1
|
De Luca SN, Vlahos R. Targeting accelerated pulmonary ageing to treat chronic obstructive pulmonary disease-induced neuropathological comorbidities. Br J Pharmacol 2024; 181:3-20. [PMID: 37828646 PMCID: PMC10952708 DOI: 10.1111/bph.16263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major incurable health burden, ranking as the third leading cause of death worldwide, mainly driven by cigarette smoking. COPD is characterised by persistent airway inflammation, lung function decline and premature ageing with the presence of pulmonary senescent cells. This review proposes that cellular senescence, a state of stable cell cycle arrest linked to ageing, induced by inflammation and oxidative stress in COPD, extends beyond the lungs and affects the systemic circulation. This pulmonary senescent profile will reach other organs via extracellular vesicles contributing to brain inflammation and damage, and increasing the risk of neurological comorbidities, such as stroke, cerebral small vessel disease and Alzheimer's disease. The review explores the role of cellular senescence in COPD-associated brain conditions and investigates the relationship between cellular senescence and circadian rhythm in COPD. Additionally, it discusses potential therapies, including senomorphic and senolytic treatments, as novel strategies to halt or improve the progression of COPD.
Collapse
Affiliation(s)
- Simone N. De Luca
- Centre for Respiratory Science and Health, School of Health & Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| |
Collapse
|
2
|
Sun L, Ye X, Wang L, Yu J, Wu Y, Wang M, Dai L. A Review of Traditional Chinese Medicine, Buyang Huanwu Decoction for the Treatment of Cerebral Small Vessel Disease. Front Neurosci 2022; 16:942188. [PMID: 35844225 PMCID: PMC9278698 DOI: 10.3389/fnins.2022.942188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is often referred to as “collaterals disease” in traditional Chinese medicine (TCM), and commonly includes ischemic and hemorrhagic CSVD. TCM has a long history of treating CSVD and has demonstrated unique efficacy. Buyang Huanwu Decoction (BHD) is a classical TCM formula that has been used for the prevention and treatment of stroke for hundreds of years. BHD exerts its therapeutic effects on CSVD through a variety of mechanisms. In this review, the clinical and animal studies on BHD and CSVD were systematically introduced. In addition, the pharmacological mechanisms, active components, and clinical applications of BHD in the treatment of CSVD were reviewed. We believe that an in-depth understanding of BHD, its pharmacological mechanism, disease-drug interaction, and other aspects will help in laying the foundation for its development as a new therapeutic strategy for the treatment of CSVD.
Collapse
|
3
|
Meng N, Dong Y, Huo T, Song M, Jiang X, Xiao Y, Lv P. Past Exposure to Cigarette Smoke Aggravates Cognitive Impairment in a Rat Model of Vascular Dementia via Neuroinflammation. Cell Mol Neurobiol 2020; 42:1021-1034. [PMID: 33156450 DOI: 10.1007/s10571-020-00992-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Smoking is a risk factor for dementia. Cognitive function can be partially restored after quitting smoking, but still lower than never smoked group. The underlying mechanisms still remain unclear. The effects of smoking cessation combined with cerebral chronic hypoperfusion (CCH) on cognitive function have never been described. Here, we established a cigarette smoking cessation model, a CCH model, and a cigarette smoking cessation plus CCH model. We investigated cognitive function in these models and the mechanisms of the neuroinflammation, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3(NLRP3)/cysteine aspartate-specific proteinase (caspase-1)/interleukin- 1β (IL-1β) pathway, and eucaryotic initiation factor 2α (eIF2α) /autophagy pathway. We used morris water maze (MWM) and novel object recognition (NOR) test to evaluate cognitive function in rats. Nissl staining was performed to observe cell morphology in the hippocampal CA1 area. A neuroinflammatory marker (glial fibrillary acidic protein, GFAP) was assessed by Western blot analysis and immunohistochemistry staining. IL-1β levels were detected by ELISA. The protein levels of NLRP3/caspase-1/ IL-1β and eIF2α/autophagy pathway were evaluated by Western blot analysis. LC3 was assessed by immunofluorescence staining. CCH can affect cognitive function by influencing neuroinflammation, NLRP3/caspase-1/IL-1β pathway, and eIF2α/autophagy pathway. Past exposure to cigarette smoke can also affect cognitive function by influencing neuroinflammation and NLRP3/caspase-1/IL-1β pathway, which may be induced by smoking and may not be alleviated after smoking cessation. Past exposure to cigarette smoke does not influence autophagy, which may be increased by smoking and then decrease to normal levels after smoking cessation. Past exposure to smoking can further aggravate cognitive impairment and neuroinflammation in VaD animals: cognitive impairment induced by CCH via neuroinflammation, NLRP3/caspase-1/IL-1β, and eIF2α/autophagy pathway and cognitive impairment induced by past exposure to cigarette smoke via neuroinflammation and NLRP3/caspase-1/IL-1β pathway. The combined group had the worst cognitive impairment because of harmful reasons.
