1
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. Antioxidant Metabolism Pathways in Vitamins, Polyphenols, and Selenium: Parallels and Divergences. Int J Mol Sci 2024; 25:2600. [PMID: 38473850 DOI: 10.3390/ijms25052600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Free radicals (FRs) are unstable molecules that cause reactive stress (RS), an imbalance between reactive oxygen and nitrogen species in the body and its ability to neutralize them. These species are generated by both internal and external factors and can damage cellular lipids, proteins, and DNA. Antioxidants prevent or slow down the oxidation process by interrupting the transfer of electrons between substances and reactive agents. This is particularly important at the cellular level because oxidation reactions lead to the formation of FR and contribute to various diseases. As we age, RS accumulates and leads to organ dysfunction and age-related disorders. Polyphenols; vitamins A, C, and E; and selenoproteins possess antioxidant properties and may have a role in preventing and treating certain human diseases associated with RS. In this review, we explore the current evidence on the potential benefits of dietary supplementation and investigate the intricate connection between SIRT1, a crucial regulator of aging and longevity; the transcription factor NRF2; and polyphenols, vitamins, and selenium. Finally, we discuss the positive effects of antioxidant molecules, such as reducing RS, and their potential in slowing down several diseases.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
2
|
Song Y, Qu Y, Mao C, Zhang R, Jiang D, Sun X. Post-translational modifications of Keap1: the state of the art. Front Cell Dev Biol 2024; 11:1332049. [PMID: 38259518 PMCID: PMC10801156 DOI: 10.3389/fcell.2023.1332049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
The Keap1-Nrf2 signaling pathway plays a crucial role in cellular defense against oxidative stress-induced damage. Its activation entails the expression and transcriptional regulation of several proteins involved in detoxification and antioxidation processes within the organism. Keap1, serving as a pivotal transcriptional regulator within this pathway, exerts control over the activity of Nrf2. Various post-translational modifications (PTMs) of Keap1, such as alkylation, glycosylation, glutathiylation, S-sulfhydration, and other modifications, impact the binding affinity between Keap1 and Nrf2. Consequently, this leads to the accumulation of Nrf2 and its translocation to the nucleus, and subsequent activation of downstream antioxidant genes. Given the association between the Keap1-Nrf2 signaling pathway and various diseases such as cancer, neurodegenerative disorders, and diabetes, comprehending the post-translational modification of Keap1 not only deepens our understanding of Nrf2 signaling regulation but also contributes to the identification of novel drug targets and biomarkers. Consequently, this knowledge holds immense importance in the prevention and treatment of diseases induced by oxidative stress.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Qu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Deyou Jiang
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xutao Sun
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Tentscher PR, Escher BI, Schlichting R, König M, Bramaz N, Schirmer K, von Gunten U. Toxic effects of substituted p-benzoquinones and hydroquinones in in vitro bioassays are altered by reactions with the cell assay medium. WATER RESEARCH 2021; 202:117415. [PMID: 34348209 DOI: 10.1016/j.watres.2021.117415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Substituted para-benzoquinones and hydroquinones are ubiquitous transformation products that arise during oxidative water treatment of phenolic precursors, for example through ozonation or chlorination. The benzoquinone structural motive is associated with mutagenicity and carcinogenicity, and also with induction of the oxidative stress response through the Nrf2 pathway. For either endpoint, toxicological data for differently substituted compounds are scarce. In this study, oxidative stress response, as indicated by the AREc32 in vitro bioassay, was induced by differently substituted para-benzoquinones, but also by the corresponding hydroquinones. Bioassays that indicate defense against genotoxicity (p53RE-bla) and DNA repair activity (UmuC) were not activated by these compounds. Stability tests conducted under incubation conditions, but in the absence of cell lines, showed that tested para-benzoquinones reacted rapidly with constituents of the incubation medium. Compounds were abated already in phosphate buffer, but even faster in biological media, with reactions attributed to amino- and thiol-groups of peptides, proteins, and free amino acids. The products of these reactions were often the corresponding substituted hydroquinones. Conversely, differently substituted hydroquinones were quantitatively oxidized to p-benzoquinones over the course of the incubation. The observed induction of the oxidative stress response was attributed to hydroquinones that are presumably oxidized to benzoquinones inside the cells. Despite the instability of the tested compounds in the incubation medium, the AREc32 in vitro bioassay could be used as an unspecific sum parameter to detect para-benzoquinones and hydroquinones in oxidatively treated waters.
