1
|
Bashyal A, Brodbelt JS. Uncommon posttranslational modifications in proteomics: ADP-ribosylation, tyrosine nitration, and tyrosine sulfation. MASS SPECTROMETRY REVIEWS 2024; 43:289-326. [PMID: 36165040 PMCID: PMC10040477 DOI: 10.1002/mas.21811] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Posttranslational modifications (PTMs) are covalent modifications of proteins that modulate the structure and functions of proteins and regulate biological processes. The development of various mass spectrometry-based proteomics workflows has facilitated the identification of hundreds of PTMs and aided the understanding of biological significance in a high throughput manner. Improvements in sample preparation and PTM enrichment techniques, instrumentation for liquid chromatography-tandem mass spectrometry (LC-MS/MS), and advanced data analysis tools enhance the specificity and sensitivity of PTM identification. Highly prevalent PTMs like phosphorylation, glycosylation, acetylation, ubiquitinylation, and methylation are extensively studied. However, the functions and impact of less abundant PTMs are not as well understood and underscore the need for analytical methods that aim to characterize these PTMs. This review focuses on the advancement and analytical challenges associated with the characterization of three less common but biologically relevant PTMs, specifically, adenosine diphosphate-ribosylation, tyrosine sulfation, and tyrosine nitration. The advantages and disadvantages of various enrichment, separation, and MS/MS techniques utilized to identify and localize these PTMs are described.
Collapse
Affiliation(s)
- Aarti Bashyal
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
2
|
Tsikas D, Duncan MW. Mass spectrometry and 3-nitrotyrosine: strategies, controversies, and our current perspective. MASS SPECTROMETRY REVIEWS 2014; 33:237-76. [PMID: 24167057 DOI: 10.1002/mas.21396] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 05/11/2023]
Abstract
Reactive-nitrogen species (RNS) such as peroxynitrite (ONOO(-)), that is, the reaction product of nitric oxide ((•)NO) and superoxide (O2(-•)), nitryl chloride (NO2Cl) and (•)NO2 react with the activated aromatic ring of tyrosine to form 3-nitrotyrosine. This modification, which has been known for more than a century, occurs to both the free form of the amino acid (i.e., soluble/free tyrosine) and to tyrosine residues covalently bound within the backbone of peptides and proteins. Nitration of tyrosine is thought to be of biological significance and has been linked to health and disease, but determining its role has proved challenging. Several key questions have been the focus of much of the research activity: (a) to what extent is free/soluble tyrosine nitrated in biological tissues and fluids, and (b) are there specific site(s) of nitration within peptides/proteins and to what extent (i.e., stoichiometry) does this modification occur? These issues have been addressed in a wide range of sample types (e.g., blood, urine, CSF, exhaled breath condensate and various tissues) and a diverse array of physiological/pathophysiological scenarios. The accurate determination of nitrated tyrosine is, however, a stumbling block. Despite extensive study, the extent to which nitration occurs in vivo, the specificity of the nitration reaction, and its importance in health and disease, remain unclear. In this review, we highlight the analytical challenges and discuss the approaches adopted to address them. Mass spectrometry, in combination with either gas chromatography (GC-MS, GC-MS/MS) or liquid chromatography (LC-MS/MS), has played the central role in the analysis of 3-nitrotyrosine and tyrosine-nitrated biological macromolecules. We discuss its unique attributes and highlight the role of stable-isotope labeled 3-nitrotyrosine analogs in both accurate quantification, and in helping to define the biological relevance of tyrosine nitration. We show that the application of sophisticated mass spectrometric techniques is advantageous if not essential, but that this alone is by no means a guarantee of accurate findings. We discuss the important analytical challenges in quantifying 3-nitrotyrosine, possible workarounds, and we attempt to make sense of the disparate findings that have been reported so far.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
3
|
Duncan MW. Good mass spectrometry and its place in good science. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:795-809. [PMID: 22707172 DOI: 10.1002/jms.3038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The mass spectrometry community has expanded as instruments became more powerful, user-friendly, affordable and readily available. This opens up opportunities for novice users to perform high impact research, using highly advanced instrumentation. This introductory tutorial is targeted at the novice user working in a research setting. It aims to offer the benefit of other people's experiences and to help newcomers avoid known pitfalls and problematic issues. It discusses some of the essential features of sound analytical chemistry and highlights the need to use validated analytical methods that provide high quality results along with a measure of their uncertainty. Examples are used to illustrate potential pitfalls and their consequences.
