1
|
Monck C, Elani Y, Ceroni F. Genetically programmed synthetic cells for thermo-responsive protein synthesis and cargo release. Nat Chem Biol 2024; 20:1380-1386. [PMID: 38969863 PMCID: PMC11427347 DOI: 10.1038/s41589-024-01673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/06/2024] [Indexed: 07/07/2024]
Abstract
Synthetic cells containing genetic programs and protein expression machinery are increasingly recognized as powerful counterparts to engineered living cells in the context of biotechnology, therapeutics and cellular modelling. So far, genetic regulation of synthetic cell activity has been largely confined to chemical stimuli; to unlock their potential in applied settings, engineering stimuli-responsive synthetic cells under genetic regulation is imperative. Here we report the development of temperature-sensitive synthetic cells that control protein production by exploiting heat-responsive mRNA elements. This is achieved by combining RNA thermometer technology, cell-free protein expression and vesicle-based synthetic cell design to create cell-sized capsules able to initiate synthesis of both soluble proteins and membrane proteins at defined temperatures. We show that the latter allows for temperature-controlled cargo release phenomena with potential implications for biomedicine. Platforms like the one presented here can pave the way for customizable, genetically programmed synthetic cells under thermal control to be used in biotechnology.
Collapse
Affiliation(s)
- Carolina Monck
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, London, UK
- fabriCELL, Imperial College London, London, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, London, UK.
- fabriCELL, Imperial College London, London, UK.
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, London, UK.
| |
Collapse
|
2
|
Gao M, Wang D, Wilsch-Bräuninger M, Leng W, Schulte J, Morgner N, Appelhans D, Tang TYD. Cell Free Expression in Proteinosomes Prepared from Native Protein-PNIPAAm Conjugates. Macromol Biosci 2024; 24:e2300464. [PMID: 37925629 DOI: 10.1002/mabi.202300464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 11/05/2023]
Abstract
Towards the goal of building synthetic cells from the bottom-up, the establishment of micrometer-sized compartments that contain and support cell free transcription and translation that couple cellular structure to function is of critical importance. Proteinosomes, formed from crosslinked cationized protein-polymer conjugates offer a promising solution to membrane-bound compartmentalization with an open, semi-permeable membrane. Critically, to date, there has been no demonstration of cell free transcription and translation within water-in-water proteinosomes. Herein, a novel approach to generate proteinosomes that can support cell free transcription and translation is presented. This approach generates proteinosomes directly from native protein-polymer (BSA-PNIPAAm) conjugates. These native proteinosomes offer an excellent alternative as a synthetic cell chassis to other membrane bound compartments. Significantly, the native proteinosomes are stable under high salt conditions that enables the ability to support cell free transcription and translation and offer enhanced protein expression compared to proteinosomes prepared from traditional methodologies. Furthermore, the integration of native proteinosomes into higher order synthetic cellular architectures with membrane free compartments such as liposomes is demonstrated. The integration of bioinspired architectural elements with the central dogma is an essential building block for realizing minimal synthetic cells and is key for exploiting artificial cells in real-world applications.
Collapse
Affiliation(s)
- Mengfei Gao
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Dishi Wang
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Strasse 6, 01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01602, Dresden, Germany
| | - Michaela Wilsch-Bräuninger
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Weihua Leng
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Jonathan Schulte
- Goethe Universität Frankfurt, Institute of physical and theoretical chemistry, Max-von-Lauestrasse 13, 60438, Frankfurt am Main, Germany
| | - Nina Morgner
- Goethe Universität Frankfurt, Institute of physical and theoretical chemistry, Max-von-Lauestrasse 13, 60438, Frankfurt am Main, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Strasse 6, 01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01602, Dresden, Germany
| | - T-Y Dora Tang
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
- Saarland University, Synthetic biology, Department of Biology, Campus B2.2, 66123, Saarbrücken, Germany
| |
Collapse
|
3
|
Peng Z, Iwabuchi S, Izumi K, Takiguchi S, Yamaji M, Fujita S, Suzuki H, Kambara F, Fukasawa G, Cooney A, Di Michele L, Elani Y, Matsuura T, Kawano R. Lipid vesicle-based molecular robots. LAB ON A CHIP 2024; 24:996-1029. [PMID: 38239102 PMCID: PMC10898420 DOI: 10.1039/d3lc00860f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 02/28/2024]
Abstract
A molecular robot, which is a system comprised of one or more molecular machines and computers, can execute sophisticated tasks in many fields that span from nanomedicine to green nanotechnology. The core parts of molecular robots are fairly consistent from system to system and always include (i) a body to encapsulate molecular machines, (ii) sensors to capture signals, (iii) computers to make decisions, and (iv) actuators to perform tasks. This review aims to provide an overview of approaches and considerations to develop molecular robots. We first introduce the basic technologies required for constructing the core parts of molecular robots, describe the recent progress towards achieving higher functionality, and subsequently discuss the current challenges and outlook. We also highlight the applications of molecular robots in sensing biomarkers, signal communications with living cells, and conversion of energy. Although molecular robots are still in their infancy, they will unquestionably initiate massive change in biomedical and environmental technology in the not too distant future.
Collapse
Affiliation(s)
- Zugui Peng
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoji Iwabuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Kayano Izumi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoko Fujita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Harune Suzuki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Fumika Kambara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Genki Fukasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Aileen Cooney
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| |
Collapse
|
4
|
Ushiyama R, Nanjo S, Tsugane M, Sato R, Matsuura T, Suzuki H. Identifying Conditions for Protein Synthesis Inside Giant Vesicles Using Microfluidics toward Standardized Artificial Cell Production. ACS Synth Biol 2024; 13:68-76. [PMID: 38032418 DOI: 10.1021/acssynbio.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
To expand the range of practical applications of artificial cells, it is important to standardize the production process of giant (cell-sized) vesicles that encapsulate reconstituted biochemical reaction systems. For this purpose, a rapidly developing microfluidics-based giant vesicle generation system is a promising approach, similar to the droplet assay systems that are already widespread in the market. In this study, we examined the composition of the solutions used to generate vesicles encapsulating the in vitro transcription-translation (IVTT) system. We show that tuning of the lipid composition and adding poly(vinyl alcohol) to the outer solution improved the stability of the transition process into the lipid membrane so that protein synthesis proceeded in vesicles. The direct integration of α-hemolysin nanopores synthesized in situ was also demonstrated. These protein-synthesizing monodisperse giant vesicles can be prepared by using a simple microfluidic fabrication/operation with a commercial IVTT system.