Collapse
Affiliation(s)
- Peter R Tentscher
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf CH-8600, Switzerland; Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Beate I Escher
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany; Center for Applied Geoscience, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, Tübingen 72076, Germany
| | - Rita Schlichting
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Maria König
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Nadine Bramaz
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf CH-8600, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf CH-8600, Switzerland; Department of Environmental Systems Science, ETH Zürich, Zürich CH-8092, Switzerland; Civil and Environmental Engineering (ENAC), School of Architecture, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf CH-8600, Switzerland; Civil and Environmental Engineering (ENAC), School of Architecture, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| |
Collapse
|
4
|
Gaisina IN, Hushpulian DM, Gaisin AM, Kazakov EH, Ammal Kaidery N, Ahuja M, Poloznikov AA, Gazaryan IG, Thatcher GRJ, Thomas B. Identification of a potent Nrf2 displacement activator among aspirin-containing prodrugs. Neurochem Int 2021; 149:105148. [PMID: 34329734 DOI: 10.1016/j.neuint.2021.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Aspirin is a desired leaving group in prodrugs aimed at treatment of neurodegeneration and other conditions. A library of aspirin derivatives of various scaffolds potentially activating Nrf2 has been tested in Neh2-luc reporter assay which screens for direct Nrf2 protein stabilizers working via disruption of Nrf2-Keap1 interaction. Most aspirin prodrugs had a pro-alkylating or pro-oxidant motif in the structure and, therefore, were toxic at high concentrations. However, among the active compounds, we identified a molecule resembling a well-known Nrf2 displacement activator, bis-1,4-(4-methoxybenzenesulfonamidyl) naphthalene (NMBSA). The direct comparison of the newly identified compound with NMBSA and its improved analog in the reporter assay showed no quenching with N-acetyl cysteine, thus pointing to Nrf2 stabilization mechanism without cysteine alkylation. The potency of the newly identified compound in the reporter assay was much stronger than NMBSA, despite its inhibitory action in the commercial fluorescence polarization assay was observed only in the millimolar range. Molecular docking predicted that mono-deacetylation of the novel prodrug should generate a potent displacement activator. The time-course of reporter activation with the novel prodrug had a pronounced lag-period pointing to a plausible intracellular transformation leading to an active product. Treatment of the novel prodrug with blood plasma or cell lysate demonstrated stepwise deacetylation as judge by liquid chromatography-mass spectrometry (LC-MS). Hence, the esterase-catalyzed hydrolysis of the prodrug liberates only acetyl groups from aspirin moiety and generates a potent Nrf2 activator. The discovered mechanism of prodrug activation makes the newly identified compound a promising lead for future optimization studies.
Collapse
Affiliation(s)
- Irina N Gaisina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL, USA.
| | - Dmitry M Hushpulian
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| | - Arsen M Gaisin
- Integrated Molecular Structure Education and Research Center, Northwestern University, Evanston, IL, USA
| | | | - Navneet Ammal Kaidery
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Manuj Ahuja
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Department of Pharmaceutical Sciences, University of Buffalo, Buffalo, NY, USA
| | - Andrey A Poloznikov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| | - Irina G Gazaryan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia; Department of Chemical Enzymology, M.V.Lomonosov Moscow State University, Moscow, Russia; Department of Chemistry and Physical Sciences, Pace University, Pleasantville, NY, USA
| | - Gregory R J Thatcher
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Bobby Thomas
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Department of Drug Discovery, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
5
|
An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 2020; 25:molecules25225474. [PMID: 33238435 PMCID: PMC7700122 DOI: 10.3390/molecules25225474] [Citation(s) in RCA: 680] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammation is a key driver in many pathological conditions such as allergy, cancer, Alzheimer’s disease, and many others, and the current state of available drugs prompted researchers to explore new therapeutic targets. In this context, accumulating evidence indicates that the transcription factor Nrf2 plays a pivotal role controlling the expression of antioxidant genes that ultimately exert anti-inflammatory functions. Nrf2 and its principal negative regulator, the E3 ligase adaptor Kelch-like ECH- associated protein 1 (Keap1), play a central role in the maintenance of intracellular redox homeostasis and regulation of inflammation. Interestingly, Nrf2 is proved to contribute to the regulation of the heme oxygenase-1 (HO-1) axis, which is a potent anti-inflammatory target. Recent studies showed a connection between the Nrf2/antioxidant response element (ARE) system and the expression of inflammatory mediators, NF-κB pathway and macrophage metabolism. This suggests a new strategy for designing chemical agents as modulators of Nrf2 dependent pathways to target the immune response. Therefore, the present review will examine the relationship between Nrf2 signaling and the inflammation as well as possible approaches for the therapeutic modulation of this pathway.