Collapse
Affiliation(s)
- Mark W Duncan
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Denver-School of Medicine, Aurora, Colorado 80045, USA.
| |
Collapse
|
4
|
Hoelzl C, Knasmüller S, Wagner KH, Elbling L, Huber W, Kager N, Ferk F, Ehrlich V, Nersesyan A, Neubauer O, Desmarchelier A, Marin-Kuan M, Delatour T, Verguet C, Bezençon C, Besson A, Grathwohl D, Simic T, Kundi M, Schilter B, Cavin C. Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol Nutr Food Res 2011; 54:1722-33. [PMID: 20589860 DOI: 10.1002/mnfr.201000048] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SCOPE Coffee is among the most frequently consumed beverages. Its consumption is inversely associated to the incidence of diseases related to reactive oxygen species; the phenomenon may be due to its antioxidant properties. Our primary objective was to investigate the impact of consumption of a coffee containing high levels of chlorogenic acids on the oxidation of proteins, DNA and membrane lipids; additionally, other redox biomarkers were monitored in an intervention trial. METHODS AND RESULTS The treatment group (n=36) consumed instant coffee co-extracted from green and roasted beans, whereas the control consumed water (800 mL/P/day, 5 days). A global statistical analysis of four main biomarkers selected as primary outcomes showed that the overall changes are significant. 8-Isoprostaglandin F2α in urine declined by 15.3%, 3-nitrotyrosine was decreased by 16.1%, DNA migration due to oxidized purines and pyrimidines was (not significantly) reduced in lymphocytes by 12.5 and 14.1%. Other markers such as the total antioxidant capacity were moderately increased; e.g. LDL and malondialdehyde were shifted towards a non-significant reduction. CONCLUSION The oxidation of DNA, lipids and proteins associated with the incidence of various diseases and the protection against their oxidative damage may be indicative for beneficial health effects of coffee.
Collapse
Affiliation(s)
- Christine Hoelzl
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Analytical methods for 3-nitrotyrosine quantification in biological samples: the unique role of tandem mass spectrometry. Amino Acids 2010; 42:45-63. [DOI: 10.1007/s00726-010-0604-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 04/16/2010] [Indexed: 12/31/2022]
|
6
|
Cavin C, Delatour T, Marin-Kuan M, Fenaille F, Holzhäuser D, Guignard G, Bezençon C, Piguet D, Parisod V, Richoz-Payot J, Schilter B. Ochratoxin A-mediated DNA and protein damage: roles of nitrosative and oxidative stresses. Toxicol Sci 2009; 110:84-94. [PMID: 19414514 DOI: 10.1093/toxsci/kfp090] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin occurring in a variety of foods. OTA is nephrotoxic and nephrocarcinogenic in rodents. An OTA-mediated increase of the inducible nitric oxide synthase (iNOS) expression was observed in normal rat kidney renal cell line and in rat hepatocyte cultures, suggesting the induction of nitrosative stress. This was associated with an increased nuclear factor kappa-light chain enhancer of activated B cells activity. The potential consequences of iNOS induction were further investigated. A significant increase in the levels of protein nitrotyrosine residues was observed with OTA. In addition, OTA was found to increase the level of DNA abasic sites in both cell cultures system. This end point was used as an indirect measure of 8-nitroguanine formation. Treatment of the cells with L-N(6)-(1-iminoethyl) lysine, a specific inhibitor of iNOS activity, inhibited the OTA-mediated overnitration of proteins but did not reduce the level of DNA abasic sites. It was found previously that nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) activators were able to restore the cellular defense against oxidative stress and could prevent DNA abasic sites in cell cultures. In the present study, pretreatment of the cells with activators of Nrf2 prevented OTA-mediated increase in lipid peroxidation, confirming the potential of Nrf2 activators to confer protection against OTA-mediated oxidative stress. In addition, it was found that Nrf2 activators could also prevent OTA-induced protein nitration and cytotoxicity. In conclusion, the present data further confirm oxidative stress as a key source of OTA-induced DNA damage and provide additional evidence for a role of this mechanism in OTA carcinogenicity. The exact role of nitrosative stress still remains to be established.