Collapse
Affiliation(s)
- Nan Meng
- Department of Neurology, Hebei Medical University, No. 361 Zhongshan East Road, Changan District, Shijiazhuang, 050017, Hebei Province, People's Republic of China.,Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Yanhong Dong
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Tiantian Huo
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Meiyi Song
- Department of Neurology, Hebei Medical University, No. 361 Zhongshan East Road, Changan District, Shijiazhuang, 050017, Hebei Province, People's Republic of China
| | - Xin Jiang
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Yining Xiao
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, No. 361 Zhongshan East Road, Changan District, Shijiazhuang, 050017, Hebei Province, People's Republic of China. .,Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China.
| |
Collapse
|
4
|
Lin JY, Kuo WW, Baskaran R, Kuo CH, Chen YA, Chen WST, Ho TJ, Day CH, Mahalakshmi B, Huang CY. Swimming exercise stimulates IGF1/ PI3K/Akt and AMPK/SIRT1/PGC1α survival signaling to suppress apoptosis and inflammation in aging hippocampus. Aging (Albany NY) 2020; 12:6852-6864. [PMID: 32320382 PMCID: PMC7202519 DOI: 10.18632/aging.103046] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Hippocampus is one of the most vulnerable brain regions in terms of age-related pathological change. Exercise is presumed to delay the aging process and promote health because it seems to improve the function of most of the aging mechanisms. The purpose of this study is to evaluate the effects of swimming exercise training on brain inflammation, apoptotic and survival pathways in the hippocampus of D-galactose-induced aging in SD rats. The rats were allocated to the following groups: (1) control; (2) swimming exercise; (3) induced-aging by injecting D-galactose; (4) induced-aging rats with swimming exercise. The longevity-related AMPK/SIRT1/PGC-1α signaling pathway and brain IGF1/PI3K/Akt survival pathway were significantly reduced in D-galactose-induced aging group compared to non-aging control group and increased after exercise training. The inflammation pathway markers were over-expressed in induced-aging hippocampus, exercise significantly inhibited the inflammatory signaling activity. Fas-dependent and mitochondrial-dependent apoptotic pathways were significantly increased in the induced-aging group relative to the control group whereas they were decreased in the aging-exercise group. This study demonstrated that swimming exercise not only reduced aging-induced brain apoptosis and inflammatory signaling activity, but also enhanced the survival pathways in the hippocampus, which provides one of the new beneficial effects for exercise training in aging brain.