Collapse
|
6
|
Byrne SR, Rokita SE. Unraveling Reversible DNA Cross-Links with a Biological Machine. Chem Res Toxicol 2020; 33:2903-2913. [PMID: 33147957 DOI: 10.1021/acs.chemrestox.0c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reversible generation and capture of certain electrophilic quinone methide intermediates support dynamic reactions with DNA that allow for migration and transfer of alkylation and cross-linking. This reversibility also expands the possible consequences that can be envisioned when confronted by DNA repair processes and biological machines. To begin testing the response to such an encounter, quinone methide-based modification of DNA has now been challenged with a helicase (T7 bacteriophage gene protein four, T7gp4) that promotes 5' to 3' translocation and unwinding. This model protein was selected based on its widespread application, well characterized mechanism and detailed structural information. Little over one-half of the cross-linking generated by a bisfunctional quinone methide remained stable to T7gp4 and did not suppress its activity. The helicase likely avoids the topological block generated by this fraction of cross-linking by its ability to shift from single- to double-stranded translocation. The remaining fraction of cross-linking was destroyed during T7gp4 catalysis. Thus, this helicase is chemically competent to promote release of the quinone methide from DNA. The ability of T7gp4 to act as a Brownian ratchet for unwinding DNA may block recapture of the QM intermediate by DNA during its transient release from a donor strand. Most surprisingly, T7gp4 releases the quinone methide from both the translocating strand that passes through its central channel and the excluded strand that was typically unaffected by other lesions. The ability of T7gp4 to reverse the cross-link formed by the quinone methide does not extend to that formed irreversibly by the nitrogen mustard mechlorethamine.
Collapse
Affiliation(s)
- Shane R Byrne
- Chemistry Biology Interface Graduate Training Program and Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Steven E Rokita
- Chemistry Biology Interface Graduate Training Program and Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Hutchinson MA, Deeyaa BD, Byrne SR, Williams SJ, Rokita SE. Directing Quinone Methide-Dependent Alkylation and Cross-Linking of Nucleic Acids with Quaternary Amines. Bioconjug Chem 2020; 31:1486-1496. [PMID: 32298588 PMCID: PMC7242154 DOI: 10.1021/acs.bioconjchem.0c00166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyamine and polyammonium ion conjugates are often used to direct reagents to nucleic acids based on their strong electrostatic attraction to the phosphoribose backbone. Such nonspecific interactions do not typically alter the specificity of the attached reagent, but polyammonium ions dramatically redirected the specificity of a series of quinone methide precursors. Replacement of a relatively nonspecific intercalator based on acridine with a series of polyammonium ions resulted in a surprising change of DNA products. Piperidine stable adducts were generated in duplex DNA that lacked the ability to support a dynamic cross-linking observed previously with acridine conjugates. Minor reaction at guanine N7, the site of reversible reaction, was retained by a monofunctional quinone methide-polyammonium ion conjugate, but a bisfunctional analogue designed for tandem quinone methide formation modified guanine N7 in only single-stranded DNA. The resulting intrastrand cross-links were sufficiently dynamic to rearrange to interstrand cross-links. However, no further transfer of adducts was observed in duplex DNA. An alternative design that spatially and temporally decoupled the two quinone methide equivalents neither restored the dynamic reaction nor cross-linked DNA efficiently. While di- and triammonium ion conjugates successfully enhanced the yields of cross-linking by a bisquinone methide relative to a monoammonium equivalent, alternative ligands will be necessary to facilitate the migration of cross-linking and its potential application to disrupt DNA repair.