Collapse
Affiliation(s)
- Christophe Cavin
- Quality and Safety Department, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, López-Jaramillo J, Luque F, Palma JM, Pedrajas JR, Begara-Morales JC, Sánchez-Calvo B, Gómez-Rodríguez MV, Corpas FJ, Barroso JB. Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:4221-34. [PMID: 19717529 DOI: 10.1093/jxb/erp263] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Tyrosine nitration is recognized as an important post-translational protein modification in animal cells that can be used as an indicator of a nitrosative process. However, in plant systems, there is scant information on proteins that undergo this process. In sunflower hypocotyls, the content of tyrosine nitration (NO(2)-Tyr) and the identification of nitrated proteins were studied by high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) and proteomic approaches, respectively. In addition, the cell localization of nitrotyrosine proteins and peroxynitrite were analysed by confocal laser-scanning microscopy (CLSM) using antibodies against 3-nitrotyrosine and 3'-(p-aminophenyl) fluorescein (APF) as the fluorescent probe, in that order. The concentration of Tyr and NO(2)-Tyr in hypocotyls was 0.56 micromol mg(-1) protein and 0.19 pmol mg(-1) protein, respectively. By proteomic analysis, a total of 21 nitrotyrosine-immunopositive proteins were identified. These targets include proteins involved in photosynthesis, and in antioxidant, ATP, carbohydrate, and nitrogen metabolism. Among the proteins identified, S-adenosyl homocysteine hydrolase (SAHH) was selected as a model to evaluate the effect of nitration on SAHH activity using SIN-1 (a peroxynitrite donor) as the nitrating agent. When the hypocotyl extracts were exposed to 0.5 mM, 1 mM, and 5 mM SIN-1, the SAHH activity was inhibited by some 49%, 89%, and 94%, respectively. In silico analysis of the barley SAHH sequence, characterized Tyr448 as the most likely potential target for nitration. In summary, the present data are the first in plants concerning the content of nitrotyrosine and the identification of candidates of protein nitration. Taken together, the results suggest that Tyr nitration occurs in plant tissues under physiological conditions that could constitute an important process of protein regulation in such a way that, when it is overproduced in adverse circumstances, it can be used as a marker of nitrosative stress.
Collapse
Affiliation(s)
- Mounira Chaki
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Immunoaffinity liquid chromatography–tandem mass spectrometry detection of nitrotyrosine in biological fluids: Development of a clinically translatable biomarker. Anal Biochem 2008; 380:68-76. [DOI: 10.1016/j.ab.2008.05.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/12/2008] [Accepted: 05/12/2008] [Indexed: 11/20/2022]
|
9
|
A critical review and discussion of analytical methods in the l-arginine/nitric oxide area of basic and clinical research. Anal Biochem 2008; 379:139-63. [DOI: 10.1016/j.ab.2008.04.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 12/21/2022]
|
10
|
Rabbani N, Thornalley PJ. Assay of 3-nitrotyrosine in tissues and body fluids by liquid chromatography with tandem mass spectrometric detection. Methods Enzymol 2008; 440:337-59. [PMID: 18423229 DOI: 10.1016/s0076-6879(07)00822-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
3-Nitrotyrosine (3-NT) is a marker of protein nitration in physiological systems. It is present as 3-nitrotyrosine residues in proteins of tissue, extracellular matrix, plasma, and other body fluids and food. It is also present in body fluids and some beverages as free nitrotyrosine and is excreted in urine with the major urinary metabolite 3-nitro-4-hydroxyphenylacetic acid. Quantitation of 3-nitrotyrosine requires tandem mass spectrometry for specific detection. The method developed to determine 3-nitrotyrosine (along with protein glycation and oxidation adducts in a quantitative screening assay) by liquid chromatography with tandem mass spectrometric detection is described. The 3-NT residue contents of plasma protein, hemoglobin, lipoproteins, and cerebrospinal fluid protein and the concentrations of free 3-nitrotyrosine in plasma, urine, and cerebrospinal fluid are given. Changes of 3-nitrotyrosine residue and free 3-nitrotyrosine in diabetes, cirrhosis, acute and chronic renal failure, and neurological disorders, including Alzheimer's disease, are presented and compared with independent estimates.
