1
|
Jawich D, Pfohl-Leszkowicz A, Lteif R, Strehaiano P. DNA adduct formation in Saccharomyces cerevisiae following exposure to environmental pollutants, as in vivo model for molecular toxicity studies. World J Microbiol Biotechnol 2024; 40:180. [PMID: 38668960 DOI: 10.1007/s11274-024-03989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
DNA adduction in the model yeast Saccharomyces cerevisiae was investigated after exposure to the fungicide penconazole and the reference genotoxic compound benzo(a)pyrene, for validating yeasts as a tool for molecular toxicity studies, particularly of environmental pollution. The effect of the toxicants on the yeast's growth kinetics was determined as an indicator of cytotoxicity. Fermentative cultures of S. cerevisiae were exposed to 2 ppm of Penconazole during different phases of growth; while 0.2 and 2 ppm of benzo(a)pyrene were applied to the culture medium before inoculation and on exponential cultures. Exponential respiratory cultures were also exposed to 0.2 ppm of B(a)P for comparison of both metabolisms. Penconazole induced DNA adducts formation in the exponential phase test; DNA adducts showed a peak of 54.93 adducts/109 nucleotides. Benzo(a)pyrene induced the formation of DNA adducts in all the tests carried out; the highest amount of 46.7 adducts/109 nucleotides was obtained in the fermentative cultures after the exponential phase exposure to 0.2 ppm; whereas in the respiratory cultures, 14.6 adducts/109 nucleotides were detected. No cytotoxicity was obtained in any experiment. Our study showed that yeast could be used to analyse DNA adducts as biomarkers of exposure to environmental toxicants.
Collapse
Affiliation(s)
- Dalal Jawich
- Fanar Laboratory, Lebanese Agricultural Research Institute (LARI), Beirut, Lebanon.
- Laboratoire de Génie Chimique, UMR-CNRS/INPT/UPS 5503, Département Bioprocédé-Système Microbien, Toulouse Cedex, France.
- Unité de Technologie et Valorisation Alimentaire, Faculté Des Sciences, Centre d'Analyses et de Recherche, Université Saint-Joseph de Beyrouth, Campus des Sciences et Technologies, Mar Roukos, Dekwaneh, B.P. 17-5208, Mar Mikhaël, Beirut, 1104 2020, Lebanon.
- Faculty of Agricultural Sciences, Department of Basic Sciences, Lebanese University, Dekwaneh, Beirut, Lebanon.
| | - Annie Pfohl-Leszkowicz
- Laboratoire de Génie Chimique, UMR-CNRS/INPT/UPS 5503, Département Bioprocédé-Système Microbien, Toulouse Cedex, France
| | - Roger Lteif
- Unité de Technologie et Valorisation Alimentaire, Faculté Des Sciences, Centre d'Analyses et de Recherche, Université Saint-Joseph de Beyrouth, Campus des Sciences et Technologies, Mar Roukos, Dekwaneh, B.P. 17-5208, Mar Mikhaël, Beirut, 1104 2020, Lebanon
| | - Pierre Strehaiano
- Laboratoire de Génie Chimique, UMR-CNRS/INPT/UPS 5503, Département Bioprocédé-Système Microbien, Toulouse Cedex, France
| |
Collapse
|
2
|
Urugo MM, Teka TA, Berihune RA, Teferi SL, Garbaba CA, Adebo JA, Woldemariam HW, Astatkie T. Novel non-thermal food processing techniques and their mechanism of action in mycotoxins decontamination of foods. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
3
|
Ismaiel AA, Mohamed HH, El-Sayed MT. Biodegradation of ochratoxin A by endophytic Trichoderma koningii strains. World J Microbiol Biotechnol 2023; 39:53. [PMID: 36564607 PMCID: PMC9789014 DOI: 10.1007/s11274-022-03491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus spp. and Penicillium spp. that causes a threat to food safety and human health. Fungal biodegradation might be a promising strategy for reducing the OTA contamination in the future. In this study, the ability of Trichoderma koningii strains to degrade OTA produced by Aspergillus niger T2 (MW513392.1) isolated from tomato seeds was investigated. Among T. koningii strains tested, three strains; AUMC11519, AUMC11520 and AUMC11521 completely eliminated OTA from the culture medium, while AUMC11522 strain eliminated only 41.82% of OTA. OTα-amide, 3-phenylpropionic acid, OTα and phenylalanine were assayed as degradation products by FTIR analysis and LC-MS/MS spectra. Carboxypeptidase A (CPA) was found responsible for OTA degradation when a metal ion chelator, EDTA, was added to cell free supernatants of the three effective strains. OTA detoxification by T. koningii could present new prospective strategies for a possible application in food commodities intoxicated with ochratoxin.
Collapse
Affiliation(s)
- Ahmed A. Ismaiel
- grid.31451.320000 0001 2158 2757Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Hala H. Mohamed
- grid.31451.320000 0001 2158 2757Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Manal T. El-Sayed
- grid.31451.320000 0001 2158 2757Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| |
Collapse
|
4
|
Malir F, Louda M, Toman J, Ostry V, Pickova D, Pacovsky J, Brodak M, Pfohl-Leszkowicz A. Investigation of ochratoxin A biomarkers in biological materials obtained from patients suffering from renal cell carcinoma. Food Chem Toxicol 2021; 158:112669. [PMID: 34774926 DOI: 10.1016/j.fct.2021.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
Ochratoxin A (OTA) exposure can result in chronic renal diseases and cancer. The incidence of kidney, renal pelvis, and ureter malignant neoplasms in the Czech Republic is approximately 29.5 renal tumours per 100,000 inhabitants. The question arises whether mycotoxins are also involved in kidney disease and cancer. A sensitive validated analytical methodology, based on an immunoaffinity clean-up followed by HPLC with fluorescence detection, was developed to explore whether OTA accumulates in clear renal cell carcinoma-adenocarcinoma in Czech patients. Simultaneously, DNA-adducts and OTA metabolites were qualitatively analysed in tissues and urine. OTA was analysed in 33 kidney and tumour samples from 26 men and 7 women collected during nephrectomy from patients of the East Bohemian region from 2015 to 2017. OTA was found in 76% of the analysed samples. Its concentrations ranged from not detectable to 390 ng/kg with a median of 167 ng/kg in kidney samples and from not detectable to 430 ng/kg with a median of 122 ng/kg in tumour samples. Urinary OTA metabolites and DNA adducts were qualitatively analysed for the corresponding 20 patients. The presence of some OTA metabolites such as ochratoxin A hydroquinone and/or decarboxylated ochratoxin A hydroquinone correlate with the presence of OTA-DNA adducts.
Collapse
Affiliation(s)
- Frantisek Malir
- University of Hradec Kralove, Faculty of Science, Department of Biology, Hradec Kralove, Czech Republic.
| | - Miroslav Louda
- Charles University Medical School and Teaching Hospital, Department of Urology, Hradec Kralove, Czech Republic
| | - Jakub Toman
- University of Hradec Kralove, Faculty of Science, Department of Biology, Hradec Kralove, Czech Republic
| | - Vladimir Ostry
- University of Hradec Kralove, Faculty of Science, Department of Biology, Hradec Kralove, Czech Republic; National Institute of Public Health in Prague, Center for Health, Nutrition and Food, Brno, Czech Republic
| | - Darina Pickova
- University of Hradec Kralove, Faculty of Science, Department of Biology, Hradec Kralove, Czech Republic
| | - Jaroslav Pacovsky
- Charles University Medical School and Teaching Hospital, Department of Urology, Hradec Kralove, Czech Republic
| | - Milos Brodak
- Charles University Medical School and Teaching Hospital, Department of Urology, Hradec Kralove, Czech Republic
| | - Annie Pfohl-Leszkowicz
- formerly University of Toulouse, INP/ENSAT Toulouse, Department Bioprocess & Microbial Systems, Laboratory Chemical Engineering, Auzeville - Tolosane, France
| |
Collapse
|
5
|
Ochratoxin A-Induced Nephrotoxicity: Up-to-Date Evidence. Int J Mol Sci 2021; 22:ijms222011237. [PMID: 34681895 PMCID: PMC8539333 DOI: 10.3390/ijms222011237] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin widely found in various foods and feeds that have a deleterious effect on humans and animals. It has been shown that OTA causes multiorgan toxicity, and the kidney is the main target of OTA among them. This present article aims to review recent and latest intracellular molecular interactions and signaling pathways of OTA-induced nephrotoxicity. Pyroptosis, lipotoxicity, organic anionic membrane transporter, autophagy, the ubiquitin-proteasome system, and histone acetyltransferase have been involved in the renal toxicity caused by OTA. Meanwhile, the literature reviewed the alternative or method against OTA toxicity by reducing ROS production, oxidative stress, activating the Nrf2 pathway, through using nanoparticles, a natural flavonoid, and metal supplement. The present review discloses the molecular mechanism of OTA-induced nephrotoxicity, providing opinions and strategies against OTA toxicity.
