1
|
Dasgupta S, Gao S, Yang H, Greenberg MM, Basu AK. 8-OxodGuo and Fapy•dG Mutagenicity in Escherichia coli Increases Significantly when They Are Part of a Tandem Lesion with 5-Formyl-2'-deoxyuridine. Chem Res Toxicol 2024; 37:1445-1452. [PMID: 39041427 PMCID: PMC11333159 DOI: 10.1021/acs.chemrestox.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Tandem lesions, which are defined by two or more contiguously damaged nucleotides, are a hallmark of ionizing radiation. Recently, tandem lesions containing 5-formyl-2'-deoxyuridine (5-fdU) flanked by a 5'-8-OxodGuo or Fapy•dG were discovered, and they are more mutagenic in human cells than the isolated lesions. In the current study, we examined replication of these tandem lesions in Escherichia coli. Bypass efficiency of both tandem lesions was reduced by 30-40% compared to the isolated lesions. Mutation frequencies (MFs) of isolated 8-OxodGuo and Fapy•dG were low, and no mutants were isolated from replication of a 5-fdU construct. The types of mutations from 8-OxodGuo were targeted G → T transversion, whereas Fapy•dG predominantly gave G → T and G deletion. 5'-8-OxodGuo-5-fdU also gave exclusively G → T mutation, which was 3-fold and 11-fold greater, without and with SOS induction, respectively, compared to that of an isolated 8-OxodGuo. In mutY/mutM cells, the MF of 8-OxodGuo and 5'-8-OxodGuo-5-fdU increased 13-fold and 7-fold, respectively. The MF of 5'-8-OxodGuo-5-fdU increased 2-fold and 3-fold in Pol II- and Pol IV-deficient cells, respectively, suggesting that these polymerases carry out largely error-free bypass. The MF of 5'- Fapy•dG-5-fdU was similar without (13 ± 1%) and with (16 ± 2%) SOS induction. Unlike the complex mutation spectrum reported earlier in human cells for 5'- Fapy•dG-5-fdU, with G → T as the major type of errors, in E. coli, the mutations were predominantly from deletion of 5-fdU. We postulate that removal of adenine-incorporated opposite 8-OxodGuo by Fpg and MutY repair proteins is partially impaired in the tandem 5'-8-OxodGuo-5-fdU, resulting in an increase in the G → T mutations, whereas a slippage mechanism may be operating in the 5'- Fapy•dG-5-fdU mutagenesis. This study showed that not only are these tandem lesions more mutagenic than the isolated lesions but they may also exhibit different types of mutations in different organisms.
Collapse
Affiliation(s)
- Srijana Dasgupta
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shijun Gao
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Haozhe Yang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
2
|
The Usefulness of Autoradiography for DNA Repair Proteins Activity Detection in the Cytoplasm towards Radiolabeled Oligonucleotides Containing 5′,8-Cyclo-2′-deoxyAdenosine. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Autoradiography of 32P-radiolabeled oligonucleotides is one of the most precise detection methods of DNA repair processes. In this study, autoradiography allowed assessing the activity of proteins in the cytoplasm involved in DNA repair. The cytoplasm is the site of protein biosynthesis but is also a target cellular compartment of synthetic therapeutic oligonucleotide (STO) delivery. The DNA-based drugs may be impaired by radiation-induced lesions, such as clustered DNA lesions (CDL) and/or 5′,8-cyclo-2′-deoxypurines (cdPu). CDL and cdPu may appear in the sequence of STO after irradiation and subsequently impair DNA repair, as shown in previous studies. Hence, the interesting questions are (1) is it safe to combine STO treatment with radiotherapy; (2) are repair proteins active in the cytoplasm; and (3) is their activity different in the cytoplasm than in the nucleus? This unique study examined whether the proteins involved in the DNA repair are affected by the CDL while they are still present in the cytoplasm of xrs5, BJ, and XPC cells. Double-stranded oligonucleotides with bi-stranded CDL were used (containing AP site in one strand and a (5′S) or (5′R) 5′,8-cyclo-2′-deoxyadenosine (cdA) in the other strand located 1 or 4 bp in both directions). The results have shown that the proteins involved in the repair were active in the cytoplasm, but less than in the nucleus. The general trends aligned for cytoplasm and nucleus—lesions located in the 5′-end direction inhibited the course of DNA repair. The combination of STO with radiotherapy should be applied carefully, as unrepaired lesions within STO may impair their therapeutic efficiency.