Collapse
Affiliation(s)
- Naila Rabbani
- Protein Damage and Systems Biology Research Group, Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, University Hospital, Coventry, United Kingdom
| | | |
Collapse
|
11
|
Ryberg H, Caidahl K. Chromatographic and mass spectrometric methods for quantitative determination of 3-nitrotyrosine in biological samples and their application to human samples. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 851:160-71. [PMID: 17344105 DOI: 10.1016/j.jchromb.2007.02.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 01/29/2007] [Accepted: 02/01/2007] [Indexed: 11/24/2022]
Abstract
The permanent modification of soluble and protein-associated tyrosine by nitration results in the formation of 3-nitrotyrosine, which can be used as a marker of "nitro-oxidative" damage to proteins. Based on the analysis of patient materials, over 40 different diseases and/or conditions have been linked to increased nitration of tyrosine. They include many cardiovascular diseases, conditions associated with immunological reactions and neurological diseases. In this article we review the existing chromatographic and mass spectrometric methods for quantitative measurements of 3-nitrotyrosine in different human biological samples including plasma, either from the free amino acid pool or from hydrolyzed proteins from different matrices.
Collapse
Affiliation(s)
- Henrik Ryberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden
| | | |
Collapse
|
12
|
Delatour T, Fenaille F, Parisod V, Richoz J, Vuichoud J, Mottier P, Buetler T. A comparative study of proteolysis methods for the measurement of 3-nitrotyrosine residues: enzymatic digestion versus hydrochloric acid-mediated hydrolysis. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 851:268-76. [PMID: 17118718 DOI: 10.1016/j.jchromb.2006.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 11/02/2006] [Accepted: 11/03/2006] [Indexed: 11/27/2022]
Abstract
A common approach for the quantification of 3-nitrotyrosine (NY) in routine analyses relies on the cleavage of peptide bonds in order to release the free amino acids from proteins in tissues or fluids. NY is usually monitored by either GC-MS(/MS) or LC-MS/MS techniques. Various proteolysis methods have been employed to combine digestion efficiency with prevention of artifactual nitration of tyrosine. However, so far, no study was designed to compare the HCl-based hydrolysis method with enzymatic digestion in terms of reliability for the measurement of NY. The present work addresses the digestion efficiency of BSA using either 6M HCl, pronase E or a cocktail of enzymes (pepsin, pronase E, aminopeptidase, prolidase) developed in our laboratory. The HCl-based hydrolysis leads to a digestion yield of 95%, while 25 and 75% are achieved with pronase E and the cocktail of enzymes, respectively. These methods were compared in terms of NY measurement and the results indicate that a prior reduction of the disulfide bonds ensures a reliable quantification of NY. We additionally show that the enzyme efficacy is not altered when the digestion is carried out in the presence of BSA with a high content of NY.