Collapse
|
6
|
Exposure assessment to ochratoxin A through the intake of three cereal derivatives from the Moroccan market. Food Res Int 2020; 137:109464. [PMID: 33233137 DOI: 10.1016/j.foodres.2020.109464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
Abstract
Previous studies reported the contamination of cereals products with OTA in Morocco. Given bread, pasta and semolina are staple consumed food in the country, this study aims to assess the OTA exposure levels for the adult consumers in the country through cereal derivatives intake, by using a deterministic model based on the crossover of consumption and contamination data of 457 cereals products samples. The study also set out to determine under what conditions the OTA contributions from these 3 cereal derivatives alone were enough to cause a real public health problem in the country. The Estimated Weekly Intake EWI (ng/kg b.w./week) was used as an indicator of exposure for each cereal derivative. The global exposure (Total EWI) was determined by the summation of the EWI obtained for each cereal derivative for different consumers groups and at different OTA levels and nine scenarios were elaborated. Results showed that the total average OTA intake from the three cereal derivatives was estimated at 13.5 ng/kg b.w./week. Despite its low contamination levels, bread has been shown to be the main vector of exposure to OTA because of the high consumption levels by Moroccan adults. Its contribution to the total OTA intake was between 81 and 84% depending on the scenario. The contribution of the other investigated cereal products to total OTA intake seems to be modest and does not exceed 10% and 7% for semolina and pasta, respectively. The predominance of cereal derivatives in Moroccan food thus constitutes a potential risk factor for OTA exposure. Indeed, the risk of occurrence of potential adverse effects of OTA is real in three scenarios discussed in the study since the PTWI established by JECFA (100 ng/kg b.w./week) was exceeded. Moreover, the Maximum limit (3 ng/g) set by Moroccan regulations in 2016, seems to be less protective for the Moroccan consumers compared to other countries due to the high consumption level of cereal products. This situation is likely to cause a public health problem by the occurrence of specific pathologies at highly OTA exposed adults, especially high bread consumers.
Collapse
|
7
|
Kathuria P, Singh P, Sharma P, Manderville RA, Wetmore SD. Molecular Dynamics Study of One-Base Deletion Duplexes Containing the Major DNA Adduct Formed by Ochratoxin A: Effects of Sequence Context and Adduct Ionization State on Lesion Site Structure and Mutagenicity. J Phys Chem B 2019; 123:6980-6989. [PMID: 31311268 DOI: 10.1021/acs.jpcb.9b06489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ochratoxin A (OTA) is a ubiquitous food toxin associated with chronic nephropathy in humans and renal carcinogenicity in rodents. The mutational spectra of cells exposed to OTA reveal that one-base deletions comprise the largest percentage (73%) of the total mutations that occur upon OTA exposure. To contribute toward understanding the prevalence of OTA-induced one-base deletion mutations, the present work uses molecular dynamics (MD) simulations to analyze the conformational preferences of one-base deletion duplexes containing OT-G, the major OTA adduct (addition product) at the C8-site of guanine. Specifically, the influence of OT-G in four possible ionization states and three sequence contexts (G1, G2 and G3 in the NarI (5'-G1G2CG3CC-3'), a prokaryotic mutational hotspot sequence) on the structure of the adducted DNA is investigated. Our data reveal that the damaged helices are stable in two (B-type (B) and stacked (S)) conformations that are structurally similar to those adopted by common N-linked C8-guanine lesions. However, the adduct ionization state and sequence context affect the degree of helical distortion and the B/S conformational heterogeneity, which will impact the lesion repair and replication outcomes. This finding correlates with the experimentally reported tissue-specific mutagenicity of OTA exposure. Furthermore, regardless of the adduct conformation, ionization state, or sequence context, more stable lesion-site interactions and lack of disruption of the flanking base pairs in the one-base deletion duplexes compared to the corresponding two-base deletion helices rationalize the greater abundance of OTA induced one-base deletions. Overall, our work provides valuable structural insights that help explain the experimentally observed mutagenicity associated with OTA.
Collapse
Affiliation(s)
- Preetleen Kathuria
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry , Panjab University , Chandigarh 160014 , India
| | - Prebhleen Singh
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry , Panjab University , Chandigarh 160014 , India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry , Panjab University , Chandigarh 160014 , India
| | - Richard A Manderville
- Departments of Chemistry and Toxicology , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry , University of Lethbridge , Lethbridge , Alberta T1K 3M4 , Canada
| |
Collapse
|
8
|
Assunção R, Pinhão M, Loureiro S, Alvito P, Silva MJ. A multi-endpoint approach to the combined toxic effects of patulin and ochratoxin a in human intestinal cells. Toxicol Lett 2019; 313:120-129. [PMID: 31212007 DOI: 10.1016/j.toxlet.2019.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 01/09/2023]
Abstract
Humans can be exposed to a complex and variable combination of mycotoxins. After ingestion, intestinal mucosa constitutes the first biological barrier that can be exposed to high concentrations of these toxins. The present study aimed to characterize the combined cytotoxicity, genotoxicity and impact on the gastrointestinal barrier integrity of patulin (PAT, 0.7 μM to 100 μM) and ochratoxin A (OTA, 1 μM to 200 μM) mixtures in Caco-2 cells. A dose-ratio deviation was verified for cytotoxicity, implying that OTA was mainly responsible for synergism when dominant in the mixture, while this pattern was changed to antagonism for the highest PAT concentrations. Genotoxicity (comet assay) results were compatible with an interactive DNA damaging effect at the highest PAT and OTA concentrations, not clearly mediated by the formation of oxidative DNA breaks. Regarding gastrointestinal barrier integrity, a potential synergism was attained at low levels of both mycotoxins, changing to antagonism at higher doses. The present results indicate that combined mycotoxins effects may arise at the intestinal level and should not be underestimated when evaluating their risk to human health.
Collapse
Affiliation(s)
- Ricardo Assunção
- Food and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisboa, Portugal; IIFA, Universidade de Évora, Palácio do Vimioso, Largo Marquês de Marialva, Apartado 94, 7002-554, Évora, Portugal; Centre for Environmental and Marine Studies, CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Mariana Pinhão
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisboa, Portugal.
| | - Susana Loureiro
- Department of Biology & CESAM, Centre for Environmental and Marine Studies, University of Aveiro, Portugal.
| | - Paula Alvito
- Food and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisboa, Portugal; Centre for Environmental and Marine Studies, CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisboa, Portugal; Center for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, FCM-UNL, Lisbon, Portugal.
| |
Collapse
|
9
|
Klopčič I, Dolenc MS. Chemicals and Drugs Forming Reactive Quinone and Quinone Imine Metabolites. Chem Res Toxicol 2018; 32:1-34. [DOI: 10.1021/acs.chemrestox.8b00213] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ivana Klopčič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
10
|
Abstract
The important renal tumors that can be induced by exposure of rats to chemical carcinogens are renal tubule tumors (RTTs) derived from tubule epithelium; renal pelvic carcinoma derived from the urothelial lining of the pelvis; renal mesenchymal tumors (RMTs) derived from the interstitial connective tissue; and nephroblastoma derived from the metanephric primordia. However, almost all of our knowledge concerning mechanisms of renal carcinogenesis in the rodent pertains to the adenomas and carcinomas originating from renal tubule epithelium. Currently, nine mechanistic pathways can be identified in either the rat or mouse following chemical exposure. These include direct DNA reactivity, indirect DNA reactivity through free radical formation, multiphase bioactivation involving glutathione conjugation, mitotic disruption, sustained cell proliferation from direct cytotoxicity, sustained cell proliferation by disruption of a physiologic process (alpha 2u-globulin nephropathy), exaggerated pharmacologic response, species-dominant metabolic pathway, and chemical exacerbation of chronic progressive nephropathy. Spontaneous occurrence of RTTs in the rat will be included since one example is a confounder for interpreting kidney tumor results in chemical carcinogenicity studies in rats.
Collapse
|
11
|
Kathuria P, Sharma P, Manderville RA, Wetmore SD. Molecular Dynamics Simulations of Mismatched DNA Duplexes Associated with the Major C8-Linked 2′-Deoxyguanosine Adduct of the Food Mutagen Ochratoxin A: Influence of Opposing Base, Adduct Ionization State, and Sequence on the Structure of Damaged DNA. Chem Res Toxicol 2018; 31:712-720. [DOI: 10.1021/acs.chemrestox.8b00064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Preetleen Kathuria
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Richard A. Manderville
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
12
|
Vongsutilers V, Gannett PM. C8-Guanine modifications: effect on Z-DNA formation and its role in cancer. Org Biomol Chem 2018. [DOI: 10.1039/c8ob00030a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Participation of Z DNA in normal and disease related biological processes.