Collapse
Affiliation(s)
- Jing-Ying Lin
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Yun-An Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - William Shao-Tsu Chen
- Division of Addictive Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | | | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
5
|
Shin NR, Kim C, Seo CS, Ko JW, Cho YK, Shin IS, Kim JS. Galgeun-tang Attenuates Cigarette Smoke and Lipopolysaccharide Induced Pulmonary Inflammation via IκBα/NF-κB Signaling. Molecules 2018; 23:E2489. [PMID: 30274192 PMCID: PMC6222390 DOI: 10.3390/molecules23102489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 11/16/2022] Open
Abstract
Galgeun-tang water extract (GGWE) is used to treat various diseases such as the common cold, eczema and asthma in China and Korea. In this study, we investigated the anti-inflammatory effect of GGWE using a cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced induced pulmonary inflammation mouse model. The mice were exposed to CS for a total of seven days (eight cigarettes per day for 1 h) and LPS was administered intranasally to mice on day 4. GGWE was administered by oral gavage at doses of 50 mg/kg or 100 mg/kg 1 h before exposure to CS. GGWE decreased inflammatory cell counts, and expression of inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α) in bronchoalveolar lavage fluid (BALF) from mice exposed to CS and LPS. GGWE reduced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), as well as the phosphorylation of inhibitor of kappa-B subunit alpha (IκBα) and nuclear factor kappa-B (NF-κB) in CS- and LPS-exposed mice. Histological examinations revealed that GGWE suppressed inflammatory cell infiltration into lung tissue compared to untreated CS- and LPS-exposed mice. In conclusion, GGWE effectively suppressed CS- and LPS-induced pulmonary inflammation. Our results indicate that GGWE may be used as a protective drug to control pulmonary inflammation diseases such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Na-Rae Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Chul Kim
- Herbal Medicinal Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - Chang-Seob Seo
- Herbal Medicinal Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, 298 Daesung-ro, Sangdang-gu, Cheongju-si, Chungbuk 360764, Korea.
| | - In-Sik Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Joong-Sun Kim
- Herbal Medicinal Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| |
Collapse
|
6
|
Wang YH, Li SA, Huang CH, Su HH, Chen YH, Chang JT, Huang SS. Sirt1 Activation by Post-ischemic Treatment With Lumbrokinase Protects Against Myocardial Ischemia-Reperfusion Injury. Front Pharmacol 2018; 9:636. [PMID: 29962953 PMCID: PMC6013847 DOI: 10.3389/fphar.2018.00636] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/29/2018] [Indexed: 01/01/2023] Open
Abstract
Lumbrokinase is used as an oral supplement to support and maintain healthy cardiovascular function, and to treat cardiovascular diseases in clinical for more than 10 years. Up until now, the mechanism of the cardioprotective effects of post-ischemic treatment with lumbrokinase has remained unclear. We therefore investigated the signaling pathways involved in the amelioration of myocardial ischemia-reperfusion (I-R) injury in rats treated with lumbrokinase 20 min after myocardial ischemia. Compared to vehicle-treated rats, post-ischemic treatment with lumbrokinase was associated with significant reductions in myocardial I-R-induced arrhythmias and myocardial damage, and an improvement in cardiac function. Moreover, lumbrokinase significantly upregulated levels of silent information regulator 1 (Sirt1). In addition, lumbrokinase significantly increased manganese-dependent superoxide dismutase expression, decreased Cleaved-Caspase-3 expression, and induced deacetylation of FoxO1. On the other hand, lumbrokinase also significantly downregulated levels of succinate dehydrogenase, cytochrome c oxidase, nuclear factor kappa B (NF-κB) and elevated levels of microtubule-associated protein light chain 3. Notably, the cardioprotective effects of lumbrokinase were abolished by administration of the specific Sirt1 inhibitor EX527. These findings demonstrate that post-ischemic treatment with lumbrokinase attenuates myocardial I-R injury through the activation of Sirt1 signaling, and thus enhances autophagic flux and reduces I-R-induced oxidative damage, inflammation and apoptosis.
Collapse
Affiliation(s)
- Yi-Hsin Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-An Li
- Superintendent Office, Yuanli Lee's General Hospital, Lee's Medical Corporation, Miaoli, Taiwan
| | - Chao-Hsin Huang
- Department of Internal Medicine, Dajia Lee's General Hospital, Lee's Medical Corporation, Taichung, Taiwan
| | - Hsing-Hui Su
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science and Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung, Taiwan.,Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| | - Jinghua T Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shiang-Suo Huang
- Department of Pharmacology and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
Li B, Guo L, Ku T, Chen M, Li G, Sang N. PM 2.5 exposure stimulates COX-2-mediated excitatory synaptic transmission via ROS-NF-κB pathway. CHEMOSPHERE 2018; 190:124-134. [PMID: 28987401 DOI: 10.1016/j.chemosphere.2017.09.098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Long-term exposure to fine particulate matter (PM2.5) has been reported to be closely associated with the neuroinflammation and synaptic dysfunction, but the mechanisms underlying the process remain unclear. Cyclooxygenase-2 (COX-2) is a key player in neuroinflammation, and has been also implicated in the glutamatergic excitotoxicity and synaptic plasticity. Thus, we hypothesized that COX-2 was involved in PM2.5-promoted neuroinflammation and synaptic dysfunction. Our results revealed that PM2.5 elevated COX-2 expression in primary cultured hippocampal neurons and increased the amplitude of field excitatory postsynaptic potentials (fEPSPs) in hippocampal brain slices. And the administration of NS398 (a COX-2 inhibitor) prevented the increased fEPSPs. PM2.5 also induced intracellular reactive oxygen species (ROS) generation accompanied with glutathione (GSH) depletion and the loss of mitochondrial membrane potential (MMP), and the ROS inhibitor, N-acetyl-L-cystein (NAC) suppressed the COX-2 overexpression and the increased fEPSPs. Furthermore, the nuclear factor kappa B (NF-κB) was involved in ROS-induced COX-2 and fEPSP in response to PM2.5 exposure. These findings indicated that PM2.5 activated COX-2 expression and enhanced the synaptic transmission through ROS-NF-κB pathway, and provided possible biomarkers and specific interventions for PM2.5-induced neurological damage.