Collapse
Affiliation(s)
- Ryota Ushiyama
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Satoshi Nanjo
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Mamiko Tsugane
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Reiko Sato
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-i7E Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
5
|
Yue K, Chen J, Li Y, Kai L. Advancing synthetic biology through cell-free protein synthesis. Comput Struct Biotechnol J 2023; 21:2899-2908. [PMID: 37216017 PMCID: PMC10196276 DOI: 10.1016/j.csbj.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
The rapid development of synthetic biology has enabled the production of compounds with revolutionary improvements in biotechnology. DNA manipulation tools have expedited the engineering of cellular systems for this purpose. Nonetheless, the inherent constraints of cellular systems persist, imposing an upper limit on mass and energy conversion efficiencies. Cell-free protein synthesis (CFPS) has demonstrated its potential to overcome these inherent constraints and has been instrumental in the further advancement of synthetic biology. Via the removal of the cell membranes and redundant parts of cells, CFPS has provided flexibility in directly dissecting and manipulating the Central Dogma with rapid feedback. This mini-review summarizes recent achievements of the CFPS technique and its application to a wide range of synthetic biology projects, such as minimal cell assembly, metabolic engineering, and recombinant protein production for therapeutics, as well as biosensor development for in vitro diagnostics. In addition, current challenges and future perspectives in developing a generalized cell-free synthetic biology are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Junyu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| |
Collapse
|
6
|
Boyd MA, Thavarajah W, Lucks JB, Kamat NP. Robust and tunable performance of a cell-free biosensor encapsulated in lipid vesicles. SCIENCE ADVANCES 2023; 9:eadd6605. [PMID: 36598992 PMCID: PMC9812392 DOI: 10.1126/sciadv.add6605] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/23/2022] [Indexed: 05/21/2023]
Abstract
Cell-free systems have enabled the development of genetically encoded biosensors to detect a range of environmental and biological targets. Encapsulation of these systems in synthetic membranes to form artificial cells can reintroduce features of the cellular membrane, including molecular containment and selective permeability, to modulate cell-free sensing capabilities. Here, we demonstrate robust and tunable performance of a transcriptionally regulated, cell-free riboswitch encapsulated in lipid membranes, allowing the detection of fluoride, an environmentally important molecule. Sensor response can be tuned by varying membrane composition, and encapsulation protects from sensor degradation, facilitating detection in real-world samples. These sensors can detect fluoride using two types of genetically encoded outputs, enabling detection of fluoride at the Environmental Protection Agency maximum contaminant level of 0.2 millimolars. This work demonstrates the capacity of bilayer membranes to confer tunable permeability to encapsulated, genetically encoded sensors and establishes the feasibility of artificial cell platforms to detect environmentally relevant small molecules.
Collapse
Affiliation(s)
- Margrethe A. Boyd
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Walter Thavarajah
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
| | - Julius B. Lucks
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Corresponding author. (N.P.K.); (J.B.L.)
| | - Neha P. Kamat
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Corresponding author. (N.P.K.); (J.B.L.)
| |
Collapse
|
7
|
Gonzales DT, Suraritdechachai S, Tang TYD. Compartmentalized Cell-Free Expression Systems for Building Synthetic Cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:77-101. [PMID: 37306700 DOI: 10.1007/10_2023_221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the grand challenges in bottom-up synthetic biology is the design and construction of synthetic cellular systems. One strategy toward this goal is the systematic reconstitution of biological processes using purified or non-living molecular components to recreate specific cellular functions such as metabolism, intercellular communication, signal transduction, and growth and division. Cell-free expression systems (CFES) are in vitro reconstitutions of the transcription and translation machinery found in cells and are a key technology for bottom-up synthetic biology. The open and simplified reaction environment of CFES has helped researchers discover fundamental concepts in the molecular biology of the cell. In recent decades, there has been a drive to encapsulate CFES reactions into cell-like compartments with the aim of building synthetic cells and multicellular systems. In this chapter, we discuss recent progress in compartmentalizing CFES to build simple and minimal models of biological processes that can help provide a better understanding of the process of self-assembly in molecularly complex systems.
Collapse
Affiliation(s)
- David T Gonzales
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | | | - T -Y Dora Tang
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
- Physics of Life, Cluster of Excellence, TU Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Chauhan G, Norred SE, Dabbs RM, Caveney PM, George JKV, Collier CP, Simpson ML, Abel SM. Crowding-Induced Spatial Organization of Gene Expression in Cell-Sized Vesicles. ACS Synth Biol 2022; 11:3733-3742. [PMID: 36260840 DOI: 10.1021/acssynbio.2c00336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cell-free protein synthesis is an important tool for studying gene expression and harnessing it for applications. In cells, gene expression is regulated in part by the spatial organization of transcription and translation. Unfortunately, current cell-free approaches are unable to control the organization of molecular components needed for gene expression, which limits the ability to probe and utilize its effects. Here, we show, using complementary computational and experimental approaches, that macromolecular crowding can be used to control the spatial organization and translational efficiency of gene expression in cell-sized vesicles. Computer simulations and imaging experiments reveal that, as crowding is increased, DNA plasmids become localized at the inner surface of vesicles. Ribosomes, in contrast, remain uniformly distributed, demonstrating that crowding can be used to differentially organize components of gene expression. We further carried out cell-free protein synthesis reactions in cell-sized vesicles and quantified mRNA and protein abundance. At sufficiently high levels of crowding, we observed localization of mRNA near vesicle surfaces, a decrease in translational efficiency and protein abundance, and anomalous scaling of protein abundance as a function of vesicle size. These results are consistent with high levels of crowding causing altered spatial organization and slower diffusion. Our work demonstrates a straightforward way to control the organization of gene expression in cell-sized vesicles and provides insight into the spatial regulation of gene expression in cells.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee37996, United States
| | - S Elizabeth Norred
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - Rosemary M Dabbs
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - Patrick M Caveney
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - John K Vincent George
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Michael L Simpson
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, Tennessee37996, United States
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Knoxville, Tennessee37996, United States
| |
Collapse
|
9
|
Herianto S, Chien PJ, Ho JAA, Tu HL. Liposome-based artificial cells: From gene expression to reconstitution of cellular functions and phenotypes. BIOMATERIALS ADVANCES 2022; 142:213156. [PMID: 36302330 DOI: 10.1016/j.bioadv.2022.213156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Bottom-up approaches in creating artificial cells that can mimic natural cells have significant implications for both basic research and translational application. Among various artificial cell models, liposome is one of the most sophisticated systems. By encapsulating proteins and associated biomolecules, they can functionally reconstitute foundational features of biological cells, such as the ability to divide, communicate, and undergo shape deformation. Yet constructing liposome artificial cells from the genetic level, which is central to generate self-sustained systems remains highly challenging. Indeed, many studies have successfully established the expression of gene-coded proteins inside liposomes. Further, recent endeavors to build a direct integration of gene-expressed proteins for reconstituting molecular functions and phenotypes in liposomes have also significantly increased. Thus, this review presents the development of liposome-based artificial cells to demonstrate the process of gene-expressed proteins and their reconstitution to perform desired molecular and cell-like functions. The molecular and cellular phenotypes discussed here include the self-production of membrane phospholipids, division, shape deformation, self-DNA/RNA replication, fusion, and intercellular communication. Together, this review gives a comprehensive overview of gene-expressing liposomes that can stimulate further research of this technology and achieve artificial cells with superior properties in the future.
Collapse
Affiliation(s)
- Samuel Herianto
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Jen Chien
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ja-An Annie Ho
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan; BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
10
|
Gonzales D, Yandrapalli N, Robinson T, Zechner C, Tang TYD. Cell-Free Gene Expression Dynamics in Synthetic Cell Populations. ACS Synth Biol 2022; 11:205-215. [PMID: 35057626 PMCID: PMC8787815 DOI: 10.1021/acssynbio.1c00376] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 11/29/2022]
Abstract
The ability to build synthetic cellular populations from the bottom-up provides the groundwork to realize minimal living tissues comprising single cells which can communicate and bridge scales into multicellular systems. Engineered systems made of synthetic micron-sized compartments and integrated reaction networks coupled with mathematical modeling can facilitate the design and construction of complex and multiscale chemical systems from the bottom-up. Toward this goal, we generated populations of monodisperse liposomes encapsulating cell-free expression systems (CFESs) using double-emulsion microfluidics and quantified transcription and translation dynamics within individual synthetic cells of the population using a fluorescent Broccoli RNA aptamer and mCherry protein reporter. CFE dynamics in bulk reactions were used to test different coarse-grained resource-limited gene expression models using model selection to obtain transcription and translation rate parameters by likelihood-based parameter estimation. The selected model was then applied to quantify cell-free gene expression dynamics in populations of synthetic cells. In combination, our experimental and theoretical approaches provide a statistically robust analysis of CFE dynamics in bulk and monodisperse synthetic cell populations. We demonstrate that compartmentalization of CFESs leads to different transcription and translation rates compared to bulk CFE and show that this is due to the semipermeable lipid membrane that allows the exchange of materials between the synthetic cells and the external environment.