Collapse
Affiliation(s)
- V. Vongsutilers
- Department of Food and Pharmaceutical Chemistry
- Faculty of Pharmaceutical Sciences
- Chulalongkorn University
- Thailand
| | - P. M. Gannett
- College of Pharmacy
- Nova Southeastern University
- Ft. Lauderdale
- USA
| |
Collapse
|
13
|
Berger FD, Sturla SJ, Kung RW, Montina T, Wetmore SD, Manderville RA. Conformational Preference and Fluorescence Response of a C-Linked C8-Biphenyl-Guanine Lesion in the NarI Mutational Hotspot: Evidence for Enhanced Syn Adduct Formation. Chem Res Toxicol 2017; 31:37-47. [DOI: 10.1021/acs.chemrestox.7b00266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Florence D. Berger
- Department
of Health Sciences and Technology, Institute of Food, Nutrition, and
Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Shana J. Sturla
- Department
of Health Sciences and Technology, Institute of Food, Nutrition, and
Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Ryan W. Kung
- Department
of Chemistry and Biochemistry, and the Canadian Centre for Research
in Advanced Fluorine Technologies, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Tony Montina
- Department
of Chemistry and Biochemistry, and the Canadian Centre for Research
in Advanced Fluorine Technologies, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department
of Chemistry and Biochemistry, and the Canadian Centre for Research
in Advanced Fluorine Technologies, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Richard A. Manderville
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
14
|
González-Arias CA, Marín S, Rojas-García AE, Sanchis V, Ramos AJ. UPLC-MS/MS analysis of ochratoxin A metabolites produced by Caco-2 and HepG2 cells in a co-culture system. Food Chem Toxicol 2017; 109:333-340. [PMID: 28888735 DOI: 10.1016/j.fct.2017.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/22/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022]
Abstract
Ochatoxin A (OTA) is one of the most important mycotoxins based on its toxicity. The oral route is the main gateway of entry of OTA into the human body, and specialized epithelial cells constitute the first barrier. The present study investigated the in vitro cytotoxic effect of OTA (5, 15 and 45 μM) and production of OTA metabolities in Caco-2 and HepG2 cells using a co-culture Transwell System to mimic the passage through the intestinal epithelium and hepatic metabolism. The results derived from MTS cell viability assays and transepithelial electrical resistance measurements showed that OTA was slightly cytotoxic at the lowest concentration at 3 h, but significant toxicity was observed at all concentrations at 24 h. OTA metabolites generated in this co-culture were ochratoxin B (OTB), OTA methyl ester, OTA ethyl ester and the OTA glutathione conjugate (OTA-GSH). OTA methyl ester was the major metabolite found in both Caco-2 and HepG2 cells after all treatments. Our results showed that OTA can cause cell damage through several mechanisms and that the OTA exposure time is more important that the dosage in in vitro studies. OTA methyl ester is proposed as an OTA exposure biomarker, although future studies should be conducted.
Collapse
Affiliation(s)
- Cyndia A González-Arias
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain; Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Tepic, Nayarit C.P. 63155, Mexico
| | - Sonia Marín
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Aurora E Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Tepic, Nayarit C.P. 63155, Mexico
| | - Vicente Sanchis
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Antonio J Ramos
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
15
|
Manderville RA, Wetmore SD. Mutagenicity of Ochratoxin A: Role for a Carbon-Linked C8-Deoxyguanosine Adduct? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7097-7105. [PMID: 28830149 DOI: 10.1021/acs.jafc.6b03897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ochratoxin A (OTA) is a fungal toxin that is considered to be a potent kidney carcinogen in rodent models. The toxin produces double strand breaks and has a propensity for deletions, single-base substitutions, and insertions. The toxin reacts covalently with DNA to afford a C8-2'-deoxyguanosine carbon-linked adduct (OT-dG) as the major lesion in animal tissues. Incorporation of model C-linked C8-aryl-dG adducts into the G3 site of the NarI sequence demonstrates a tendency to induce base substitutions and deletion mutations in primer extension assays using model polymerases. The degree of misincorporation induced by the C-linked C8-dG adducts correlates with an ability to adopt the promutagenic syn conformation within the NarI duplex as predicted by molecular dynamics (MD) simulations. MD simulations of the OT-dG adduct within the NarI duplex predict an even greater degree of conformational flexibility, suggesting enhanced in vitro mutagenicity compared to the simpler model C-linked C8-dG adducts. Together these findings support the role of OT-dG in promoting OTA-mediated mutagenicity and carcinogenicity in animal studies.
Collapse
Affiliation(s)
- Richard A Manderville
- Departments of Chemistry and Toxicology, University of Guelph , Guelph, Ontario, Canada N1G 2W1
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge , Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
16
|
Kathuria P, Sharma P, Manderville RA, Wetmore SD. Molecular Modeling of the Major DNA Adduct Formed from Food Mutagen Ochratoxin A in NarI Two-Base Deletion Duplexes: Impact of Sequence Context and Adduct Ionization on Conformational Preference and Mutagenicity. Chem Res Toxicol 2017; 30:1582-1591. [PMID: 28719194 DOI: 10.1021/acs.chemrestox.7b00103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Exposure to ochratoxin A (OTA), a possible human carcinogen, leads to many different DNA mutations. As a first step toward understanding the structural basis of OTA-induced mutagenicity, the present work uses a robust computational approach and a slipped mutagenic intermediate model previously studied for C8-dG aromatic amine adducts to analyze the conformational features of postreplication two-base deletion DNA duplexes containing OT-dG, the major OTA lesion at the C8 position of guanine. Specifically, a total of 960 ns of molecular dynamics simulations (excluding trial simulations) were carried out on four OT-dG ionization states in three sequence contexts within oligomers containing the NarI recognition sequence, a known hotspot for deletion mutations induced by related adducts formed from known carcinogens. Our results indicate that the structural properties and relative stability of the competing "major groove" and "stacked" conformations of OTA adducted two-base deletion duplexes depend on both the OTA ionization state and the sequence context, mainly due to conformation-dependent deviations in discrete local (hydrogen-bonding and stacking) interactions at the lesion site, as well as DNA bending. When the structural characteristics of the OT-dG adducted two-base deletion duplexes are compared to those associated with previously studied C8-dG adducts, a greater understanding of the effects of the nucleobase-carcinogen linkage, and size of the carcinogenic moiety on the conformational preferences of damaged DNA is obtained. Most importantly, our work predicts key structural features for OT-dG-adducted deletion DNA duplexes, which in turn allow us to develop hypotheses regarding OT-dG replication outcomes. Thus, our computational results are valuable for the design and interpretation of future biochemical studies on the potentially carcinogenic OT-dG lesion.
Collapse
Affiliation(s)
- Preetleen Kathuria
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University , Chandigarh 160014, India
| | - Purshotam Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University , Chandigarh 160014, India
| | - Richard A Manderville
- Departments of Chemistry and Toxicology, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge , Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
17
|
Ostry V, Malir F, Toman J, Grosse Y. Mycotoxins as human carcinogens-the IARC Monographs classification. Mycotoxin Res 2017; 33:65-73. [PMID: 27888487 DOI: 10.1007/s12550-016-0265-7] [Citation(s) in RCA: 485] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
Abstract
Humans are constantly exposed to mycotoxins (e.g. aflatoxins, ochratoxins), mainly via food intake of plant and animal origin. The health risks stemming from mycotoxins may result from their toxicity, in particular their carcinogenicity. In order to prevent these risks, the International Agency for Research on Cancer (IARC) in Lyon (France)-through its IARC Monographs programme-has performed the carcinogenic hazard assessment of some mycotoxins in humans, on the basis of epidemiological data, studies of cancer in experimental animals and mechanistic studies. The present article summarizes the carcinogenic hazard assessments of those mycotoxins, especially aflatoxins (aflatoxin B1, B2, G1, G2 and M1), fumonisins (fumonisin B1 and B2) and ochratoxin A (OTA). New information regarding the genotoxicity of OTA (formation of OTA-DNA adducts), the role of OTA in oxidative stress and the identification of epigenetic factors involved in OTA carcinogenesis-should they indeed provide strong evidence that OTA carcinogenicity is mediated by a mechanism that also operates in humans-could lead to the reclassification of OTA.