Collapse
Affiliation(s)
- Ben Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Lin Guo
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Minjun Chen
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
8
|
Yang J, Wang T, Li Y, Yao W, Ji X, Wu Q, Han L, Han R, Yan W, Yuan J, Ni C. Earthworm extract attenuates silica-induced pulmonary fibrosis through Nrf2-dependent mechanisms. J Transl Med 2016; 96:1279-1300. [PMID: 27775689 DOI: 10.1038/labinvest.2016.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/05/2016] [Accepted: 08/25/2016] [Indexed: 12/15/2022] Open
Abstract
Silicosis is an occupational pulmonary fibrosis caused by inhalation of silica (SiO2) and there are no ideal drugs to treat this disease. Earthworm extract (EE), a natural nutrient, has been reported to have anti-inflammatory, antioxidant, and anti-apoptosis effects. The purpose of the current study was to test the protective effects of EE against SiO2-induced pulmonary fibrosis and to explore the underlying mechanisms using both in vivo and in vitro models. We found that treatment with EE significantly reduced lung inflammation and fibrosis and improved lung structure and function in SiO2-instilled mice. Further mechanistic investigations revealed that EE administration markedly inhibited SiO2-induced oxidative stress, mitochondrial apoptotic pathway, and epithelial-mesenchymal transition in HBE and A549 cells. Furthermore, we demonstrate that Nrf2 activation partly mediates the interventional effects of EE against SiO2-induced pulmonary fibrosis. Our study has identified EE to be a potential anti-oxidative, anti-inflammatory, and anti-fibrotic drug for silicosis.
Collapse
Affiliation(s)
- Jingjin Yang
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yan Li
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenxi Yao
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoming Ji
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuyun Wu
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Han
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruhui Han
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weiwen Yan
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiali Yuan
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Fu YT, Sheu SY, Chen YS, Chen KY, Yao CH. Porous gelatin/tricalcium phosphate/genipin composites containing lumbrokinase for bone repair. Bone 2015; 78:15-22. [PMID: 25933942 DOI: 10.1016/j.bone.2015.04.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/16/2015] [Accepted: 04/22/2015] [Indexed: 01/22/2023]
Abstract
Bone cell activities are very important in bone remodeling. This study investigates the effects of lumbrokinase on bone cell activities in cultures. Moreover, a biodegradable composite (GGT) containing genipin-crosslinked gelatin and β-tricalcium phosphate was prepared to carry lumbrokinase (GGTLK). Rat calvarial bone defects were filled with GGT and GGTLK composites. Bone healing was monitored in vivo by bioluminescence imaging and micro-CT. Lumbrokinase was found to have a dose-dependent effect on bone cell activities. Low concentrations (<1μg/ml) of lumbrokinase increased the viability, total alkaline phosphatase activity and mobility of osteoblasts, the number of total calcified nodules and the expression of osteopontin and osteocalcin; however, they considerably reduced the total tartrate-resistant acid phosphatase activity of osteoclasts. IVIS images revealed a stronger fluorescent signal in GGTLK-treated animals than in GGT-treated animals. Micro-CT analysis revealed that GGTLK induced more new bone formation than did GGT. These observations suggest that lumbrokinase released from GGTLK composite can enhance bone tissue regeneration.