Collapse
Affiliation(s)
- Thierry Delatour
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
13
|
Ishii Y, Iijima M, Umemura T, Nishikawa A, Iwasaki Y, Ito R, Saito K, Hirose M, Nakazawa H. Determination of nitrotyrosine and tyrosine by high-performance liquid chromatography with tandem mass spectrometry and immunohistochemical analysis in livers of mice administered acetaminophen. J Pharm Biomed Anal 2006; 41:1325-31. [PMID: 16616826 DOI: 10.1016/j.jpba.2006.02.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 02/22/2006] [Accepted: 02/28/2006] [Indexed: 11/26/2022]
Abstract
Nitrotyrosine (NTYR) is used as a biomarker of nitrative pathology caused by peroxynitrite (ONOO-) formation. NTYR measurement in biological materials usually employs such methodologies as immunohistochemistry staining, high-performance liquid chromatography and gas chromatography. In this study, we developed a method for the determination of tyrosine (TYR) and NTYR, using liquid chromatography with tandem mass spectrometry (LC-MS/MS). In order to confirm the applicability of our method to an in vivo system, we measured protein-bound NTYR levels using by LC-MS/MS method and immunohistochemical analysis in liver of B6C3F1 mice at 2 h, 4 h and 8 h after administration of 300 mg/kg acetaminophen (APAP). A mass spectrometer equipped with an electrospray ionization source using a crossflow counter electrode and ran in the positive ion mode (ESI+) was set up for multiple reaction monitoring (MRM), which monitored the transitions 182.2>136.2, 227.1>181.2, 191.3>144.4 and 236.3>189.5, for TYR, NTYR, [13C9]-TYR and [13C9]-NTYR, respectively. The average recoveries from mice liver protein samples spiked with 25 microM TYR and 100 nM NTYR were 94.4% and 95.6%, respectively, with correction using the added surrogate standards. The limits of quantification were 100 nM for TYR and 0.5 nM for NTYR. NTYR was detected all liver samples of mice by the proposed LC-MS/MS method. The concentration range of NTYR per milligram protein in samples was 0.17-0.3 pmol/mg protein. And the level reached a maximum at 4 h. These data were well correlated with the result obtained by an immunohistochemical reaction with anti-NTYR antibody. The LC-MS/MS method was able to determine protein-bound NTYR in a small amount of tissue sample, and is therefore expected to be a very powerful tool for evaluating ONOO- generation in an in vivo system.
Collapse
Affiliation(s)
- Yuji Ishii
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chen KM, El-Bayoumy K, Hosey J, Cunningham J, Aliaga C, Melikian AA. Benzene increases protein-bound 3-nitrotyrosine in bone marrow of B6C3F1 mice. Chem Biol Interact 2005; 156:81-91. [PMID: 16139254 DOI: 10.1016/j.cbi.2005.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 07/27/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
Benzene, an environmental pollutant, is myelotoxic and leukemogenic in humans. The molecular mechanisms that can account for its biological effects have not been fully elucidated. We hypothesize that one of the underlying mechanism involves nitration of proteins by peroxynitrite and/or by bone marrow myeloperoxidase-dependent pathways in nitric oxide (NO) metabolism. Using 3-nitrotyrosine [Tyr(NO(2))] as a biomarker for NO-induced damage to proteins, we examined the effects of benzene on the levels of Tyr(NO(2)) in bone marrow in vivo. Groups of 8 weeks old B6C3F(1) male mice were given a single i.p. injection of benzene (50, 100, 200 or 400mg/kg bodyweight) in corn oil. The mice in control groups received either no treatment or a single injection of the vehicle. The mice were killed 1h after treatment and proteins were isolated from bone marrow, lung, liver and plasma. The proteins were enzymatically hydrolyzed; amino acids were separated and purified by high pressure liquid chromatography, derivatized, and quantified by electron capture-negative chemical ionization-gas chromatography/mass spectrometry (EC-NCI-GC/MS). In the GC/MS assay, 3-nitro-l-[(13)C(9)]tyrosine was used as an internal standard and l-[(2)H(4)]tyrosine served to monitor artifactual formation of 3-nitrotyrosine during sample preparation and analysis. We found that treatment of mice with benzene elevates nitration of tyrosine residues in bone marrow proteins. There was a dose (50-200mg benzene/kg b.w.)-dependent increase in protein-bound Tyr(NO(2)) formation (1.5- to 4.5-fold); however, the levels of Tyr(NO(2)) at 400mg benzene/kg b.w. were significantly higher than control but lower than that formed at 200mg benzene/kg b.w. The results of this study, for the first time, indicate that benzene increases protein-bound 3-Tyr(NO(2)) in bone marrow in vivo, and support our previous finding that benzene is metabolized to nitrated products in bone marrow of mice; collectively, these results may in part account for benzene-induced myelotoxicity.