Collapse
Affiliation(s)
- Vladimir Ostry
- Center for Health, Nutrition and Food, National Institute of Public Health in Prague, Palackeho 3a, 61242, Brno, Czech Republic.
| | - Frantisek Malir
- Faculty of Science, Department of Biology, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Jakub Toman
- Faculty of Science, Department of Biology, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Yann Grosse
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon, France
| |
Collapse
|
18
|
Balkan Endemic Nephropathy – Still continuing enigma, risk assessment and underestimated hazard of joint mycotoxin exposure of animals or humans. Chem Biol Interact 2017; 261:63-79. [DOI: 10.1016/j.cbi.2016.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/10/2016] [Accepted: 11/17/2016] [Indexed: 11/23/2022]
|
19
|
Limited Link between Oxidative Stress and Ochratoxin A-Induced Renal Injury in an Acute Toxicity Rat Model. Toxins (Basel) 2016; 8:toxins8120373. [PMID: 27983637 PMCID: PMC5198567 DOI: 10.3390/toxins8120373] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023] Open
Abstract
Ochratoxin A (OTA) displays nephrotoxicity and hepatotoxicity. However, in the acute toxicity rat model, there is no evidence on the relationship between OTA and nephrotoxicity and hepatotoxicity. Based on this, the integrated analysis of physiological status, damage biomarkers, oxidative stress, and DNA damage were performed. After OTA treatment, the body weight decreased and AST, ALP, TP, and BUN levels in serum increased. Hydropic degeneration, swelling, vacuolization, and partial drop occurred in proximal tubule epithelial cells. PCNA and Kim-1 were dose-dependently increased in the kidney, but Cox-2 expression and proliferation were not found in the liver. In OTA-treated kidneys, the mRNA expressions of Kim-1, Cox-2, Lcn2, and Clu were dose-dependently increased. The mRNA expressions of Vim and Cox-2 were decreased in OTA-treated livers. Some oxidative stress indicators were altered in the kidneys (ROS and SOD) and livers (SOD and GSH). DNA damage and oxidative DNA damage were not found. In conclusion, there is a limited link between oxidative stress and OTA-induced renal injury in an acute toxicity rat model.
Collapse
|
20
|
Meucci V, Luci G, Vanni M, Guidi G, Perondi F, Intorre L. Serum levels of ochratoxin A in dogs with chronic kidney disease (CKD): a retrospective study. J Vet Med Sci 2016; 79:440-447. [PMID: 27941297 PMCID: PMC5326954 DOI: 10.1292/jvms.16-0226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by secondary metabolism of several fungi
belonging to the genera Aspergillus and Penicillium. OTA
is potentially nephrotoxic, neurotoxic, immunotoxic and carcinogenic in several animal
species and in humans. This toxin has been detected in several human food and animal feed.
The aim of this study was to determine OTA in blood samples of healthy and affected by
chronic kidney disease (CKD) dogs. CKD group showed higher incidence of OTA-positivity
than healthy dogs (96 vs. 56%) and a significantly higher median value of OTA plasma
concentration (0.008 vs. 0.144 ng/ml).
No significant correlation was observed between OTA levels and creatinine values in CKD
dogs. This is the first study regarding OTA detection in plasma samples of healthy and CKD
dogs; the presence of this toxin is higher in nephropatic patients but is not yet clear,
if it is correlated with progression of the disease.
Collapse
Affiliation(s)
- Valentina Meucci
- Department of Veterinary Science, University of Pisa, Via Livornese lato monte, 56122, San Piero a Grado, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Manderville RA, Wetmore SD. Understanding the Mutagenicity of O-Linked and C-Linked Guanine DNA Adducts: A Combined Experimental and Computational Approach. Chem Res Toxicol 2016; 30:177-188. [DOI: 10.1021/acs.chemrestox.6b00323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Richard A. Manderville
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Stacey D. Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
22
|
Different Toxicity Mechanisms for Citrinin and Ochratoxin A Revealed by Transcriptomic Analysis in Yeast. Toxins (Basel) 2016; 8:toxins8100273. [PMID: 27669300 PMCID: PMC5086634 DOI: 10.3390/toxins8100273] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/30/2022] Open
Abstract
Citrinin (CIT) and ochratoxin A (OTA) are important mycotoxins, which frequently co-contaminate foodstuff. In order to assess the toxicologic threat posed by the two mycotoxins separately or in combination, their biological effects were studied here using genomic transcription profiling and specific live cell gene expression reporters in yeast cells. Both CIT and OTA cause highly transient transcriptional activation of different stress genes, which is greatly enhanced by the disruption of the multidrug exporter Pdr5. Therefore, we performed genome-wide transcription profiling experiments with the pdr5 mutant in response to acute CIT, OTA, or combined CIT/OTA exposure. We found that CIT and OTA activate divergent and largely nonoverlapping gene sets in yeast. CIT mainly caused the rapid induction of antioxidant and drug extrusion-related gene functions, while OTA mainly deregulated developmental genes related with yeast sporulation and sexual reproduction, having only a minor effect on the antioxidant response. The simultaneous exposure to CIT and OTA gave rise to a genomic response, which combined the specific features of the separated mycotoxin treatments. The application of stress-specific mutants and reporter gene fusions further confirmed that both mycotoxins have divergent biological effects in cells. Our results indicate that CIT exposure causes a strong oxidative stress, which triggers a massive transcriptional antioxidant and drug extrusion response, while OTA mainly deregulates developmental genes and only marginally induces the antioxidant defense.
Collapse
|
23
|
Wang Y, Wong TY, Chan W. Quantitation of the DNA Adduct of Semicarbazide in Organs of Semicarbazide-Treated Rats by Isotope-Dilution Liquid Chromatography–Tandem Mass Spectrometry: A Comparative Study with the RNA Adduct. Chem Res Toxicol 2016; 29:1560-4. [DOI: 10.1021/acs.chemrestox.6b00232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yinan Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Room 4520, Academic Building, Clear Water Bay, Kowloon, Hong Kong
| | - Tin-Yan Wong
- Department of Chemistry, The Hong Kong University of Science and Technology, Room 4520, Academic Building, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Room 4520, Academic Building, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
24
|
Malir F, Ostry V, Pfohl-Leszkowicz A, Malir J, Toman J. Ochratoxin A: 50 Years of Research. Toxins (Basel) 2016; 8:E191. [PMID: 27384585 PMCID: PMC4963825 DOI: 10.3390/toxins8070191] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/21/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022] Open
Abstract
Since ochratoxin A (OTA) was discovered, it has been ubiquitous as a natural contaminant of moldy food and feed. The multiple toxic effects of OTA are a real threat for human beings and animal health. For example, OTA can cause porcine nephropathy but can also damage poultries. Humans exposed to OTA can develop (notably by inhalation in the development of acute renal failure within 24 h) a range of chronic disorders such as upper urothelial carcinoma. OTA plays the main role in the pathogenesis of some renal diseases including Balkan endemic nephropathy, kidney tumors occurring in certain endemic regions of the Balkan Peninsula, and chronic interstitial nephropathy occurring in Northern African countries and likely in other parts of the world. OTA leads to DNA adduct formation, which is known for its genotoxicity and carcinogenicity. The present article discusses how renal carcinogenicity and nephrotoxicity cause both oxidative stress and direct genotoxicity. Careful analyses of the data show that OTA carcinogenic effects are due to combined direct and indirect mechanisms (e.g., genotoxicity, oxidative stress, epigenetic factors). Altogether this provides strong evidence that OTA carcinogenicity can also occur in humans.
Collapse
Affiliation(s)
- Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic.
| | - Vladimir Ostry
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Brno 61242, Czech Republic.
| | - Annie Pfohl-Leszkowicz
- Department Bioprocess & Microbial Systems, Laboratory Chemical Engineering, INP/ENSA Toulouse, University of Toulouse, UMR 5503 CNRS/INPT/UPS, Auzeville-Tolosane 31320, France.
| | - Jan Malir
- Institute of State and Law, Czech Academy of Sciences, Narodni 18, Prague 11600, Czech Republic.
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic.
| |
Collapse
|
25
|
Cytotoxicity, apoptosis, DNA damage and methylation in mammary and kidney epithelial cell lines exposed to ochratoxin A. Cell Biol Toxicol 2016; 32:249-58. [PMID: 27154019 DOI: 10.1007/s10565-016-9332-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/28/2016] [Indexed: 01/03/2023]
Abstract
This study aimed to investigate the in vitro damage induced by ochratoxin A (OTA) in BME-UV1 and MDCK epithelial cells. Both cells lines were treated with OTA (0 up to 10 μg/mL), and cell viability (MTT assay), membrane stability (lactate dehydrogenase (LDH) release assay) and apoptotic cell rate (Tunel assay) were investigated. Further, the effect of the incubation with OTA has been evaluated at DNA level by the determination of DNA integrity, by the quantification of DNA adduct formation (8-hydroxy-2'-deoxyguanosine (8-OHdG)) and by the assessment of the global DNA methylation status (5-methyl-cytosine (5-mC)). The obtained results showed that after 24 h of OTA treatment, BME-UV1 cell viability was reduced in a dose-dependent way. OTA significantly (P < 0.05) increased LDH release in BME-UV1 cells at all concentrations tested. OTA (1.25 μg/mL) induced 35 % LDH release in MDCK cells (P < 0.05). A significant (P < 0.05) change in percentages of apoptotic BME-UV1 (10 ± 0.86) and MDCK (25 ± 0.88) cells was calculated when the cells were co-incubated with OTA. The level of 8-OHdG adduct formation was significantly (P < 0.05) increased in BME-UV1 cells treated with 1.25 μg/mL of OTA. The results of the present study suggest that a different mechanism of action may occur in these cell lines. Graphical abstract Study results overview.