Collapse
Affiliation(s)
- David
T. Gonzales
- Max
Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center
for Systems Biology Dresden, 01307 Dresden, Germany
| | | | - Tom Robinson
- Max
Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Christoph Zechner
- Max
Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center
for Systems Biology Dresden, 01307 Dresden, Germany
- Physics
of Life, Cluster of Excellence, TU Dresden, 01603 Dresden, Germany
| | - T-Y. Dora Tang
- Max
Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center
for Systems Biology Dresden, 01307 Dresden, Germany
- Physics
of Life, Cluster of Excellence, TU Dresden, 01603 Dresden, Germany
| |
Collapse
|
11
|
Wang X, Du H, Wang Z, Mu W, Han X. Versatile Phospholipid Assemblies for Functional Synthetic Cells and Artificial Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002635. [PMID: 32830387 DOI: 10.1002/adma.202002635] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The bottom-up construction of a synthetic cell from nonliving building blocks capable of mimicking cellular properties and behaviors helps to understand the particular biophysical properties and working mechanisms of a cell. A synthetic cell built in this way possesses defined chemical composition and structure. Since phospholipids are native biomembrane components, their assemblies are widely used to mimic cellular structures. Here, recent developments in the formation of versatile phospholipid assemblies are described, together with the applications of these assemblies for functional membranes (protein reconstituted giant unilamellar vesicles), spherical and nonspherical protoorganelles, and functional synthetic cells, as well as the high-order hierarchical structures of artificial tissues. Their biomedical applications are also briefly summarized. Finally, the challenges and future directions in the field of synthetic cells and artificial tissues based on phospholipid assemblies are proposed.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shangdong Province, Harbin Institute of Technology, Weihai, 264209, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
12
|
Gonzales DT, Zechner C, Tang TYD. Building synthetic multicellular systems using bottom–up approaches. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.coisb.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Cho E, Lu Y. Compartmentalizing Cell-Free Systems: Toward Creating Life-Like Artificial Cells and Beyond. ACS Synth Biol 2020; 9:2881-2901. [PMID: 33095011 DOI: 10.1021/acssynbio.0c00433] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Building an artificial cell is a research area that is rigorously studied in the field of synthetic biology. It has brought about much attention with the aim of ultimately constructing a natural cell-like structure. In particular, with the more mature cell-free platforms and various compartmentalization methods becoming available, achieving this aim seems not far away. In this review, we discuss the various types of artificial cells capable of hosting several cellular functions. Different compartmental boundaries and the mature and evolving technologies that are used for compartmentalization are examined, and exciting recent advances that overcome or have the potential to address current challenges are discussed. Ultimately, we show how compartmentalization and cell-free systems have, and will, come together to fulfill the goal to assemble a fully synthetic cell that displays functionality and complexity as advanced as that in nature. The development of such artificial cell systems will offer insight into the fundamental study of evolutionary biology and the sea of applications as a result. Although several challenges remain, emerging technologies such as artificial intelligence also appear to help pave the way to address them and achieve the ultimate goal.
Collapse
Affiliation(s)
- Eunhee Cho
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuan Lu
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Silverman AD, Karim AS, Jewett MC. Cell-free gene expression: an expanded repertoire of applications. Nat Rev Genet 2019; 21:151-170. [DOI: 10.1038/s41576-019-0186-3] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/24/2022]
|
15
|
Göpfrich K, Haller B, Staufer O, Dreher Y, Mersdorf U, Platzman I, Spatz JP. One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells. ACS Synth Biol 2019; 8:937-947. [PMID: 31042361 PMCID: PMC6528161 DOI: 10.1021/acssynbio.9b00034] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Here, we introduce
a one-pot method for the bottom-up assembly
of complex single- and multicompartment synthetic cells. Cellular
components are enclosed within giant unilamellar vesicles (GUVs),
produced at the milliliter scale directly from small unilamellar vesicles
(SUVs) or proteoliposomes with only basic laboratory equipment within
minutes. Toward this end, we layer an aqueous solution, containing
SUVs and all biocomponents, on top of an oil–surfactant mix.
Manual shaking induces the spontaneous formation of surfactant-stabilized
water-in-oil droplets with a spherical supported lipid bilayer at
their periphery. Finally, to release GUV-based synthetic cells from
the oil and the surfactant shell into the physiological environment,
we add an aqueous buffer and a droplet-destabilizing agent. We prove
that the obtained GUVs are unilamellar by reconstituting the pore-forming
membrane protein α-hemolysin and assess the membrane quality
with cryotransmission electron microscopy (cryoTEM), fluorescence
recovery after photobleaching (FRAP), and zeta-potential measurements
as well as confocal fluorescence imaging. We further demonstrate that
our GUV formation method overcomes key challenges of standard techniques,
offering high volumes, a flexible choice of lipid compositions and
buffer conditions, straightforward coreconstitution of proteins, and
a high encapsulation efficiency of biomolecules and even large cargo
including cells. We thereby provide a simple, robust, and broadly
applicable strategy to mass-produce complex multicomponent GUVs for
high-throughput testing in synthetic biology and biomedicine, which
can directly be implemented in laboratories around the world.
Collapse
Affiliation(s)
- Kerstin Göpfrich
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany
| | - Barbara Haller
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany
| | - Oskar Staufer
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany
| | - Yannik Dreher
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany
| | - Ulrike Mersdorf
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, Jahnstraße 29, D 69120, Heidelberg, Germany
| | - Ilia Platzman
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany
| | - Joachim P. Spatz
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Blanken D, van Nies P, Danelon C. Quantitative imaging of gene-expressing liposomes reveals rare favorable phenotypes. Phys Biol 2019; 16:045002. [PMID: 30978176 DOI: 10.1088/1478-3975/ab0c62] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The biosynthesis of proteins from genomic DNA is a universal process in every living organism. Building a synthetic cell using separate biological parts hence implies to reconstitute a minimal gene expression apparatus and to compartmentalize it in a cell-mimicking environment. Previous studies have demonstrated that the PURE (Protein synthesis Using Recombinant Elements) system could be functionally encapsulated inside lipid vesicles. However, quantitative insights on functional consequences of spatial confinement of PURE system reactions remain scarce, which has hampered the full exploitation of gene-expressing liposomes as the fundamental unit to build an artificial cell. We report on direct imaging of tens of thousands of gene-expressing liposomes per sample allowing us to assess sub-population features in a statistically relevant manner. Both the vesicle size (diameter <10 μm) and lipid composition (mixture of phospholipids with zwitterionic and negatively charged headgroups, including cardiolipin) are compatible with the properties of bacterial cells. Therefore, our liposomes provide a suitable chassis to host the Escherichia coli-derived PURE translation machinery and other bacterial processes in future developments. The potential of high-content imaging to identify rare phenotypes is demonstrated by the fact that a subset of the liposome population exhibits a remarkably high yield of synthesized protein or a prolonged expression lifespan that surpasses the performance of ensemble liposome-averaged and bulk reactions. Among the three commercial PURE systems tested, PUREfrex2.0 offers the most favorable phenotypes displaying both high yield and long protein synthesis lifespan. Moreover, probing membrane permeability reveals a large heterogeneity amongst liposomes. In situ expression and membrane embedding of the pore-forming connexin leads to a characteristic permeability time profile, while increasing the fraction of permeable liposomes in the population. We see diversity in gene expression dynamics and membrane permeability as an opportunity to complement a rational design approach aiming at further implementing biological functions in liposome-based synthetic cells.