Collapse
Affiliation(s)
- Kun-Ming Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, Penn State University, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
15
|
Razavi HM, Wang L, Weicker S, Quinlan GJ, Mumby S, McCormack DG, Mehta S. Pulmonary oxidant stress in murine sepsis is due to inflammatory cell nitric oxide. Crit Care Med 2005; 33:1333-9. [PMID: 15942352 DOI: 10.1097/01.ccm.0000165445.48350.4f] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Pulmonary oxidant stress is an important pathophysiologic feature of acute lung injury. It is unclear whether nitric oxide contributes to this oxidant stress. Thus, we examined the role of inducible nitric oxide synthase (iNOS) in pulmonary oxidant stress in murine sepsis and the differential contribution of different cellular sources of iNOS. DESIGN Randomized, controlled animal study. SETTING Research laboratory of an academic institution. SUBJECTS Male iNOS+/+, iNOS-/- C57Bl/6 mice, and bone-marrow transplanted iNOS chimeric mice: +to- (wild-type iNOS+/+ donor bone-marrow transplanted into iNOS-/- recipient mice) and the reciprocal -to+ chimeras. INTERVENTIONS Animals were randomized to sepsis (n = 264), induced by cecal ligation and perforation, vs. naive groups (n = 138). MEASUREMENTS AND MAIN RESULTS In septic iNOS-/- vs. wild-type iNOS+/+ mice, sepsis-induced pulmonary oxidant stress (33 +/- 11 [mean +/- sem] vs. 365 +/- 48 pg 8-isoprostane/mg protein, p < .01) and nitrosative stress (0.0 +/- 0.0 vs. 0.9 +/- 0.4 micromol 3-nitrotyrosine/mmol para-tyrosine, p < .05) were abolished, despite similar septic increases in pulmonary myeloperoxidase activity in both (86 +/- 20 vs. 83 +/- 12 mU/mg protein, p = .78). In +to- iNOS chimeric mice (iNOS localized only to donor bone-marrow-derived inflammatory cells), cecal ligation and perforation resulted in significant pulmonary oxidant stress (368 +/- 81 pg 8-isoprostane/mg protein) and nitrosative stress (0.6 +/- 0.2 micromol 3-nitrotyrosine/mmol para-tyrosine), similar in degree to septic wild-type mice. In contrast, pulmonary oxidant and nitrosative stresses were absent in septic -to+ iNOS chimeras (iNOS localized only to recipient parenchymal cells), similar to iNOS-/- mice. CONCLUSIONS In murine sepsis-induced acute lung injury, pulmonary oxidant stress is completely iNOS dependent and is associated with tyrosine nitration. Moreover, pulmonary oxidant stress and nitrosative stress were uniquely dependent on the presence of iNOS in inflammatory cells (e.g., macrophages and neutrophils), with no apparent contribution of iNOS in pulmonary parenchymal cells. iNOS inhibition targeted specifically to inflammatory cells may be an effective therapeutic approach in sepsis and acute lung injury.