Collapse
|
26
|
Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins (Basel) 2016; 8:111. [PMID: 27092524 PMCID: PMC4848637 DOI: 10.3390/toxins8040111] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 01/28/2023] Open
Abstract
Ochratoxin A (OTA) is a widely-spread mycotoxin all over the world causing major health risks. The focus of the present review is on the molecular and cellular interactions of OTA. In order to get better insight into the mechanism of its toxicity and on the several attempts made for prevention or attenuation of its toxic action, a detailed description is given on chemistry and toxicokinetics of this mycotoxin. The mode of action of OTA is not clearly understood yet, and seems to be very complex. Inhibition of protein synthesis and energy production, induction of oxidative stress, DNA adduct formation, as well as apoptosis/necrosis and cell cycle arrest are possibly involved in its toxic action. Since OTA binds very strongly to human and animal albumin, a major emphasis is done regarding OTA-albumin interaction. Displacement of OTA from albumin by drugs and by natural flavonoids are discussed in detail, hypothesizing their potentially beneficial effect in order to prevent or attenuate the OTA-induced toxic consequences.
Collapse
|
27
|
Toxicology of DNA Adducts Formed Upon Human Exposure to Carcinogens. ADVANCES IN MOLECULAR TOXICOLOGY 2016. [DOI: 10.1016/b978-0-12-804700-2.00007-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Pfohl-Leszkowicz A, Hadjeba-Medjdoub K, Ballet N, Schrickx J, Fink-Gremmels J. Assessment and characterisation of yeast-based products intended to mitigate ochratoxin exposure using in vitro and in vivo models. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 32:604-16. [PMID: 25296248 DOI: 10.1080/19440049.2014.970590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aim of this paper was to evaluate the capacity of several yeast-based products, derived from baker's and brewer's yeasts, to sequester the mycotoxin ochratoxin A (OTA) and to decrease its rate of absorption and DNA adduct formation in vivo. The experimental protocol included in vitro binding studies using isotherm models, in vivo chicken experiments, in which the serum and tissue concentrations of OTA were analysed in the absence and presence of the test compounds, and the profile of OTA-derived metabolites and their associated DNA adducts were determined. Additionally in vitro cell culture studies (HK2 cells) were applied to assess further the effects for yeast cell product enriched with glutathione (GSH) or selenium. Results of the in vitro binding assay in a buffer system indicated the ability of the yeast-based products, as sequester of OTA, albeit at a different level. In the in vitro experiments in chickens, decreased serum and tissue concentrations of treated animals confirmed that yeast-based products are able to prevent the absorption of OTA. A comparison of the binding affinity in a standard in vitro binding assay with the results obtained in an in vivo chicken experiment, however, showed a poor correlation and resulted in a different ranking of the products. More importantly, we could show that yeast-based products actively modulate the biotransformation of OTA in vivo as well as in vitro in a cell culture model. This effect seems to be attributable to residual enzymatic activities in the yeast-based products. An enrichment of yeast cell wall products with GSH or selenium further modulated the profile of the generated OTA metabolites and the associated pattern of OTA-induced DNA adducts by increasing the conversion of OTA into less toxic metabolites such as OTA, OTB and 4-OH-OTA. A reduced absorption and DNA adduct formation was particularly observed with GSH-enriched yeast, whereas selenium-enriched yeasts could counteract the OTA-induced decrease in cell viability, but at the same time increased the OTA-DNA adducts formation. These findings indicate the need for an in-depth characterisation of yeast-based products used as mycotoxin-mitigating feed additives, in in vivo models with target animal species taking into account not only their ability to sequester toxins in the gastrointestinal tract but also their potential effects on the biotransformation of mycotoxins.
Collapse
Affiliation(s)
- A Pfohl-Leszkowicz
- a Department Bioprocess & Microbial System , University of Toulouse, INPT, ENSAT, Laboratory Chemical Engineering, UMR-CNRS 5503 , Auzeville-Tolosane , France
| | | | | | | | | |
Collapse
|
29
|
Sproviero M, Verwey AMR, Rankin KM, Witham AA, Soldatov DV, Manderville RA, Fekry MI, Sturla SJ, Sharma P, Wetmore SD. Structural and biochemical impact of C8-aryl-guanine adducts within the NarI recognition DNA sequence: influence of aryl ring size on targeted and semi-targeted mutagenicity. Nucleic Acids Res 2014; 42:13405-21. [PMID: 25361967 PMCID: PMC4245952 DOI: 10.1093/nar/gku1093] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chemical mutagens with an aromatic ring system may be enzymatically transformed to afford aryl radical species that preferentially react at the C8-site of 2′-deoxyguanosine (dG). The resulting carbon-linked C8-aryl-dG adduct possesses altered biophysical and genetic coding properties compared to the precursor nucleoside. Described herein are structural and in vitro mutagenicity studies of a series of fluorescent C8-aryl-dG analogues that differ in aryl ring size and are representative of authentic DNA adducts. These structural mimics have been inserted into a hotspot sequence for frameshift mutations, namely, the reiterated G3-position of the NarI sequence within 12mer (NarI(12)) and 22mer (NarI(22)) oligonucleotides. In the NarI(12) duplexes, the C8-aryl-dG adducts display a preference for adopting an anti-conformation opposite C, despite the strong syn preference of the free nucleoside. Using the NarI(22) sequence as a template for DNA synthesis in vitro, mutagenicity of the C8-aryl-dG adducts was assayed with representative high-fidelity replicative versus lesion bypass Y-family DNA polymerases, namely, Escherichia coli pol I Klenow fragment exo− (Kf−) and Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Our experiments provide a basis for a model involving a two-base slippage and subsequent realignment process to relate the miscoding properties of C-linked C8-aryl-dG adducts with their chemical structures.
Collapse
Affiliation(s)
- Michael Sproviero
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Anne M R Verwey
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Katherine M Rankin
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Aaron A Witham
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Dmitriy V Soldatov
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Richard A Manderville
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Mostafa I Fekry
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, 8032 Zürich, Switzerland Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - Shana J Sturla
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, 8032 Zürich, Switzerland
| | - Purshotam Sharma
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Stacey D Wetmore
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1 Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, 8032 Zürich, Switzerland Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| |
Collapse
|
30
|
Sharma P, Manderville RA, Wetmore SD. Structural and energetic characterization of the major DNA adduct formed from the food mutagen ochratoxin A in the NarI hotspot sequence: influence of adduct ionization on the conformational preferences and implications for the NER propensity. Nucleic Acids Res 2014; 42:11831-45. [PMID: 25217592 PMCID: PMC4191402 DOI: 10.1093/nar/gku821] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The nephrotoxic food mutagen ochratoxin A (OTA) produces DNA adducts in rat kidneys, the major lesion being the C8-linked-2′-deoxyguanosine adduct (OTB-dG). Although research on other adducts stresses the importance of understanding the structure of the associated adducted DNA, site-specific incorporation of OTB-dG into DNA has yet to be attempted. The present work uses a robust computational approach to determine the conformational preferences of OTB-dG in three ionization states at three guanine positions in the NarI recognition sequence opposite cytosine. Representative adducted DNA helices were derived from over 2160 ns of simulation and ranked via free energies. For the first time, a close energetic separation between three distinct conformations is highlighted, which indicates OTA-adducted DNA likely adopts a mixture of conformations regardless of the sequence context. Nevertheless, the preferred conformation depends on the flanking bases and ionization state due to deviations in discrete local interactions at the lesion site. The structural characteristics of the lesion thus discerned have profound implications regarding its repair propensity and mutagenic outcomes, and support recent experiments suggesting the induction of double-strand breaks and deletion mutations upon OTA exposure. This combined structural and energetic characterization of the OTB-dG lesion in DNA will encourage future biochemical experiments on this potentially genotoxic lesion.