Collapse
Affiliation(s)
- Duco Blanken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | | | | |
Collapse
|
17
|
Yue K, Zhu Y, Kai L. Cell-Free Protein Synthesis: Chassis toward the Minimal Cell. Cells 2019; 8:cells8040315. [PMID: 30959805 PMCID: PMC6523147 DOI: 10.3390/cells8040315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
The quest for a minimal cell not only sheds light on the fundamental principles of life but also brings great advances in related applied fields such as general biotechnology. Minimal cell projects came from the study of a plausible route to the origin of life. Later on, research extended and also referred to the construction of artificial cells, or even more broadly, as in vitro synthetic biology. The cell-free protein synthesis (CFPS) techniques harness the central cellular activity of transcription/translation in an open environment, providing the framework for multiple cellular processes assembling. Therefore, CFPS systems have become the first choice in the construction of the minimal cell. In this review, we focus on the recent advances in the quantitative analysis of CFPS and on its advantage for addressing the bottom-up assembly of a minimal cell and illustrate the importance of systemic chassis behavior, such as stochasticity under a compartmentalized micro-environment.
Collapse
Affiliation(s)
- Ke Yue
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, Xuzhou 221116, China.
| | - Yiyong Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lei Kai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, Xuzhou 221116, China.
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany.
| |
Collapse
|
18
|
Kai L, Schwille P. Cell-Free Protein Synthesis and Its Perspectives for Assembling Cells from the Bottom-Up. ACTA ACUST UNITED AC 2019; 3:e1800322. [PMID: 32648712 DOI: 10.1002/adbi.201800322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/14/2019] [Indexed: 12/20/2022]
Abstract
The underlying idea of synthetic biology is that biological reactions/modules/systems can be precisely engineered and controlled toward desired products. Numerous efforts in the past decades in deciphering the complexity of biological systems in vivo have led to a variety of tools for synthetic biology, especially based on recombinant DNA. However, one generic limitation of all living systems is that the vast majority of energy input is dedicated to maintain the system as a whole, rather than the small part of interest. Cell-free synthetic biology is aiming at exactly this fundamental limitation, providing the next level of flexibility for engineering and designing biological systems in vitro. New technology has continuously inspired cell-free biology and extended its applications, including gene circuits, spatiotemporally controlled pathways, coactivated catalysts systems, and rationally designed multienzyme pathways, in particular, minimal cell construction. In the context of this special issue, discussing work being carried out in the "MaxSynBio" consortium, the advances in characterizing stochasticity and dynamics of cell-free protein synthesis within cell-sized compartments, as well as the molecular crowding effect, are discussed. The organization of spatial heterogeneity is the key prerequisite for achieving hierarchy and stepwise assembly of minimal cells from the bottom-up.
Collapse
Affiliation(s)
- Lei Kai
- School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, 221116, Xuzhou, P. R. China.,Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| |
Collapse
|
19
|
Stano P. Is Research on "Synthetic Cells" Moving to the Next Level? Life (Basel) 2018; 9:E3. [PMID: 30587790 PMCID: PMC6463193 DOI: 10.3390/life9010003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
"Synthetic cells" research focuses on the construction of cell-like models by using solute-filled artificial microcompartments with a biomimetic structure. In recent years this bottom-up synthetic biology area has considerably progressed, and the field is currently experiencing a rapid expansion. Here we summarize some technical and theoretical aspects of synthetic cells based on gene expression and other enzymatic reactions inside liposomes, and comment on the most recent trends. Such a tour will be an occasion for asking whether times are ripe for a sort of qualitative jump toward novel SC prototypes: is research on "synthetic cells" moving to a next level?
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento; Ecotekne-S.P. Lecce-Monteroni, I-73100 Lecce, Italy.
| |
Collapse
|
20
|
Beppu K, Izri Z, Maeda YT, Sakamoto R. Geometric Effect for Biological Reactors and Biological Fluids. Bioengineering (Basel) 2018; 5:E110. [PMID: 30551608 PMCID: PMC6316181 DOI: 10.3390/bioengineering5040110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 01/21/2023] Open
Abstract
As expressed "God made the bulk; the surface was invented by the devil" by W. Pauli, the surface has remarkable properties because broken symmetry in surface alters the material properties. In biological systems, the smallest functional and structural unit, which has a functional bulk space enclosed by a thin interface, is a cell. Cells contain inner cytosolic soup in which genetic information stored in DNA can be expressed through transcription (TX) and translation (TL). The exploration of cell-sized confinement has been recently investigated by using micron-scale droplets and microfluidic devices. In the first part of this review article, we describe recent developments of cell-free bioreactors where bacterial TX-TL machinery and DNA are encapsulated in these cell-sized compartments. Since synthetic biology and microfluidics meet toward the bottom-up assembly of cell-free bioreactors, the interplay between cellular geometry and TX-TL advances better control of biological structure and dynamics in vitro system. Furthermore, biological systems that show self-organization in confined space are not limited to a single cell, but are also involved in the collective behavior of motile cells, named active matter. In the second part, we describe recent studies where collectively ordered patterns of active matter, from bacterial suspensions to active cytoskeleton, are self-organized. Since geometry and topology are vital concepts to understand the ordered phase of active matter, a microfluidic device with designed compartments allows one to explore geometric principles behind self-organization across the molecular scale to cellular scale. Finally, we discuss the future perspectives of a microfluidic approach to explore the further understanding of biological systems from geometric and topological aspects.
Collapse
Affiliation(s)
- Kazusa Beppu
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.
| | - Ziane Izri
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.
| | - Yusuke T Maeda
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.
| | - Ryota Sakamoto
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
21
|
Zhu C, Li Q, Dong M, Han X. Giant Unilamellar Vesicle Microarrays for Cell Function Study. Anal Chem 2018; 90:14363-14367. [PMID: 30481002 DOI: 10.1021/acs.analchem.8b03825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Chuntao Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Qingchuan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| |
Collapse
|
22
|
Yewdall NA, Mason AF, van Hest JCM. The hallmarks of living systems: towards creating artificial cells. Interface Focus 2018; 8:20180023. [PMID: 30443324 PMCID: PMC6227776 DOI: 10.1098/rsfs.2018.0023] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 01/01/2023] Open
Abstract
Despite the astonishing diversity and complexity of living systems, they all share five common hallmarks: compartmentalization, growth and division, information processing, energy transduction and adaptability. In this review, we give not only examples of how cells satisfy these requirements for life and the ways in which it is possible to emulate these characteristics in engineered platforms, but also the gaps that remain to be bridged. The bottom-up synthesis of life-like systems continues to be driven forward by the advent of new technologies, by the discovery of biological phenomena through their transplantation to experimentally simpler constructs and by providing insights into one of the oldest questions posed by mankind, the origin of life on Earth.
Collapse
Affiliation(s)
| | | | - Jan C. M. van Hest
- Eindhoven University of Technology, PO Box 513 (STO 3.31), Eindhoven, MB, The Netherlands
| |
Collapse
|
23
|
Altamura E, Carrara P, D'Angelo F, Mavelli F, Stano P. Extrinsic stochastic factors (solute partition) in gene expression inside lipid vesicles and lipid-stabilized water-in-oil droplets: a review. Synth Biol (Oxf) 2018; 3:ysy011. [PMID: 32995519 PMCID: PMC7445889 DOI: 10.1093/synbio/ysy011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
The encapsulation of transcription-translation (TX-TL) machinery inside lipid vesicles and water-in-oil droplets leads to the construction of cytomimetic systems (often called 'synthetic cells') for synthetic biology and origins-of-life research. A number of recent reports have shown that protein synthesis inside these microcompartments is highly diverse in terms of rate and amount of synthesized protein. Here, we discuss the role of extrinsic stochastic effects (i.e. solute partition phenomena) as relevant factors contributing to this pattern. We evidence and discuss cases where between-compartment diversity seems to exceed the expected theoretical values. The need of accurate determination of solute content inside individual vesicles or droplets is emphasized, aiming at validating or rejecting the predictions calculated from the standard fluctuations theory. At the same time, we promote the integration of experiments and stochastic modeling to reveal the details of solute encapsulation and intra-compartment reactions.