Collapse
Affiliation(s)
- Yuan-Tsung Fu
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Chinese Medicine, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung 40427, Taiwan
| | - Shi-Yuan Sheu
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Integrated Chinese and Western Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yueh-Sheng Chen
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan
| | - Kuo-Yu Chen
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| | - Chun-Hsu Yao
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan; Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
10
|
Lai CH, Han CK, Shibu MA, Pai PY, Ho TJ, Day CH, Tsai FJ, Tsai CH, Yao CH, Huang CY. Lumbrokinase from earthworm extract ameliorates second-hand smoke-induced cardiac fibrosis. ENVIRONMENTAL TOXICOLOGY 2015; 30:1216-1225. [PMID: 24706507 DOI: 10.1002/tox.21993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/19/2014] [Accepted: 03/23/2014] [Indexed: 06/03/2023]
Abstract
Exposure to tobacco smoke has epidemiologically been linked to the occurrence of cardiovascular disease among nonsmokers but the associated molecular events are not well elucidated yet. When Sprague Dawley rats were exposed to second-hand tobacco cigarette smoke twice a day for a 30 days period at an exposure rate of 10 cigarettes/30 min, they showed adverse effects including reduced left ventricle weight, increased cardiac damages, deteriorated cardiac features, and cardiac fibrosis. Exposure to second-hand smoking (SHS) increased the molecular markers of cardiac fibrosis such as urokinase plasminogen activator and matrix metallopeptidases. The modulations in the protein levels were led by the activation of extracellular signal-regulated kinases (ERK1/2), the transcription factor-specificity protein 1 (SP1), and the fibrogenic master switch-connective for epithelial-mesenchymal transition tissue growth factor there by indicating their effective role in SHS-induced myocardial infraction. Dilong, an edible earthworm extract used in Chinese medicine and its bioactive fibrinolytic enzyme product-lumbrokinase, when administered in rats, restricted the SHS exposure induced cardiac fibrosis and provided cardio-protection. The results show that lumbrokinase and dilong administration can efficiently prevent epidemiological incidence of cardiac disease among SHS-exposed nonsmokers.
Collapse
Affiliation(s)
- Chao-Hung Lai
- Graduate Institute of Aging Medicine, China Medical University, Taichung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Chien-Kuo Han
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | | | - Pei Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Jung Ho
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Beigang Hospital, Taiwan
| | | | - Fuu-Jen Tsai
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Chang-Hai Tsai
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Chun-Hsu Yao
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Fu YT, Chen KY, Chen YS, Yao CH. Earthworm (Pheretima aspergillum) extract stimulates osteoblast activity and inhibits osteoclast differentiation. Altern Ther Health Med 2014; 14:440. [PMID: 25387689 PMCID: PMC4233063 DOI: 10.1186/1472-6882-14-440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 08/21/2014] [Indexed: 01/21/2023]
Abstract
Background The potential benefits of earthworm (Pheretima aspergillum) for healing have received considerable attention recently. Osteoblast and osteoclast activities are very important in bone remodeling, which is crucial to repair bone injuries. This study investigated the effects of earthworm extract on bone cell activities. Methods Osteoblast-like MG-63 cells and RAW 264.7 macrophage cells were used for identifying the cellular effects of different concentrations of earthworm extract on osteoblasts and osteoclasts, respectively. The optimal concentration of earthworm extract was determined by mitochondrial colorimetric assay, alkaline phosphatase activity, matrix calcium deposition, Western blotting and tartrate-resistant acid phosphatase activity. Results Earthworm extract had a dose-dependent effect on bone cell activities. The most effective concentration of earthworm extract was 3 mg/ml, significantly increasing osteoblast proliferation and differentiation, matrix calcium deposition and the expression levels of alkaline phosphatase, osteopontin and osteocalcin. Conversely, 3 mg/ml earthworm extract significantly reduced the tartrate-resistant acid phosphatase activity of osteoclasts without altering cell viability. Conclusions Earthworm extract has beneficial effects on bone cell cultures, indicating that earthworm extract is a potential agent for use in bone regeneration.
Collapse
|