Collapse
Affiliation(s)
- Purshotam Sharma
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Richard A Manderville
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| |
Collapse
|
31
|
Ochratoxin A activates opposing c-MET/PI3K/Akt and MAPK/ERK 1-2 pathways in human proximal tubule HK-2 cells. Arch Toxicol 2014; 89:1313-27. [PMID: 25002221 DOI: 10.1007/s00204-014-1311-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 07/01/2014] [Indexed: 12/17/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced as a secondary metabolite by filamentous fungi, such as Aspergillus and Penicillium. Because OTA is a common contaminant of food and feeds, humans and animals are frequently exposed to OTA in daily life. It has been classified as a carcinogen in rodents and a possible carcinogen in humans. OTA has been shown to deregulate a variety of different signal transduction pathways in a cell type- and dosage-depending manner resulting in contrasting physiological effects, such as survival or cell death. While the ERK1-2 and JNK/SAPK MAPK pathways are major targets, knowledge about their role in OTA-mediated cell survival and death is fragmented. Similarly, the contribution of the PI3K/Akt pathway to the carcinogenic effect of OTA in proximal tubule cells has not been elucidated in detail. In this study, we demonstrated that OTA induced sustained activation of the PI3K/Akt and MEK/ERK1-2 signaling pathways in a dose- and time-dependent manner in HK-2 cells. Chemical inhibition of ERK1-2 activation or overexpression of dominant-negative and kinase-dead MEK1 leads to increased cell viability and decreased apoptosis in OTA-treated cells. Blockage of PI3K/Akt with Wortmannin aggravated the negative effect of OTA on cell viability and increased the levels of apoptosis. Moreover, we identified the c-MET proto-oncogene as an upstream receptor tyrosine kinase responsible for OTA-induced activation of PI3K/Akt signaling in HK-2 cells. Our data suggest that OTA may potentiate carcinogenesis by sustained activation of c-MET/PI3K/Akt signaling through suppression of apoptosis induced by MEK/ERK1-2 activation in damaged renal proximal tubule epithelial cells.
Collapse
|
32
|
|
33
|
Goyary D, Chattopadhyay P, Giri S, Aher V, Upadhyay A, Veer V. Ochratoxin A induces cytotoxicity, DNA damage and apoptosis in rat hepatocyte primary cell culture at nanomolar concentration. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ochratoxin A (OTA), a mycotoxin produced by several species of Aspergillus and Penicillum, is widely found as a contaminant of food. OTA exhibits a wide range of toxic activities, including nephro- and hepatotoxicity. Although the mechanisms of its genotoxicity and carcinogenicity have been studied before, many controversial results have been published. In addition, the studies were mostly conducted with kidney cells. Therefore, the present study used a primary culture of Wistar rat hepatocytes incubated with increasing concentrations of OTA (2.0-6.0 nanomolar). OTA treatment showed dose-dependent cytotoxicity and DNA damage. Further, flow cytometric analysis of hepatocytes showed dose-dependent apoptosis, suggesting that OTA-induced hepatotoxicity is, may be partly, mediated by apoptosis. Vascular endothelial growth factor gene, a potent pro-angiogenic in hepatocellular carcinoma and responsible for hepatocyte regeneration, did not show any change with OTA treatment, as analysed by reverse transcription polymerase chain reaction. Thus, the present data indicated OTA-induced rat hepatotoxicity in vitro at nanomolar concentration, which inferred a major possible target other than kidney cells.
Collapse
Affiliation(s)
- D. Goyary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Post Bag No.2, Tezpur 784 001, Assam, India
| | - P. Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory, Post Bag No.2, Tezpur 784 001, Assam, India
| | - S. Giri
- Department of Pharmaceutics, Gupta College of Technological Science, Ashram more, G.T. Road, Asansol 713 301, West Bengal, India
| | - V. Aher
- Division of Pharmaceutical Technology, Defence Research Laboratory, Post Bag No.2, Tezpur 784 001, Assam, India
| | - A. Upadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory, Post Bag No.2, Tezpur 784 001, Assam, India
| | - V. Veer
- Division of Pharmaceutical Technology, Defence Research Laboratory, Post Bag No.2, Tezpur 784 001, Assam, India
| |
Collapse
|
34
|
Kuroda K, Hibi D, Ishii Y, Takasu S, Kijima A, Matsushita K, Masumura KI, Watanabe M, Sugita-Konishi Y, Sakai H, Yanai T, Nohmi T, Ogawa K, Umemura T. Ochratoxin A induces DNA double-strand breaks and large deletion mutations in the carcinogenic target site of gpt delta rats. Mutagenesis 2013; 29:27-36. [DOI: 10.1093/mutage/get054] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Sorrenti V, Di Giacomo C, Acquaviva R, Barbagallo I, Bognanno M, Galvano F. Toxicity of ochratoxin a and its modulation by antioxidants: a review. Toxins (Basel) 2013; 5:1742-66. [PMID: 24152986 PMCID: PMC3813909 DOI: 10.3390/toxins5101742] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/21/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin involved in the development of different types of cancers in rats, mice and humans. A growing number of in vitro and in vivo studies has been collected and has described evidence compatible with a role for oxidative stress in OTA toxicity and carcinogenicity. Because the contribution of the oxidative stress response in the development of cancers is well established, a role in OTA carcinogenicity is plausible. Several studies have been performed to try to counteract the adverse effects of oxygen radicals generated under OTA-exposure. A number of molecules with various antioxidant properties were tested, using in vivo or in vitro models. Protection against OTA-induced DNA damage, lipid peroxidation, as well as cytotoxicity were observed, further confirming the link between OTA toxicity and oxidative damage. These studies demonstrated that antioxidants are able to counteract the deleterious effects of chronic consumption or exposure to OTA and confirmed the potential effectiveness of dietary strategies to counteract OTA toxicity.
Collapse
Affiliation(s)
- Valeria Sorrenti
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania95125, Italy; E-Mails: (C.D.G.); (R.A.); (I.B.); (F.G.)
| | - Claudia Di Giacomo
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania95125, Italy; E-Mails: (C.D.G.); (R.A.); (I.B.); (F.G.)
| | - Rosaria Acquaviva
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania95125, Italy; E-Mails: (C.D.G.); (R.A.); (I.B.); (F.G.)
| | - Ignazio Barbagallo
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania95125, Italy; E-Mails: (C.D.G.); (R.A.); (I.B.); (F.G.)
| | - Matteo Bognanno
- Agriculture Department, Mediterranean University of Reggio Calabria, Reggio Calabria89122, Italy; E-Mail:
| | - Fabio Galvano
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania95125, Italy; E-Mails: (C.D.G.); (R.A.); (I.B.); (F.G.)
| |
Collapse
|
36
|
Stoev SD, Denev SA. Porcine/chicken or human nephropathy as the result of joint mycotoxins interaction. Toxins (Basel) 2013; 5:1503-30. [PMID: 24008340 PMCID: PMC3798870 DOI: 10.3390/toxins5091503] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/24/2013] [Accepted: 08/26/2013] [Indexed: 11/17/2022] Open
Abstract
A survey was made of the literature concerning the occurrence and incidence of mycotoxic nephropathy in pigs and chicks in different countries. Various etiological factors contributing to the development of the disease were considered. The main nephrotoxic fungi as well as the specific conditions for their growth and toxins production were briefly described. A survey was made about the most frequent nephrotoxic fungal contaminants in various feedstuffs from plant origin. In addition, their natural quantities and importance for development of mycotoxic porcine/chick nephropathy (MPN/MCN) are also explored. In addition, a survey was made of the feedstuffs representing the most favorable environment for nephrotoxic fungal growth as well as the most favorable storehouse conditions for this fungal growth were shortly described. The significance of some underestimated fungal species, which can provoke kidney damage, was studied. The importance of joint mycotoxin interaction and newly identified fungal metabolites in the complex etiology of mycotoxic nephropathy ranged in some countries is deeply investigated. The toxicity of the low contamination levels of some combinations of mycotoxins often administered by pigs and chicks in the practice was carefully studied.