Collapse
Affiliation(s)
- Emiliano Altamura
- Chemistry Department, University of Bari, Via E. Orabona 4, I-70126, Bari, Italy
| | - Paolo Carrara
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, I-00146, Rome, Italy
| | - Francesca D'Angelo
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, I-00146, Rome, Italy
| | - Fabio Mavelli
- Chemistry Department, University of Bari, Via E. Orabona 4, I-70126, Bari, Italy
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Ecotekne, I-73100, Lecce, Italy
| |
Collapse
|
24
|
Tsugane M, Suzuki H. Reverse Transcription Polymerase Chain Reaction in Giant Unilamellar Vesicles. Sci Rep 2018; 8:9214. [PMID: 29907779 PMCID: PMC6003926 DOI: 10.1038/s41598-018-27547-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
We assessed the applicability of giant unilamellar vesicles (GUVs) for RNA detection using in vesicle reverse transcription polymerase chain reaction (RT-PCR). We prepared GUVs that encapsulated one-pot RT-PCR reaction mixture including template RNA, primers, and Taqman probe, using water-in-oil emulsion transfer method. After thermal cycling, we analysed the GUVs that exhibited intense fluorescence signals, which represented the cDNA amplification. The detailed analysis of flow cytometry data demonstrated that rRNA and mRNA in the total RNA can be amplified from 10–100 copies in the GUVs with 5–10 μm diameter, although the fraction of reactable GUV was approximately 60% at most. Moreover, we report that the target RNA, which was directly transferred into the GUV reactors via membrane fusion, can be amplified and detected using in vesicle RT-PCR. These results suggest that the GUVs can be used as biomimetic reactors capable of performing PCR and RT-PCR, which are important in analytical and diagnostic applications with additional functions.
Collapse
Affiliation(s)
- Mamiko Tsugane
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, Japan.,Japan Society for the Promotion of Science (JSPS), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, Japan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
25
|
Wang S, Majumder S, Emery NJ, Liu AP. Simultaneous monitoring of transcription and translation in mammalian cell-free expression in bulk and in cell-sized droplets. Synth Biol (Oxf) 2018; 3:ysy005. [PMID: 30003145 PMCID: PMC6034425 DOI: 10.1093/synbio/ysy005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/24/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
Transcription and translation are two critical processes during eukaryotic gene expression that regulate cellular activities. The development of mammalian cell-free expression (CFE) systems provides a platform for studying these two critical processes in vitro for bottom-up synthetic biology applications such as construction of an artificial cell. Moreover, real-time monitoring of the dynamics of synthesized mRNA and protein is key to characterize and optimize gene circuits before implementing in living cells or in artificial cells. However, there are few tools for measurement of mRNA and protein dynamics in mammalian CFE systems. Here, we developed a locked nucleic acid (LNA) probe for monitoring transcription in a HeLa-based CFE system in real-time. By using this LNA probe in conjunction with a fluorescent reporter protein, we were able to simultaneously monitor mRNA and protein dynamics in bulk reactions and cell-sized single-emulsion droplets. We found rapid production of mRNA transcripts that decreased over time as protein production ensued in bulk reactions. Our results also showed that transcription in cell-sized droplets has different dynamics compared to the transcription in bulk reactions. The use of this LNA probe in conjunction with fluorescent proteins in HeLa-based mammalian CFE system provides a versatile in vitro platform for studying mRNA dynamics for bottom-up synthetic biology applications.
Collapse
Affiliation(s)
- Shue Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sagardip Majumder
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Emery
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.,Biophysics Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Norred SE, Caveney PM, Chauhan G, Collier LK, Collier CP, Abel SM, Simpson ML. Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns. ACS Synth Biol 2018; 7:1251-1258. [PMID: 29687993 DOI: 10.1021/acssynbio.8b00139] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent superresolution microscopy studies in E. coli demonstrate that the cytoplasm has highly variable local concentrations where macromolecular crowding plays a central role in establishing membrane-less compartmentalization. This spatial inhomogeneity significantly influences molecular transport and association processes central to gene expression. Yet, little is known about how macromolecular crowding influences gene expression bursting-the episodic process where mRNA and proteins are produced in bursts. Here, we simultaneously measured mRNA and protein reporters in cell-free systems, showing that macromolecular crowding decoupled the well-known relationship between fluctuations in the protein population (noise) and mRNA population statistics. Crowded environments led to a 10-fold increase in protein noise even though there were only modest changes in the mRNA population and fluctuations. Instead, cell-like macromolecular crowding created an inhomogeneous spatial distribution of mRNA ("spatial noise") that led to large variability in the protein production burst size. As a result, the mRNA spatial noise created large temporal fluctuations in the protein population. These results highlight the interplay between macromolecular crowding, spatial inhomogeneities, and the resulting dynamics of gene expression, and provide insights into using these organizational principles in both cell-based and cell-free synthetic biology.
Collapse
Affiliation(s)
- S Elizabeth Norred
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Bredesen Center for Interdisciplinary Research and Graduate Education , University of Tennessee Knoxville and Oak Ridge National Laboratory , Knoxville , Tennessee 37996 , United States
| | - Patrick M Caveney
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Bredesen Center for Interdisciplinary Research and Graduate Education , University of Tennessee Knoxville and Oak Ridge National Laboratory , Knoxville , Tennessee 37996 , United States
| | - Gaurav Chauhan
- Chemical and Biomolecular Engineering Department , University of Tennessee Knoxville , Knoxville , Tennessee 37996 , United States
| | - Lauren K Collier
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - C Patrick Collier
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Steven M Abel
- Chemical and Biomolecular Engineering Department , University of Tennessee Knoxville , Knoxville , Tennessee 37996 , United States
| | - Michael L Simpson
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Bredesen Center for Interdisciplinary Research and Graduate Education , University of Tennessee Knoxville and Oak Ridge National Laboratory , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
27
|
Sakamoto R, Noireaux V, Maeda YT. Anomalous Scaling of Gene Expression in Confined Cell-Free Reactions. Sci Rep 2018; 8:7364. [PMID: 29743508 PMCID: PMC5943292 DOI: 10.1038/s41598-018-25532-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/24/2018] [Indexed: 11/09/2022] Open
Abstract
Cellular surface breaks the symmetry of molecular diffusion across membrane. Here, we study how steric interactions between the surface and the bulk of cell-sized emulsion droplets alters gene expression emulated by a cell-free transcription/translation (TXTL) system. The concentration of synthesized reporter proteins in droplets of radius R shows an anomalous geometric scaling of R4 different from the expected size-dependence of R3. Given that TXTL becomes less efficient at thin surface layer, a mathematical model explains the anomalous size-dependence found in experiment. The surface of cell-sized compartment can thus play a regulatory role for cell-free gene expression.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Physics, Kyushu University, Motooka 744, Fukuoka, 819-0395, Japan.
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, 115 Union street, Minneapolis, MN, 55455, USA
| | - Yusuke T Maeda
- Department of Physics, Kyushu University, Motooka 744, Fukuoka, 819-0395, Japan
| |
Collapse
|
28
|
Karig DK, Bessling S, Thielen P, Zhang S, Wolfe J. Preservation of protein expression systems at elevated temperatures for portable therapeutic production. J R Soc Interface 2018; 14:rsif.2016.1039. [PMID: 28446704 PMCID: PMC5414909 DOI: 10.1098/rsif.2016.1039] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/04/2017] [Indexed: 12/23/2022] Open
Abstract
Many biotechnology capabilities are limited by stringent storage needs of reagents, largely prohibiting use outside of specialized laboratories. Focusing on a large class of protein-based biotechnology applications, we address this issue by developing a method for preserving cell-free protein expression systems for months above room temperature. Our approach realizes unprecedented long-term stability at elevated temperatures by leveraging the sugar alcohol trehalose, a simple, low-cost, open-air drying step, and strategic separation of reaction components during drying. The resulting preservation capacity enables efficient production of a wide range of on-demand proteins under adverse conditions, for instance during emergency outbreaks or in remote locations. To demonstrate application potential, we use cell-free reagents subjected to months of exposure at 37°C and atmospheric conditions to produce sufficient concentrations of a pyocin protein to kill Pseudomonas aeruginosa, a troublesome pathogen for traumatic and burn wound injuries. Our work makes possible new biotechnology applications that demand ruggedness and scalability.