Collapse
Affiliation(s)
- Mark A. Hutchinson
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Blessing D. Deeyaa
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Shane R. Byrne
- Chemistry-Biology Interface Program, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Sierra J. Williams
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Steven E. Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
- Chemistry-Biology Interface Program, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| |
Collapse
|
8
|
Deeyaa BD, Rokita SE. Migratory ability of quinone methide-generating acridine conjugates in DNA. Org Biomol Chem 2020; 18:1671-1678. [DOI: 10.1039/d0ob00081g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conversion of a bisquinone methide–acridine conjugate to its monofunctional analogue releases the constraints that limit migration of its reversible adducts within DNA.
Collapse
|
9
|
Zhou X, Chen Z, Zhong W, Yu R, He L. Effect of fluoride on PERK-Nrf2 signaling pathway in mouse ameloblasts. Hum Exp Toxicol 2019; 38:833-845. [PMID: 30977402 DOI: 10.1177/0960327119842273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the development of dental fluorosis, oxidative stress is considered as the key mechanism. Endoplasmic reticulum (ER) stress can induce oxidative stress and activate the important antioxidative factor nuclear factor erythroid 2-related factor 2 (Nrf2) in a PKR-like ER kinase (PERK)-dependent manner, but combining ER stress and oxidative stress, the role of PERK-Nrf2 signaling pathway involved in fluoride-regulated ameloblasts is not fully defined. Here, we studied the effect of fluoride on PERK-Nrf2 signaling pathway in mouse ameloblasts. We found that low-dose and continuous fluoride exposure increased binding immunoglobulin protein expression and activated PERK-activating transcription factor 4 signaling pathway. Meanwhile, the expression of Nrf2 and its target genes (glutamylcysteine synthetase and glutathione S-transferase-P1) enhanced following ER stress. Tunicamycin increased the expression of PERK, leading to Nrf2 nuclear import, and tauroursodeoxycholate suppressed Nrf2 activation through PERK during ER stress, indicating that PERK activation is required for Nrf2 nuclear entry. Furthermore, tert-butylhydroquinone triggered the overexpression of Nrf2 to reduce ER stress, but luteolin inhibited Nrf2 nuclear localization to elevate ER stress. In summary, this study proved that fluoride under certain dose can induce ER stress and promote Nrf2 nuclear import via PERK activation and suggested that antioxidation mechanism mediated by PERK-Nrf2 can alleviate fluoride-induced ER stress effectively.
Collapse
Affiliation(s)
- X Zhou
- 1 Department of Dental Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- 2 Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- 3 Department of Occupational Health and Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Z Chen
- 2 Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - W Zhong
- 2 Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - R Yu
- 2 Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - L He
- 1 Department of Dental Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
10
|
Hollas MA, Ben Aissa M, Lee SH, Gordon-Blake JM, Thatcher GRJ. Pharmacological manipulation of cGMP and NO/cGMP in CNS drug discovery. Nitric Oxide 2019; 82:59-74. [PMID: 30394348 PMCID: PMC7645969 DOI: 10.1016/j.niox.2018.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
The development of small molecule modulators of NO/cGMP signaling for use in the CNS has lagged far behind the use of such clinical agents in the periphery, despite the central role played by NO/cGMP in learning and memory, and the substantial evidence that this signaling pathway is perturbed in neurodegenerative disorders, including Alzheimer's disease. The NO-chimeras, NMZ and Nitrosynapsin, have yielded beneficial and disease-modifying responses in multiple preclinical animal models, acting on GABAA and NMDA receptors, respectively, providing additional mechanisms of action relevant to synaptic and neuronal dysfunction. Several inhibitors of cGMP-specific phosphodiesterases (PDE) have replicated some of the actions of these NO-chimeras in the CNS. There is no evidence that nitrate tolerance is a phenomenon relevant to the CNS actions of NO-chimeras, and studies on nitroglycerin in the periphery continue to challenge the dogma of nitrate tolerance mechanisms. Hybrid nitrates have shown much promise in the periphery and CNS, but to date only one treatment has received FDA approval, for glaucoma. The potential for allosteric modulation of soluble guanylate cyclase (sGC) in brain disorders has not yet been fully explored nor exploited; whereas multiple applications of PDE inhibitors have been explored and many have stalled in clinical trials.