Collapse
Affiliation(s)
- Habib M Razavi
- Centre for Critical Illness Research, Lawson Health Research Institute, Division of Respirology, London Health Sciences Center and Department of Medicine, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Tsikas D, Caidahl K. Recent methodological advances in the mass spectrometric analysis of free and protein-associated 3-nitrotyrosine in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 814:1-9. [PMID: 15607702 DOI: 10.1016/j.jchromb.2004.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 10/04/2004] [Indexed: 10/26/2022]
Abstract
L-Tyrosine and L-tyrosine residues in proteins are attacked by various reactive-nitrogen species (RNS) including peroxynitrite to form 3-nitrotyrosine (NO(2)Tyr) and protein-associated 3-nitrotyrosine (NO(2)TyrProt). Circulating NO(2)Tyr and NO(2)TyrProt have been suggested and are widely used as biomarkers of oxidative stress in humans. In this article the mass spectrometry (MS)-based analytical methods recently reported for the quantification of circulating levels of NO(2)Tyr and NO(2)TyrProt are discussed. These methodologies differ in sensitivity, selectivity, specificity and accessibility to interferences with the latter mainly arising from artifactual formation of NO(2)Tyr and NO(2)TyrProt during sample treatment such as acidification and chemical derivatization. Application of these methodologies to healthy normal humans revealed basal circulating levels for NO(2)Tyr which range between 0.7 and 64 nM, i.e. by two orders of magnitude. Application of gas chromatography-tandem mass spectrometry (GC-tandem MS) methods by two independent research groups by using two different protocols to avoid artifactual nitration of L-tyrosine revealed almost identical mean plasma levels of the order of 1.0 nM in healthy humans. The lower limits of quantitation (LOQ) of these methods were 0.125 and 0.3n M, respectively. This order of magnitude for basal NO(2)Tyr is supported by two liquid chromatography-tandem mass spectrometry (LC-tandem MS) methods with LOQ values of 4.4 and 1.4 nM. On the basis of the data provided by GC-tandem MS and LC-tandem MS the use of a range of 0.5-3 nM for NO(2)Tyr and of 0.6 pmol/mg plasma protein or a molar ratio of 3-nitrotyrosine to tyrosine in plasma proteins of the order of 1:10(6) for NO(2)TyrProt in plasma of healthy humans as reference values appear reasonably justified. Recently reported clinical studies involving 3-nitrotyrosine as a biomarker of oxidative stress are discussed in particular from the analytical point of view.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | | |
Collapse
|
17
|
Walcher W, Franze T, Weller MG, Pöschl U, Huber CG. Liquid- and gas-phase nitration of bovine serum albumin studied by LC-MS and LC-MS/MS using monolithic columns. J Proteome Res 2004; 2:534-42. [PMID: 14582650 DOI: 10.1021/pr034034s] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Post-translational nitration of proteins was analyzed by capillary reversed-phase high-performance liquid chromatography (RP-HPLC) on-line interfaced to electrospray ionization mass spectrometry (ESI--MS) or tandem mass spectrometry (ESI--MS/MS). Both methods were compared using a tryptic digest of bovine serum albumin (BSA) and yielded sequence coverages of 95% and 33% with RP-HPLC--ESI--MS and RP-HPLC--ESI--MS/MS, respectively. At least 95% of the tyrosines were covered by the former method, whereas the latter method only detected less than 50% of the tyrosine-containing peptides. Upon liquid-phase nitration of BSA in aqueous solution using an excess of tetranitromethane, at least 16 of the 20 tyrosine residues were found to be nitrated. After exposure of solid BSA samples to gaseous nitrogen dioxide and ozone at atmospherically relevant concentration levels, only 3 nitrated peptides were detected. By use of such a model system, RP-HPLC--ESI--MS proved to be a rapid and highly efficient method for the comprehensive and quantitative detection of protein nitration.
Collapse
Affiliation(s)
- Wolfgang Walcher
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens-University, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
18
|
Marnett LJ, Riggins JN, West JD. Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J Clin Invest 2003; 111:583-93. [PMID: 12618510 PMCID: PMC151910 DOI: 10.1172/jci18022] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Lawrence J Marnett
- Department of Biochemistry, Vanderbilt University School of Medicine, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Nashville, Tennessee, USA.
| | | | | |
Collapse
|
19
|
Marnett LJ, Riggins JN, West JD. Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J Clin Invest 2003. [DOI: 10.1172/jci200318022] [Citation(s) in RCA: 320] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Current literature in journal of mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:347-356. [PMID: 12644999 DOI: 10.1002/jms.418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|