Collapse
Affiliation(s)
- David K Karig
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Seneca Bessling
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Peter Thielen
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Sherry Zhang
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Joshua Wolfe
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| |
Collapse
|
29
|
Stochastic simulation of multiscale complex systems with PISKaS: A rule-based approach. Biochem Biophys Res Commun 2017; 498:342-351. [PMID: 29175206 DOI: 10.1016/j.bbrc.2017.11.138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/02/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
Computational simulation is a widely employed methodology to study the dynamic behavior of complex systems. Although common approaches are based either on ordinary differential equations or stochastic differential equations, these techniques make several assumptions which, when it comes to biological processes, could often lead to unrealistic models. Among others, model approaches based on differential equations entangle kinetics and causality, failing when complexity increases, separating knowledge from models, and assuming that the average behavior of the population encompasses any individual deviation. To overcome these limitations, simulations based on the Stochastic Simulation Algorithm (SSA) appear as a suitable approach to model complex biological systems. In this work, we review three different models executed in PISKaS: a rule-based framework to produce multiscale stochastic simulations of complex systems. These models span multiple time and spatial scales ranging from gene regulation up to Game Theory. In the first example, we describe a model of the core regulatory network of gene expression in Escherichia coli highlighting the continuous model improvement capacities of PISKaS. The second example describes a hypothetical outbreak of the Ebola virus occurring in a compartmentalized environment resembling cities and highways. Finally, in the last example, we illustrate a stochastic model for the prisoner's dilemma; a common approach from social sciences describing complex interactions involving trust within human populations. As whole, these models demonstrate the capabilities of PISKaS providing fertile scenarios where to explore the dynamics of complex systems.
Collapse
|
30
|
Svetina S. Investigating cell functioning by theoretical analysis of cell-to-cell variability. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:739-748. [PMID: 28986665 DOI: 10.1007/s00249-017-1258-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Abstract
Here we discuss cell-to-cell variability in isogenic cell populations on the basis of an analogy between the processes of vesicle self-reproduction and cell self-replication. A short review of the theoretical analysis of vesicle self-reproduction is presented to indicate that this process only occurs under the fulfillment of specific criteria: causal relations between the values of vesicle variables involved in its growth and division, and the parameters of the environment. It is shown that when division is asymmetric, both vesicle birth size and interdivision times are variable. We argue that during cell self-replication, the balance between processes of cell growth and division also relies on causal relations between the corresponding cellular variables. A possible method is suggested to unravel previously unidentified causal relations between cell variables from the relationships between their variability parameters such as the widths of their probability distributions and their correlation coefficients. The method is outlined by reviewing the results of the corresponding analysis applied to a population of red blood cells. Some novel research directions are suggested that could lead from the analysis of cell-to-cell variability to a better understanding of the organizational structure of cells and possibly also their evolutionary origin.
Collapse
Affiliation(s)
- Saša Svetina
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
- Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
31
|
Caschera F. Bacterial cell-free expression technology to in vitro systems engineering and optimization. Synth Syst Biotechnol 2017; 2:97-104. [PMID: 29062966 PMCID: PMC5637228 DOI: 10.1016/j.synbio.2017.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/26/2022] Open
Abstract
Cell-free expression system is a technology for the synthesis of proteins in vitro. The system is a platform for several bioengineering projects, e.g. cell-free metabolic engineering, evolutionary design of experiments, and synthetic minimal cell construction. Bacterial cell-free protein synthesis system (CFPS) is a robust tool for synthetic biology. The bacteria lysate, the DNA, and the energy module, which are the three optimized sub-systems for in vitro protein synthesis, compose the integrated system. Currently, an optimized E. coli cell-free expression system can produce up to ∼2.3 mg/mL of a fluorescent reporter protein. Herein, I will describe the features of ATP-regeneration systems for in vitro protein synthesis, and I will present a machine-learning experiment for optimizing the protein yield of E. coli cell-free protein synthesis systems. Moreover, I will introduce experiments on the synthesis of a minimal cell using liposomes as dynamic containers, and E. coli cell-free expression system as biochemical platform for metabolism and gene expression. CFPS can be further integrated with other technologies for novel applications in environmental, medical and material science.
Collapse
|
32
|
Chizzolini F, Forlin M, Yeh Martín N, Berloffa G, Cecchi D, Mansy SS. Cell-Free Translation Is More Variable than Transcription. ACS Synth Biol 2017; 6:638-647. [PMID: 28100049 DOI: 10.1021/acssynbio.6b00250] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although RNA synthesis can be reliably controlled with different T7 transcriptional promoters during cell-free gene expression with the PURE system, protein synthesis remains largely unaffected. To better control protein levels, we investigated a series of ribosome binding sites (RBSs). Although RBS strength did strongly affect protein synthesis, the RBS sequence could explain less than half of the variability of the data. Protein expression was found to depend on other factors besides the strength of the RBS, including the GC content of the coding sequence. The complexity of protein synthesis in comparison to RNA synthesis was observed by the higher degree of variability associated with protein expression. This variability was also observed in an E. coli cell extract-based system. However, the coefficient of variation was larger with E. coli RNA polymerase than with T7 RNA polymerase, consistent with the increased complexity of E. coli RNA polymerase.
Collapse
Affiliation(s)
- Fabio Chizzolini
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| | - Michele Forlin
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| | - Noël Yeh Martín
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| | - Giuliano Berloffa
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| | - Dario Cecchi
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| | - Sheref S Mansy
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| |
Collapse
|
33
|
Buddingh’ BC, van Hest JCM. Artificial Cells: Synthetic Compartments with Life-like Functionality and Adaptivity. Acc Chem Res 2017; 50:769-777. [PMID: 28094501 PMCID: PMC5397886 DOI: 10.1021/acs.accounts.6b00512] [Citation(s) in RCA: 418] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Cells are highly advanced microreactors that form the basis of
all life. Their fascinating complexity has inspired scientists to
create analogs from synthetic and natural components using a bottom-up
approach. The ultimate goal here is to assemble a fully man-made cell
that displays functionality and adaptivity as advanced as that found
in nature, which will not only provide insight into the fundamental
processes in natural cells but also pave the way for new applications
of such artificial cells. In this Account, we highlight our
recent work and that of others
on the construction of artificial cells. First, we will introduce
the key features that characterize a living system; next, we will
discuss how these have been imitated in artificial cells. First, compartmentalization
is crucial to separate the inner chemical milieu from the external
environment. Current state-of-the-art artificial cells comprise subcompartments
to mimic the hierarchical architecture of eukaryotic cells and tissue.
Furthermore, synthetic gene circuits have been used to encode genetic
information that creates complex behavior like pulses or feedback.
Additionally, artificial cells have to reproduce to maintain a population.