Collapse
Affiliation(s)
- Michael A Hollas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Manel Ben Aissa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Sue H Lee
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Jesse M Gordon-Blake
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
11
|
Bedini A, Fraternale A, Crinelli R, Mari M, Bartolucci S, Chiarantini L, Spadoni G. Design, Synthesis, and Biological Activity of Hydrogen Peroxide Responsive Arylboronate Melatonin Hybrids. Chem Res Toxicol 2018; 32:100-112. [DOI: 10.1021/acs.chemrestox.8b00216] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Annalida Bedini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, I-61029 Urbino, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, I-61029 Urbino, Italy
| | - Michele Mari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Silvia Bartolucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Laura Chiarantini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, I-61029 Urbino, Italy
| | - Gilberto Spadoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, I-61029 Urbino, Italy
| |
Collapse
|
12
|
Cytotoxic Effect of Thymoquinone-Loaded Nanostructured Lipid Carrier (TQ-NLC) on Liver Cancer Cell Integrated with Hepatitis B Genome, Hep3B. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1549805. [PMID: 30186351 PMCID: PMC6116464 DOI: 10.1155/2018/1549805] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/27/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023]
Abstract
Thymoquinone (TQ), a bioactive compound found in Nigella sativa, cannot be orally consumed due to its lipophilicity. In order to overcome this low bioavailability, TQ is loaded into a colloidal drug carrier known as a nanostructured lipid carrier (NLC). This study aims to determine the antiproliferative effects of TQ and TQ-NLC on liver cancer cells integrated with the hepatitis B genome, Hep3B. The Hep3B was treated with TQ or TQ-NLC for 24, 48, and 72 hours via MTT assay. The results confirm that TQ or TQ-NLC inhibited the growth of Hep3B at IC50 <16.7 μM for 72 hours. TQ was also found to induce cell cycle arrest at the G1 checkpoint while TQ-NLC induced non-phase-specific cell cycle arrest. Further analysis using Annexin V staining confirmed the apoptotic induction of TQ or TQ-NLC via activation of caspases-3/7. In ROS management, TQ acted as a prooxidant (increased the level of ROS), while TQ-NLC acted as an antioxidant (reduced the level of ROS). Molecular analysis demonstrated that the GSH system and the Nrf2/Keap1 signaling pathway in Hep3B influenced the differential responses of the cells towards TQ or TQ-NLC. Hence, this study demonstrated that TQ and TQ-NLC have in vitro anticancer effects on the Hep3B.
Collapse
|
13
|
Satoh T, Lipton S. Recent advances in understanding NRF2 as a druggable target: development of pro-electrophilic and non-covalent NRF2 activators to overcome systemic side effects of electrophilic drugs like dimethyl fumarate. F1000Res 2017; 6:2138. [PMID: 29263788 PMCID: PMC5730864 DOI: 10.12688/f1000research.12111.1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2017] [Indexed: 12/18/2022] Open
Abstract
Dimethyl fumarate (DMF) is an electrophilic compound previously called BG-12 and marketed under the name Tecfidera
®. It was approved in 2013 by the US Food and Drug Administration and the European Medicines Agency for the treatment of relapsing multiple sclerosis. One mechanism of action of DMF is stimulation of the nuclear factor erythroid 2-related factor 2 (NRF2) transcriptional pathway that induces anti-oxidant and anti-inflammatory phase II enzymes to prevent chronic neurodegeneration. However, electrophiles such as DMF also produce severe systemic side effects, in part due to non-specific S-alkylation of cysteine thiols and resulting depletion of glutathione. This mini-review presents the present status and future strategy for NRF2 activators designed to avoid these side effects. Two modes of chemical reaction leading to NRF2 activation are considered here. The first mode is S-alkylation (covalent reaction) of thiols in Kelch-like ECH-associated protein 1 (KEAP1), which interacts with NRF2. The second mechanism involves non-covalent pharmacological inhibition of protein-protein interactions, in particular domain-specific interaction between NRF2 and KEAP1 or other repressor proteins involved in this transcriptional pathway. There have been significant advances in drug development using both of these mechanisms that can potentially avoid the systemic side effects of electrophilic compounds. In the first case concerning covalent reaction with KEAP1, monomethyl fumarate and monoethyl fumarate appear to represent safer derivatives of DMF. In a second approach, pro-electrophilic drugs, such as carnosic acid from the herb
Rosmarinus officinalis, can be used as a safe pro-drug of an electrophilic compound. Concerning non-covalent activation of NRF2, drugs are being developed that interfere with the direct interaction of KEAP1-NRF2 or inhibit BTB domain and CNC homolog 1 (BACH1), which is a transcriptional repressor of the promoter where NRF2 binds.
