here we show that the time delay coming from the transitions between internal states of the cis-regulatory system (CRS) can drive sustained oscillations in an auto-repressive single-gene circuit operating in a small volume like a cell. We found that the cooperative binding of repressor molecules is not mandatory for a oscillatory behavior if there are enough binding sites in the CRS. These oscillations depend on an adequate balance between the CRS kinetic, and the synthesis/degradation rates of repressor molecules. This finding suggest that the multi-site CRS architecture can play a key role for oscillatory behavior of gene expression. Finally, our results can also help to synthetic biologists on the design of the promoters architecture for new genetic oscillatory circuits.
Collapse
Affiliation(s)
- N. Guisoni
- Instituto de Física de Líquidos y Sistemas Biológicos, Universidad Nacional de La Plata, La Plata, Argentina
| | - D. Monteoliva
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - L. Diambra
- Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
22
|
Marcon L, Diego X, Sharpe J, Müller P. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals. eLife 2016; 5:e14022. [PMID: 27058171 PMCID: PMC4922859 DOI: 10.7554/elife.14022] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/07/2016] [Indexed: 01/27/2023] Open
Abstract
The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems.
Collapse
Affiliation(s)
- Luciano Marcon
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Xavier Diego
- EMBL-CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain,Universitat Pompeu Fabra, Barcelona, Spain
| | - James Sharpe
- EMBL-CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain,Universitat Pompeu Fabra, Barcelona, Spain,Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany,
| |
Collapse
|
23
|
Májer I, Hajihosseini A, Becskei A. Identification of optimal parameter combinations for the emergence of bistability. Phys Biol 2015; 12:066011. [DOI: 10.1088/1478-3975/12/6/066011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Barcena Menendez D, Senthivel VR, Isalan M. Sender-receiver systems and applying information theory for quantitative synthetic biology. Curr Opin Biotechnol 2015; 31:101-7. [PMID: 25282688 PMCID: PMC4332572 DOI: 10.1016/j.copbio.2014.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/21/2014] [Indexed: 12/31/2022]
Abstract
Sender-receiver (S-R) systems abound in biology, with communication systems sending information in various forms. Information theory provides a quantitative basis for analysing these processes and is being applied to study natural genetic, enzymatic and neural networks. Recent advances in synthetic biology are providing us with a wealth of artificial S-R systems, giving us quantitative control over networks with a finite number of well-characterised components. Combining the two approaches can help to predict how to maximise signalling robustness, and will allow us to make increasingly complex biological computers. Ultimately, pushing the boundaries of synthetic biology will require moving beyond engineering the flow of information and towards building more sophisticated circuits that interpret biological meaning.
Collapse
Affiliation(s)
- Diego Barcena Menendez
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Vivek Raj Senthivel
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|