Collapse
Affiliation(s)
- Stoycho D. Stoev
- Department of General and Clinical Pathology of Faculty of Veterinary Medicine, Trakia University, Students campus, 6000 Stara Zagora, Bulgaria
| | - Stefan A. Denev
- Department of Biochemistry and Microbiology of Faculty of Agriculture, Trakia University, Students campus, 6000 Stara Zagora, Bulgaria; E-Mail:
| |
Collapse
|
37
|
Kuska MS, Witham AA, Sproviero M, Manderville RA, Majdi Yazdi M, Sharma P, Wetmore SD. Structural Influence of C8-Phenoxy-Guanine in the NarI Recognition DNA Sequence. Chem Res Toxicol 2013; 26:1397-408. [DOI: 10.1021/tx400252g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Michael S. Kuska
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Aaron A. Witham
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Michael Sproviero
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Richard A. Manderville
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Mohadeseh Majdi Yazdi
- Department
of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Purshotam Sharma
- Department
of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D. Wetmore
- Department
of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
38
|
Evtugyn G, Porfireva A, Sitdikov R, Evtugyn V, Stoikov I, Antipin I, Hianik T. Electrochemical Aptasensor for the Determination of Ochratoxin A at the Au Electrode Modified with Ag Nanoparticles Decorated with Macrocyclic Ligand. ELECTROANAL 2013. [DOI: 10.1002/elan.201300164] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Sharma P, Manderville RA, Wetmore SD. Modeling the conformational preference of the carbon-bonded covalent adduct formed upon exposure of 2'-deoxyguanosine to ochratoxin A. Chem Res Toxicol 2013; 26:803-16. [PMID: 23560542 DOI: 10.1021/tx4000864] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The conformational flexibility of the C8-linked guanine adduct formed from attachment of ochratoxin A (OTA) was analyzed using a systematic computational approach and models ranging from the nucleobase to the adducted DNA helix. A focus was placed on the influence of the C8-modification of 2'-deoxyguanosine (dG) on the preferred relative arrangement of the nucleobase and the C8-substituent and, more importantly, the anti/syn conformational preference with respect to the glycosidic bond. Although OTA is twisted with respect to the base in the nucleobase model, addition of the deoxyribose sugar induces a further twist and restricts rotation about the C-C linkage due to close contacts between OTA and the sugar. The nucleoside model preferentially adpots a syn orientation (by 10-20 kJ mol(-1) depending on the OTA conformation) due to the presence of an O5'-H···N3 interaction. However, when this hydrogen bond is eliminated, which better mimics the DNA environment, a small (<5 kJ mol(-1)) anti/syn energy difference is predicted. Inclusion of the 5'-monophosphate group leads to an up to 20 kJ mol(-1) preference for the syn (nucleotide) conformation due to stabilizing base-phosphate interactions involving the amino group of guanine. Nevertheless, MD simulations and free energy analysis predict that both syn- and anti-conformations of OTB-dG are equally stable in helices when paired opposite cytosine. These results indicate that the adduct will likely adopt a syn conformation in an isolated nucleoside and nucleotide, while a mixture of syn and anti conformations will be observed in DNA duplexes. Since the syn conformation could stabilize base mismatches upon DNA replication or Z-DNA structures with varied biological outcomes, future computational and experimental work should elucidate the consequences of the conformational preference of this potentially harmful DNA lesion.
Collapse
Affiliation(s)
- Purshotam Sharma
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | | | | |
Collapse
|
40
|
|
41
|
Chatel A, Faucet-Marquis V, Perret M, Gourlay-France C, Uher E, Pfohl-Leszkowicz A, Vincent-Hubert F. Genotoxicity assessment and detoxification induction in Dreissena polymorpha exposed to benzo[a]pyrene. Mutagenesis 2012; 27:703-11. [DOI: 10.1093/mutage/ges036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
42
|
Ross JA, Leavitt SA, Schmid JE, Nelson GB. Quantitative changes in endogenous DNA adducts correlate with conazole in vivo mutagenicity and tumorigenicity. Mutagenesis 2012; 27:541-9. [PMID: 22492202 DOI: 10.1093/mutage/ges017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mouse liver tumorigenic conazole fungicides triadimefon and propiconazole have previously been shown to be in vivo mouse liver mutagens in the Big Blue™ transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazole myclobutanil was not mutagenic. DNA sequencing of the mutants recovered from each treatment group as well as from animals receiving control diet revealed that propiconazole- and triadimefon-induced mutations do not represent general clonal expansion of background mutations, and support the hypothesis that they arise from the accumulation of endogenous reactive metabolic intermediates within the liver in vivo. We therefore measured the spectra of endogenous DNA adducts in the livers of mice from these studies to determine if there were quantitative or qualitative differences between mice receiving tumorigenic or nontumorigenic conazoles compared to concurrent control animals. We resolved and quantitated 16 individual adduct spots by (32)P postlabelling and thin layer chromatography using three solvent systems. Qualitatively, we observed the same DNA adducts in control mice as in mice receiving conazoles. However, the 13 adducts with the highest chromatographic mobility were, as a group, present at significantly higher amounts in the livers of mice treated with propiconazole and triadimefon than in their concurrent controls, whereas this same group of DNA adducts in the myclobutanil-treated mice was not different from controls. This same group of endogenous adducts were significantly correlated with mutant frequency across all treatment groups (P = 0.002), as were total endogenous DNA adduct levels (P = 0.005). We hypothesise that this treatment-related increase in endogenous DNA adducts, together with concomitant increases in cell proliferation previously reported to be induced by conazoles, explain the observed increased in vivo mutation frequencies previously reported to be induced by treatment with propiconazole and triadimefon.
Collapse
Affiliation(s)
- Jeffrey A Ross
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | |
Collapse
|
43
|
Akman SA, Adams M, Case D, Park G, Manderville RA. Mutagenicity of ochratoxin A and its hydroquinone metabolite in the SupF gene of the mutation reporter plasmid Ps189. Toxins (Basel) 2012; 4:267-80. [PMID: 22606376 PMCID: PMC3347003 DOI: 10.3390/toxins4040267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/29/2012] [Accepted: 04/06/2012] [Indexed: 02/02/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin that enhances renal tumor formation in the outer medulla of male rat kidney. Direct DNA damage and subsequent mutagenicity may contribute to these processes. In this study we have determined whether OTA in the absence or presence of activated rat liver microsomes (RLM) or redox-active transition metals (Fe(III) or Cu(II)) causes promutagenic DNA damage in the supF gene of the mutation reporter plasmid pS189 replicating in human Ad293 cells. In addition, we have assessed the mutagenicity of the hydroquinone metabolite (OTHQ) of OTA in the absence or presence of cysteine without added cofactors. Our results show that oxidation of OTA, either by RLM or by transition metal ions, activates OTA to a directly genotoxic mutagen(s). The Fe(III)/OTA system was the most potent mutagen in our experimental system, causing a 32-fold increase in mutant fraction (MF) above the spontaneous control MF. The Cu(II)/OTA system caused a 9-fold increase in MF, while a 6-10-fold increase in MF was observed for OTA in the presence of RLM. The OTHQ metabolite is also mutagenic, especially in the presence of cysteine, in which a 6-fold increase in MF was observed. Our data provide further insight into OTA bioactivation that may account for its in vivo mutagenicity in male rat kidney.
Collapse
Affiliation(s)
- Steven A. Akman
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, NC, USA;
| | - Marissa Adams
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, NC, USA;
| | - Doug Case
- Department of Public Health Sciences, Wake Forest University Health Sciences, Winston-Salem, North Carolina, NC, USA;
| | - Gyungse Park
- Department of Chemistry, College of Science and Technology, Kunsan National University, Miryong-Dong, Kusan, Korea;
| | | |
Collapse
|
44
|
Mally A. Ochratoxin a and mitotic disruption: mode of action analysis of renal tumor formation by ochratoxin A. Toxicol Sci 2012; 127:315-30. [PMID: 22403158 DOI: 10.1093/toxsci/kfs105] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The mycotoxin and food contaminant ochratoxin A (OTA) is a potent renal carcinogen in rodents, but its mode of action (MoA) is still poorly defined. In 2006, the European Food Safety Authority concluded that there is a "lack of evidence for the existence of OTA-DNA adducts" and thus insufficient evidence to establish DNA reactivity as a MoA for tumor formation by OTA. In reviewing the available database on OTA toxicity, a MoA for renal carcinogenicity of OTA is developed that involves a combination of genetic instability and increased proliferative drive as consequences of OTA-mediated disruption of mitosis, whereby the organ- and site-specificity of tumor formation by OTA is determined by selective renal uptake of OTA into the proximal tubule epithelium. The proposed MoA is critically assessed with respect to concordance of dose-response of the suggested key events and tumor formation, their temporal association, consistency, and biological plausibility. Uncertainties, data gaps and needs for further research are highlighted.
Collapse
Affiliation(s)
- Angela Mally
- Department of Toxicology, University of Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
45
|
Haighton LA, Lynch BS, Magnuson BA, Nestmann ER. A reassessment of risk associated with dietary intake of ochratoxin A based on a lifetime exposure model. Crit Rev Toxicol 2012; 42:147-68. [PMID: 22276591 PMCID: PMC3310481 DOI: 10.3109/10408444.2011.636342] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 12/23/2022]
Abstract
Mycotoxins, such as ochratoxin A (OTA), can occur from fungal growth on foods. OTA is considered a possible risk factor for adverse renal effects in humans based on renal tumors in male rats. For risk mitigation, Health Canada proposed maximum limits (MLs) for OTA based largely on a comparative risk assessment conducted by Health Canada (Kuiper-Goodman et al., 2010), in which analytical data of OTA in foods were used to determine the possible impact adopting MLs may have on OTA risks. The EU MLs were used for comparison and resultant risk was determined based on age-sex strata groups. These data were reevaluated here to determine comparative risk on a lifetime basis instead of age strata. Also, as there is scientific disagreement over the mechanism of OTA-induced renal tumors, mechanistic data were revisited. On a lifetime basis, risks associated with dietary exposure were found to be negligible, even without MLs, with dietary exposures to OTA three to four orders of magnitude below the pivotal animal LOAEL and the TD(05). Our review of the mechanistic data supported a threshold-based mechanism as the most plausible. In particular, OTA was negative in genotoxicity assays with the highest specificity and levels of DNA adducts were very low and not typical of genotoxic carcinogens. In conclusion, OTA exposures from Canadian foods do not present a significant cancer risk.