Collapse
Affiliation(s)
- Takumi Satoh
- Department of Anti-Aging Food Research, School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Stuart Lipton
- Neuroscience Translational Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA.,Department of Neurosciences, University of California, School of Medicine, La Jolla, CA, USA
| |
Collapse
|
14
|
Bolton JL, Dunlap T. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects. Chem Res Toxicol 2016; 30:13-37. [PMID: 27617882 PMCID: PMC5241708 DOI: 10.1021/acs.chemrestox.6b00256] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quinones represent a class of toxicological intermediates, which can create a variety of hazardous effects in vivo including, acute cytotoxicity, immunotoxicity, and carcinogenesis. In contrast, quinones can induce cytoprotection through the induction of detoxification enzymes, anti-inflammatory activities, and modification of redox status. The mechanisms by which quinones cause these effects can be quite complex. The various biological targets of quinones depend on their rate and site of formation and their reactivity. Quinones are formed through a variety of mechanisms from simple oxidation of catechols/hydroquinones catalyzed by a variety of oxidative enzymes and metal ions to more complex mechanisms involving initial P450-catalyzed hydroxylation reactions followed by two-electron oxidation. Quinones are Michael acceptors, and modification of cellular processes could occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radical anions leading to the formation of reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can alter redox balance within cells through the formation of oxidized cellular macromolecules including lipids, proteins, and DNA. This perspective explores the varied biological targets of quinones including GSH, NADPH, protein sulfhydryls [heat shock proteins, P450s, cyclooxygenase-2 (COX-2), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1, (NQO1), kelch-like ECH-associated protein 1 (Keap1), IκB kinase (IKK), and arylhydrocarbon receptor (AhR)], and DNA. The evidence strongly suggests that the numerous mechanisms of quinone modulations (i.e., alkylation versus oxidative stress) can be correlated with the known pathology/cytoprotection of the parent compound(s) that is best described by an inverse U-shaped dose-response curve.
Collapse
Affiliation(s)
- Judy L Bolton
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Tareisha Dunlap
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| |
Collapse
|
15
|
Pierce EN, Piyankarage SC, Dunlap T, Litosh V, Siklos MI, Wang YT, Thatcher GRJ. Prodrugs Bioactivated to Quinones Target NF-κB and Multiple Protein Networks: Identification of the Quinonome. Chem Res Toxicol 2016; 29:1151-9. [PMID: 27258437 DOI: 10.1021/acs.chemrestox.6b00115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Electrophilic reactive intermediates resulting from drug metabolism have been associated with toxicity and off-target effects and in some drug discovery programs trigger NO-GO decisions. Many botanicals and dietary supplements are replete with such reactive electrophiles, notably Michael acceptors, which have been demonstrated to elicit chemopreventive mechanisms; and Michael acceptors are gaining regulatory approval as contemporary cancer therapeutics. Identifying protein targets of these electrophiles is central to understanding potential therapeutic benefit and toxicity risk. NO-donating NSAID prodrugs (NO-NSAIDs) have been the focus of extensive clinical and preclinical studies in inflammation and cancer chemoprevention and therapy: a subset exemplified by pNO-ASA, induces chemopreventive mechanisms following bioactivation to an electrophilic quinone methide (QM) Michael acceptor. Having previously shown that these NO-independent, QM-donors activated Nrf2 via covalent modification of Keap-1, we demonstrate that components of canonical NF-κB signaling are also targets, leading to the inhibition of NF-κB signaling. Combining bio-orthogonal probes of QM-donor ASA prodrugs with mass spectrometric proteomics and pathway analysis, we proceeded to characterize the quinonome: the protein cellular targets of QM-modification by pNO-ASA and its ASA pro-drug congeners. Further comparison was made using a biorthogonal probe of the "bare-bones", Michael acceptor, and clinical anti-inflammatory agent, dimethyl fumarate, which we have shown to inhibit NF-κB signaling. Identified quinonome pathways include post-translational protein folding, cell-death regulation, protein transport, and glycolysis; and identified proteins included multiple heat shock elements, the latter functionally confirmed by demonstrating activation of heat shock response.