Controlled growth and fission of synthetic compartments have been
demonstrated, but the extensive regulation of cell division in nature
is still unmatched. Here, we also point out important challenges
the field needs to
overcome to realize its full potential. As artificial cells integrate
increasing orders of functionality, maintaining a supporting metabolism
that can regenerate key metabolites becomes crucial. Furthermore,
life does not operate in isolation. Natural cells constantly sense
their environment, exchange (chemical) signals, and can move toward
a chemoattractant. Here, we specifically explore recent efforts to
reproduce such adaptivity in artificial cells. For instance, synthetic
compartments have been produced that can recruit proteins to the membrane
upon an external stimulus or modulate their membrane composition and
permeability to control their interaction with the environment. A
next step would be the communication of artificial cells with either
bacteria or another artificial cell. Indeed, examples of such primitive
chemical signaling are presented. Finally, motility is important for
many organisms and has, therefore, also been pursued in synthetic
systems. Synthetic compartments that were designed to move in a directed,
controlled manner have been assembled, and directed movement toward
a chemical attractant is among one of the most life-like directions
currently under research. Although the bottom-up construction
of an artificial cell that
can be truly considered “alive” is still an ambitious
goal, the recent work discussed in this Account shows that this is
an active field with contributions from diverse disciplines like materials
chemistry and biochemistry. Notably, research during the past decade
has already provided valuable insights into complex synthetic systems
with life-like properties. In the future, artificial cells are thought
to contribute to an increased understanding of processes in natural
cells and provide opportunities to create smart, autonomous, cell-like
materials.
Collapse
Affiliation(s)
- Bastiaan C. Buddingh’
- Eindhoven University of Technology, P.O. Box 513
(STO 3.31), 5600 MB Eindhoven, The Netherlands
| | - Jan C. M. van Hest
- Eindhoven University of Technology, P.O. Box 513
(STO 3.31), 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
34
|
Caveney PM, Norred SE, Chin CW, Boreyko JB, Razooky BS, Retterer ST, Collier CP, Simpson ML. Resource Sharing Controls Gene Expression Bursting. ACS Synth Biol 2017; 6:334-343. [PMID: 27690390 DOI: 10.1021/acssynbio.6b00189] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Episodic gene expression, with periods of high expression separated by periods of no expression, is a pervasive biological phenomenon. This bursty pattern of expression draws from a finite reservoir of expression machinery in a highly time variant way, i.e., requiring no resources most of the time but drawing heavily on them during short intense bursts, that intimately links expression bursting and resource sharing. Yet, most recent investigations have focused on specific molecular mechanisms intrinsic to the bursty behavior of individual genes, while little is known about the interplay between resource sharing and global expression bursting behavior. Here, we confine Escherichia coli cell extract in both cell-sized microfluidic chambers and lipid-based vesicles to explore how resource sharing influences expression bursting. Interestingly, expression burst size, but not burst frequency, is highly sensitive to the size of the shared transcription and translation resource pools. The intriguing implication of these results is that expression bursts are more readily amplified than initiated, suggesting that burst formation occurs through positive feedback or cooperativity. When extrapolated to prokaryotic cells, these results suggest that large translational bursts may be correlated with large transcriptional bursts. This correlation is supported by recently reported transcription and translation bursting studies in E. coli. The results reported here demonstrate a strong intimate link between global expression burst patterns and resource sharing, and they suggest that bursting plays an important role in optimizing the use of limited, shared expression resources.
Collapse
Affiliation(s)
- Patrick M. Caveney
- Bredesen
Center, University of Tennessee, Knoxville, Tennessee 37996-2010, United States
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - S. Elizabeth Norred
- Bredesen
Center, University of Tennessee, Knoxville, Tennessee 37996-2010, United States
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Charles W. Chin
- Bredesen
Center, University of Tennessee, Knoxville, Tennessee 37996-2010, United States
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Jonathan B. Boreyko
- Bredesen
Center, University of Tennessee, Knoxville, Tennessee 37996-2010, United States
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
- Department
of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Brandon S. Razooky
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
- Laboratory
of Immune Cell Epigenetics and Signaling, The Rockefeller University, New
York, New York 10065, United States
| | - Scott T. Retterer
- Bredesen
Center, University of Tennessee, Knoxville, Tennessee 37996-2010, United States
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - C. Patrick Collier
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Michael L. Simpson
- Bredesen
Center, University of Tennessee, Knoxville, Tennessee 37996-2010, United States
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
- Joint
Institute
for Biological Sciences, University of Tennessee−Knoxville and Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
35
|
Hansen MMK, Ventosa Rosquelles M, Yelleswarapu M, Maas RJM, van Vugt-Jonker AJ, Heus HA, Huck WTS. Protein Synthesis in Coupled and Uncoupled Cell-Free Prokaryotic Gene Expression Systems. ACS Synth Biol 2016; 5:1433-1440. [PMID: 27306580 DOI: 10.1021/acssynbio.6b00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Secondary structure formation of mRNA, caused by desynchronization of transcription and translation, is known to impact gene expression in vivo. Yet, inactivation of mRNA by secondary structures in cell-free protein expression is frequently overlooked. Transcription and translation rates are often not highly synchronized in cell-free expression systems, leading to a temporal mismatch between the processes and a drop in efficiency of protein production. By devising a cell-free gene expression platform in which transcriptional and translational elongation are successfully performed independently, we determine that sequence-dependent mRNA secondary structures are the main cause of mRNA inactivation in in vitro gene expression.
Collapse
Affiliation(s)
- Maike M. K. Hansen
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Marta Ventosa Rosquelles
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Maaruthy Yelleswarapu
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Roel J. M. Maas
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Aafke J. van Vugt-Jonker
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Hans A. Heus
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T. S. Huck
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
36
|
Perez JG, Stark JC, Jewett MC. Cell-Free Synthetic Biology: Engineering Beyond the Cell. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023853. [PMID: 27742731 DOI: 10.1101/cshperspect.a023853] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-free protein synthesis (CFPS) technologies have enabled inexpensive and rapid recombinant protein expression. Numerous highly active CFPS platforms are now available and have recently been used for synthetic biology applications. In this review, we focus on the ability of CFPS to expand our understanding of biological systems and its applications in the synthetic biology field. First, we outline a variety of CFPS platforms that provide alternative and complementary methods for expressing proteins from different organisms, compared with in vivo approaches. Next, we review the types of proteins, protein complexes, and protein modifications that have been achieved using CFPS systems. Finally, we introduce recent work on genetic networks in cell-free systems and the use of cell-free systems for rapid prototyping of in vivo networks. Given the flexibility of cell-free systems, CFPS holds promise to be a powerful tool for synthetic biology as well as a protein production technology in years to come.
Collapse
Affiliation(s)
- Jessica G Perez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611-3068.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611-2875
| |
Collapse
|
37
|
Küchler A, Yoshimoto M, Luginbühl S, Mavelli F, Walde P. Enzymatic reactions in confined environments. NATURE NANOTECHNOLOGY 2016; 11:409-20. [PMID: 27146955 DOI: 10.1038/nnano.2016.54] [Citation(s) in RCA: 484] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/04/2016] [Indexed: 05/17/2023]
Abstract
Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.
Collapse
Affiliation(s)
- Andreas Küchler
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| | - Makoto Yoshimoto
- Department of Applied Molecular Bioscience, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Sandra Luginbühl
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| | - Fabio Mavelli
- Chemistry Department, University 'Aldo Moro', Via Orabona 4, 70125 Bari, Italy
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| |
Collapse
|
38
|
Morris E, Chavez M, Tan C. Dynamic biomaterials: toward engineering autonomous feedback. Curr Opin Biotechnol 2016; 39:97-104. [PMID: 26974245 DOI: 10.1016/j.copbio.2016.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/31/2022]
Abstract
Dynamic biomaterials are biocompatible engineered systems capable of sensing and actively responding to their surrounding environment. They are of growing interest, both as models in basic research to understand complex cellular systems and in medical applications. Here, we review recent advances in nano-scale and micro-scale biomaterials, specifically artificial cells consisting of compartmentalized biochemical reactions and biologically compatible hydrogels. These dynamic biomaterials respond to stimuli through triggered reactions, reaction cascades, logic gates, and autonomous feedback loops. We outline the advances and remaining challenges in implementing such 'smart' biomaterials capable of autonomously responding to environmental stimuli.