Collapse
Affiliation(s)
- Lois A Haighton
- Cantox Health Sciences International, An Intertek Company, Mississauga, Ontario, Canada.
| | | | | | | |
Collapse
|
46
|
Hadjeba-Medjdoub K, Tozlovanu M, Pfohl-Leszkowicz A, Frenette C, Paugh RJ, Manderville RA. Structure-activity relationships imply different mechanisms of action for ochratoxin A-mediated cytotoxicity and genotoxicity. Chem Res Toxicol 2011; 25:181-90. [PMID: 22126095 DOI: 10.1021/tx200406c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ochratoxin A (OTA) is a fungal toxin that is classified as a possible human carcinogen based on sufficient evidence for carcinogenicity in animal studies. The toxin is known to promote oxidative DNA damage through production of reactive oxygen species (ROS). The toxin also generates covalent DNA adducts, and it has been difficult to separate the biological effects caused by DNA adduction from that of ROS generation. In the current study, we have derived structure-activity relationships (SAR) for the role of the C5 substituent of OTA (C5-X = Cl) by first comparing the ability of OTA, OTBr (C5-X = Br), OTB (C5-X = H), and OTHQ (C5-X = OH) to photochemically react with GSH and 2'-deoxyguanosine (dG). OTA, OTBr, and OTHQ react covalently with GSH and dG following photoirradiation, while the nonchlorinated OTB does not react photochemically with GSH and dG. These findings correlate with their ability to generate covalent DNA adducts (direct genotoxicity) in human bronchial epithelial cells (WI26) and human kidney (HK2) cells, as evidenced by the (32)P-postlabeling technique. OTB lacks direct genotoxicity, while OTA, OTBr, and OTHQ act as direct genotoxins. In contrast, their cytotoxicity in opossum kidney epithelial cells (OK) and WI26 cells did not show a correlation with photoreactivity. In OK and WI26 cells, OTA, OTBr, and OTB are cytotoxic, while the hydroquinone OTHQ failed to exhibit cytotoxicity. Overall, our data show that the C5-Cl atom of OTA is critical for direct genotoxicity but plays a lesser role in OTA-mediated cytotoxicity. These SARs suggest different mechanisms of action (MOA) for OTA genotoxicity and cytotoxicity and are consistent with recent findings showing OTA mutagenicity to stem from direct genotoxicity, while cytotoxicity is derived from oxidative DNA damage.
Collapse
Affiliation(s)
- Kheira Hadjeba-Medjdoub
- Laboratory Chemical Engineering, Department Bioprocess & Microbial System, UMR CNRS/INPT/UPS 5503 , ENSA Toulouse, France
| | | | | | | | | | | |
Collapse
|
47
|
Pfohl-Leszkowicz A, Manderville RA. An update on direct genotoxicity as a molecular mechanism of ochratoxin a carcinogenicity. Chem Res Toxicol 2011; 25:252-62. [PMID: 22054007 DOI: 10.1021/tx200430f] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ochratoxin A (OTA) is a naturally occurring chlorophenolic fungal toxin that contaminates a wide range of food products and poses a cancer threat to humans. The mechanism of action (MOA) for OTA renal carcinogenicity is a controversial issue. In 2005, direct genotoxicity (covalent DNA adduct formation) was proposed as a MOA for OTA-mediated carcinogenicity [ Manderville , R. A. ( 2005 ) Chem. Res. Toxicol. 18 , 1091 - 1097 ]. At that time, inconsistent results had been published on OTA genotoxicity/mutagenicity, and conclusive evidence for OTA-mediated DNA adduction had been lacking. In this update, published data from the past 6-7 years are presented that provide new hypotheses for the MOA of OTA-mediated carcinogenicity. While direct genotoxicity remains a controversial issue for OTA, new findings from the Umemura and Nohmi laboratories provide definitive results for the mutagenicity of OTA in the target tissue (outer medulla) of male rat kidney that rules out oxidative DNA damage. These findings, coupled with our own efforts that provide new structural evidence for DNA adduction by OTA, has strengthened the argument for involvement of direct genotoxicity in OTA-mediated renal carcinogenesis. This MOA should be taken into consideration for OTA human risk assessment.
Collapse
Affiliation(s)
- Annie Pfohl-Leszkowicz
- Laboratoire de Génie Chimique , UMR CNRS/INPT/UPS 5503, INP/ENSA Toulouse, 1 Avenue Agrobiopole, F-31326 Auzeville-Tolosane, France.
| | | |
Collapse
|
48
|
Omumi A, Millen AL, Wetmore SD, Manderville RA. Fluorescent properties and conformational preferences of C-linked phenolic-DNA adducts. Chem Res Toxicol 2011; 24:1694-709. [PMID: 21905681 DOI: 10.1021/tx200247f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phenolic toxins and mutagenic diazoquinones generate C-linked adducts at the C8 site of 2'-deoxyguanosine (dG) through the intermediacy of radical species. We have previously reported the site-specific incorporation of these adducts into oligonucleotides using a postsynthetic palladium-catalyzed cross-coupling strategy [Omumi (2011 ) J. Am. Chem. Soc. 133 , 42 - 50 ]. We report here the structural impact of these lesions within two decanucleotide sequences containing either 5'- and 3'-flanking pyrimidines or purines. In the complementary strands, the base opposite (N) the C-linked adduct was varied to determine the possibility of mismatch stabilization by the modified nucleobases. The resulting adducted duplex structures were characterized using UV thermal denaturation studies, circular dichroism, fluorescence spectroscopy, and molecular dynamics (MD) simulations. The experimental data showed the C-linked adducts to destabilize the duplex when base paired with its normal partner C but to increase duplex stability within a G:G mismatch. The stabilization within the G:G mismatch was sequence dependent, with flanking purine bases playing a key role in the stabilizing influence of the adduct. MD simulations showed no large structural changes to the B form double helix, regardless of the (anti/syn) adduct preference. Consideration of H-bonding and stacking interactions derived from the MD simulations together with the thermal melting data and changes in fluorescent emission of the adducts upon hybridization to the complementary strands implied that the C-linked phenolic adducts preferentially adopt the syn-conformation within both duplexes regardless of the opposite base N. Given that biological outcome in terms of mutagenicity appears to be strongly correlated to the conformational preference of the corresponding N-linked C8-dG adducts, the potential biological implications of phenolic C-linked adducts are discussed.
Collapse
Affiliation(s)
- Alireza Omumi
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
49
|
Comparative analysis of micronuclei and DNA damage induced by Ochratoxin A in two mammalian cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 723:58-64. [DOI: 10.1016/j.mrgentox.2011.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 02/02/2023]
|
50
|
Marin-Kuan M, Ehrlich V, Delatour T, Cavin C, Schilter B. Evidence for a role of oxidative stress in the carcinogenicity of ochratoxin a. J Toxicol 2011; 2011:645361. [PMID: 21776264 PMCID: PMC3135259 DOI: 10.1155/2011/645361] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 04/20/2011] [Indexed: 12/15/2022] Open
Abstract
The in vitro and in vivo evidence compatible with a role for oxidative stress in OTA carcinogenicity has been collected and described. Several potential oxido-reduction mechanisms have been identified in the past. More recently, the possibility of a reduction of cellular antioxidant defense has been raised as an indirect source of oxidative stress. Consequences resulting from the production of oxidative stress are observed at different levels. First, OTA exposure has been associated with increased levels of oxidative DNA, lipid, and protein damage. Second, various biological processes known to be mobilized under oxidative stress were shown to be altered by OTA. These effects have been observed in both in vitro and in vivo test systems. In vivo, active doses were often within doses documented to induce renal tumors in rats. In conclusion, the evidence for the induction of an oxidative stress response resulting from OTA exposure can be considered strong. Because the contribution of the oxidative stress response in the development of cancers is well established, a role in OTA carcinogenicity is plausible. Altogether, the data reviewed above support the application of a threshold-based approach to establish safe level of dietary human exposure to OTA.
Collapse
Affiliation(s)
- M. Marin-Kuan
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - V. Ehrlich
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - T. Delatour
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - C. Cavin
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - B. Schilter
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| |
Collapse
|