Collapse
Affiliation(s)
- Emily N Pierce
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Sujeewa C Piyankarage
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Tareisha Dunlap
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Vladislav Litosh
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Marton I Siklos
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Yue-Ting Wang
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|
16
|
Ginseng alleviates cyclophosphamide-induced hepatotoxicity via reversing disordered homeostasis of glutathione and bile acid. Sci Rep 2015; 5:17536. [PMID: 26625948 PMCID: PMC4667192 DOI: 10.1038/srep17536] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022] Open
Abstract
Cyclophosphamide (CP), a chemotherapeutic agent, is restricted due to its side effects, especially hepatotoxicity. Ginseng has often been clinically used with CP in China, but whether and how ginseng reduces the hepatotoxicity is unknown. In this study, the hepatoprotective effects and mechanisms under the combined usage were investigated. It was found that ginseng could ameliorate CP-induced elevations of ALP, ALT, ALS, MDA and hepatic deterioration, enhance antioxidant enzymes’ activities and GSH’s level. Metabolomics study revealed that 33 endogenous metabolites were changed by CP, 19 of which were reversed when ginseng was co-administrated via two main pathways, i.e., GSH metabolism and primary bile acids synthesis. Furthermore, ginseng could induce expression of GCLC, GCLM, GS and GST, which associate with the disposition of GSH, and expression of FXR, CYP7A1, NTCP and MRP 3, which play important roles in the synthesis and transport of bile acids. In addition, NRF 2, one of regulatory elements on the expression of GCLC, GCLM, GS, GST, NTCP and MRP3, was up-regulated when ginseng was co-administrated. In conclusion, ginseng could alleviate CP-induced hepatotoxicity via modulating the disordered homeostasis of GSH and bile acid, which might be mediated by inducing the expression of NRF 2 in liver.
Collapse
|
17
|
Kastrati I, Litosh VA, Zhao S, Alvarez M, Thatcher GRJ, Frasor J. A novel aspirin prodrug inhibits NFκB activity and breast cancer stem cell properties. BMC Cancer 2015; 15:845. [PMID: 26530254 PMCID: PMC4632459 DOI: 10.1186/s12885-015-1868-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/27/2015] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Activation of cyclooxygenase (COX)/prostaglandin and nuclear factor κB (NFκB) pathways can promote breast tumor initiation, growth, and progression to drug resistance and metastasis. Thus, anti-inflammatory drugs have been widely explored as chemopreventive and antineoplastic agents. Aspirin (ASA), in particular, is associated with reduced breast cancer incidence but gastrointestinal toxicity has limited its usefulness. To improve potency and minimize toxicity, ASA ester prodrugs have been developed, in which the carboxylic acid of ASA is masked and ancillary pharmacophores can be incorporated. To date, the effects of ASA and ASA prodrugs have been largely attributed to COX inhibition and reduced prostaglandin production. However, ASA has also been reported to inhibit the NFκB pathway at very high doses. Whether ASA prodrugs can inhibit NFκB signaling remains relatively unexplored. METHODS A library of ASA prodrugs was synthesized and screened for inhibition of NFκB activity and cancer stem-like cell (CSC) properties, an important PGE2-and NFκB-dependent phenotype of aggressive breast cancers. Inhibition of NFκB activity was determined by dual luciferase assay, RT-QPCR, p65 DNA binding activity and Western blots. Inhibition of CSC properties was determined by mammosphere growth, CD44(+)CD24(-)immunophenotype and tumorigenicity at limiting dilution. RESULTS While we identified multiple ASA prodrugs that are capable of inhibiting the NFκB pathway, several were associated with cytotoxicity. Of particular interest was GTCpFE, an ASA prodrug