Collapse
Affiliation(s)
- Eliza Morris
- Department of Biomedical Engineering, University of California Davis, Davis, USA
| | - Michael Chavez
- Department of Biomedical Engineering, University of California Davis, Davis, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, Davis, USA.
| |
Collapse
|
39
|
Caschera F, Noireaux V. Compartmentalization of an all-E. coli Cell-Free Expression System for the Construction of a Minimal Cell. ARTIFICIAL LIFE 2016; 22:185-195. [PMID: 26934095 DOI: 10.1162/artl_a_00198] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cell-free expression is a technology used to synthesize minimal biological cells from natural molecular components. We have developed a versatile and powerful all-E. coli cell-free transcription-translation system energized by a robust metabolism, with the far objective of constructing a synthetic cell capable of self-reproduction. Inorganic phosphate (iP), a byproduct of protein synthesis, is recycled through polysugar catabolism to regenerate ATP (adenosine triphosphate) and thus supports long-lived and highly efficient protein synthesis in vitro. This cell-free TX-TL system is encapsulated into cell-sized unilamellar liposomes to express synthetic DNA programs. In this work, we study the compartmentalization of cell-free TX-TL reactions, one of the aspects of minimal cell module integration. We analyze the signals of various liposome populations by fluorescence microscopy for one and for two reporter genes, and for an inducible genetic circuit. We show that small nutrient molecules and proteins are encapsulated uniformly in the liposomes with small fluctuations. However, cell-free expression displays large fluctuations in signals among the same population, which are due to heterogeneous encapsulation of the DNA template. Consequently, the correlations of gene expression with the compartment dimension are difficult to predict accurately. Larger vesicles can have either low or high protein yields.
Collapse
|
40
|
Hansen MMK, Meijer LHH, Spruijt E, Maas RJM, Rosquelles MV, Groen J, Heus HA, Huck WTS. Macromolecular crowding creates heterogeneous environments of gene expression in picolitre droplets. NATURE NANOTECHNOLOGY 2016; 11:191-7. [PMID: 26501750 PMCID: PMC4740931 DOI: 10.1038/nnano.2015.243] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 09/15/2015] [Indexed: 05/02/2023]
Abstract
Understanding the dynamics of complex enzymatic reactions in highly crowded small volumes is crucial for the development of synthetic minimal cells. Compartmentalized biochemical reactions in cell-sized containers exhibit a degree of randomness due to the small number of molecules involved. However, it is unknown how the physical environment contributes to the stochastic nature of multistep enzymatic processes. Here, we present a robust method to quantify gene expression noise in vitro using droplet microfluidics. We study the changes in stochasticity in the cell-free gene expression of two genes compartmentalized within droplets as a function of DNA copy number and macromolecular crowding. We find that decreased diffusion caused by a crowded environment leads to the spontaneous formation of heterogeneous microenvironments of mRNA as local production rates exceed the diffusion rates of macromolecules. This heterogeneity leads to a higher probability of the molecular machinery staying in the same microenvironment, directly increasing the system's stochasticity.
Collapse
Affiliation(s)
- Maike M K Hansen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Lenny H H Meijer
- Eindhoven University of Technology, Institute for Complex Molecular Systems and Computational Biology Group, Eindhoven 5600 MB, The Netherlands
| | - Evan Spruijt
- ESPCI ParisTech, Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, Paris 75005, France
| | - Roel J M Maas
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Marta Ventosa Rosquelles
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Joost Groen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Hans A Heus
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T S Huck
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
41
|
Ciechonska M, Grob A, Isalan M. From noise to synthetic nucleoli: can synthetic biology achieve new insights? Integr Biol (Camb) 2016; 8:383-93. [PMID: 26751735 DOI: 10.1039/c5ib00271k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synthetic biology aims to re-organise and control biological components to make functional devices. Along the way, the iterative process of designing and testing gene circuits has the potential to yield many insights into the functioning of the underlying chassis of cells. Thus, synthetic biology is converging with disciplines such as systems biology and even classical cell biology, to give a new level of predictability to gene expression, cell metabolism and cellular signalling networks. This review gives an overview of the contributions that synthetic biology has made in understanding gene expression, in terms of cell heterogeneity (noise), the coupling of growth and energy usage to expression, and spatiotemporal considerations. We mainly compare progress in bacterial and mammalian systems, which have some of the most-developed engineering frameworks. Overall, one view of synthetic biology can be neatly summarised as "creating in order to understand."
Collapse
Affiliation(s)
- Marta Ciechonska
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | | | | |
Collapse
|
42
|
Abstract
Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can–and in the case of E. coli does–control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. These results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.
Collapse
|
43
|
Shin SW, Park KS, Jang MS, Song WC, Kim J, Cho SW, Lee JY, Cho JH, Jung S, Um SH. X-DNA origami-networked core-supported lipid stratum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:912-916. [PMID: 25585044 DOI: 10.1021/la503754e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
DNA hydrogels are promising materials for various fields of research, such as in vitro protein production, drug carrier systems, and cell transplantation. For effective application and further utilization of DNA hydrogels, highly effective methods of nano- and microscale DNA hydrogel fabrication are needed. In this respect, the fundamental advantages of a core-shell structure can provide a simple remedy. An isolated reaction chamber and massive production platform can be provided by a core-shell structure, and lipids are one of the best shell precursor candidates because of their intrinsic biocompatibility and potential for easy modification. Here, we demonstrate a novel core-shell nanostructure made of gene-knitted X-shaped DNA (X-DNA) origami-networked gel core-supported lipid strata. It was simply organized by cross-linking DNA molecules via T4 enzymatic ligation and enclosing them in lipid strata. As a condensed core structure, the DNA gel shows Brownian behavior in a confined area. It has been speculated that they could, in the future, be utilized for in vitro protein synthesis, gene-integration transporters, and even new molecular bottom-up biological machineries.
Collapse
Affiliation(s)
- Seung Won Shin
- School of Chemical Engineering and ‡SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University , Suwon 440-746, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Elani Y, Law RV, Ces O. Protein synthesis in artificial cells: using compartmentalisation for spatial organisation in vesicle bioreactors. Phys Chem Chem Phys 2015; 17:15534-7. [DOI: 10.1039/c4cp05933f] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Spatially segregated in vitro protein expression in a vesicle-based artificial cell, with different proteins synthesised in defined vesicle regions.
Collapse
Affiliation(s)
- Yuval Elani
- Department of Chemistry
- Imperial College London
- UK
- Institute of Chemical Biology
- Imperial College London
| | - Robert V. Law
- Department of Chemistry
- Imperial College London
- UK
- Institute of Chemical Biology
- Imperial College London
| | - Oscar Ces
- Department of Chemistry
- Imperial College London
- UK
- Institute of Chemical Biology
- Imperial College London
| |
Collapse
|
45
|
Droplets: unconventional protocell model with life-like dynamics and room to grow. Life (Basel) 2014; 4:1038-49. [PMID: 25525912 PMCID: PMC4284481 DOI: 10.3390/life4041038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 11/17/2022] Open
Abstract
Over the past few decades, several protocell models have been developed that mimic certain essential characteristics of living cells. These protocells tend to be highly reductionist simplifications of living cells with prominent bilayer membrane boundaries, encapsulated metabolisms and/or encapsulated biologically-derived polymers as potential sources of information coding. In parallel with this conventional work, a novel protocell model based on droplets is also being developed. Such water-in-oil and oil-in-water droplet systems can possess chemical and biochemical transformations and biomolecule production, self-movement, self-division, individuality, group dynamics, and perhaps the fundamentals of intelligent systems and evolution. Given the diverse functionality possible with droplets as mimics of living cells, this system has the potential to be the first true embodiment of artificial life that is an orthologous departure from the one familiar type of biological life. This paper will synthesize the recent activity to develop droplets as protocell models.
Collapse
|