with fumarate as the ancillary pharmacophore. This prodrug potently inhibits NFκB activity without innate cytotoxicity. In addition, GTCpFE exhibited selective anti-CSC activity by reducing mammosphere growth and the CD44(+)CD24(-)immunophenotype. Moreover, GTCpFE pre-treated cells were less tumorigenic and, when tumors did form, latency was increased and growth rate was reduced. Structure-activity relationships for GTCpFE indicate that fumarate, within the context of an ASA prodrug, is essential for anti-NFκB activity, whereas both the ASA and fumarate moieties contributed to attenuated mammosphere growth. CONCLUSIONS These results establish GTCpFE as a prototype for novel ASA-and fumarate-based anti-inflammatory drugs that: (i) are capable of targeting CSCs, and (ii) may be developed as chemopreventive or therapeutic agents in breast cancer.
Collapse
Affiliation(s)
- Irida Kastrati
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, E202 MSB, MC901, Chicago, IL, 60612, USA.
| | - Vladislav A Litosh
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Shuangping Zhao
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, E202 MSB, MC901, Chicago, IL, 60612, USA.
| | - Manuel Alvarez
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, E202 MSB, MC901, Chicago, IL, 60612, USA.
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, E202 MSB, MC901, Chicago, IL, 60612, USA.
| |
Collapse
|
18
|
Abstract
The formation of quinone methides (QMs) from either direct 2-electron oxidation of 2- or 4-alkylphenols, isomerization of o-quinones, or elimination of a good leaving group could explain the cytotoxic/cytoprotective effects of several drugs, natural products, as well as endogenous compounds. For example, the antiretroviral drug nevirapine and the antidiabetic agent troglitazone both induce idiosyncratic hepatotoxicity through mechanisms involving quinone methide formation. The anesthetic phencyclidine induces psychological side effects potentially through quinone methide mediated covalent modification of crucial macromolecules in the brain. Selective estrogen receptor modulators (SERMs) such as tamoxifen, toremifene, and raloxifene are metabolized to quinone methides which could potentially contribute to endometrial carcinogenic properties and/or induce detoxification enzymes and enhance the chemopreventive effects of these SERMs. Endogenous estrogens and/or estrogens present in estrogen replacement formulations are also metabolized to catechols and further oxidized to o-quinones which can isomerize to quinone methides. Both estrogen quinoids could cause DNA damage which could enhance hormone dependent cancer risk. Natural products such as the food and flavor agent eugenol can be directly oxidized to a quinone methide which may explain the toxic effects of this natural compound. Oral toxicities associated with chewing areca quid could be the result of exposure to hydroxychavicol through initial oxidation to an o-quinone which isomerizes to a p-quinone methide. Similar o-quinone to p-quinone methide isomerization reactions have been reported for the ubiquitous flavonoid quercetin which needs to be taken into consideration when evaluating risk-benefit assessments of these natural products. The resulting reaction of these quinone methides with proteins, DNA, and/or resulting modulation of gene expression may explain the toxic and/or beneficial effects of the parent compounds.
Collapse
Affiliation(s)
- Judy L. Bolton
- Department of Medicinal Chemistry and Pharmacognosy (M/C 781) College of Pharmacy University of Illinois at Chicago 833 S. Wood Street Chicago, Illinois 60612-7231
| |
Collapse
|
19
|
Badave KD, Patil SS, Khan AA, Srinivas D, Butcher RJ, Gonnade RG, Puranik VG, Pinjari RV, Gejji SP, Rane SY. Cu( ii) conjugation along the transformation of a vitamin K 3derivative to a dinaphthoquinone methide radical. NEW J CHEM 2014. [DOI: 10.1039/c3nj00783a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|