Collapse
|
3
|
Tsegay PS, Hernandez D, Brache C, Chatgilialoglu C, Krokidis MG, Chapagain P, Liu Y. Incorporation of 5',8-cyclo-2'deoxyadenosines by DNA repair polymerases via base excision repair. DNA Repair (Amst) 2022; 109:103258. [PMID: 34871863 PMCID: PMC9884144 DOI: 10.1016/j.dnarep.2021.103258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 01/31/2023]
Abstract
5',8-cyclo-2-deoxy nucleosides (cdPus) are the smallest tandem purine lesions including 5',8-cyclo-2'-deoxyadenosine (cdA) and 5',8-cyclo-2'-deoxyguanosine (cdG). They can inhibit DNA and RNA polymerases causing mutations, DNA strand breaks, and termination of DNA replication and gene transcription. cdPus can be removed by nucleotide excision repair with low efficiency allowing them to accumulate in the genome. Recent studies suggest that cdPus can be induced in damaged nucleotide pools and incorporated into the genome by DNA polymerases. However, it remains unknown if and how DNA polymerases can incorporate cdPus. In this study, we examined the incorporation of cdAs by human DNA repair polymerases, DNA polymerases β (pol β), and pol η during base excision repair. We then determined the efficiency of cdA incorporation by the polymerases using steady-state kinetics. We found that pol β and pol η incorporated cdAs opposite dT and dC with low efficiency, and incorporated cdAs were readily extended and ligated into duplex DNA. Using molecular docking analysis, we found that the 5',8-covalent bond in cdA disrupted its hydrogen bonding with a template base suggesting that the phosphodiester bond between the 3'-terminus nucleotide and the α-phosphate of cdATP were generated in the absence of hydrogen bonding. The enzyme kinetics analysis further suggests that pol β and pol η increased their substrate binding to facilitate the enzyme catalysis for cdA incorporation. Our study reveals unique mechanisms underlying the accumulation of cdPu lesions in the genome resulting from nucleotide incorporation by repair DNA polymerases.
Collapse
Affiliation(s)
- Pawlos S. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Daniela Hernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Christopher Brache
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | | | - Marios G. Krokidis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. “Demokritos,” 15341, Agia Paraskevi, Athens, Greece
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, FL, USA,Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA,Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA,Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA,Correspondence:
| |
Collapse
|
4
|
Boguszewska K, Kaźmierczak-Barańska J, Karwowski BT. The Influence of 5',8-Cyclo-2'-deoxypurines on the Mitochondrial Repair of Clustered DNA Damage in Xrs5 Cells: The Preliminary Study. Molecules 2021; 26:molecules26227042. [PMID: 34834133 PMCID: PMC8623968 DOI: 10.3390/molecules26227042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
The 5′,8-cyclo-2′-deoxypurines (cdPus) affect the DNA structure. When these bulky structures are a part of clustered DNA lesions (CDL), they affect the repair of the other lesions within the cluster. Mitochondria are crucial for cell survival and have their own genome, hence, are highly interesting in the context of CDL repair. However, no studies are exploring this topic. Here, the initial stages of mitochondrial base excision repair (mtBER) were considered—the strand incision and elongation. The repair of a single lesion (apurinic site (AP site)) accompanying the cdPu within the double-stranded CDL has been investigated for the first time. The type of cdPu, its diastereomeric form, and the interlesion distance were taken into consideration. For these studies, the established experimental model of short oligonucleotides (containing AP sites located ≤7 base pairs to the cdPu in both directions) and mitochondrial extracts of the xrs5 cells were used. The obtained results have shown that the presence of cdPus influenced the processing of an AP site within the CDL. Levels of strand incision and elongation were higher for oligos containing RcdA and ScdG than for those with ScdA and RcdG. Investigated stages of mtBER were more efficient for DNA containing AP sites located on 5′-end side of cdPu than on its 3′-end side. In conclusion, the presence of cdPus in mtDNA structure may affect mtBER (processing the second mutagenic lesion within the CDL). As impaired repair processes may lead to serious biological consequences, further studies concerning the mitochondrial repair of CDL are highly demanded.
Collapse
|
5
|
Szewczuk M, Boguszewska K, Kaźmierczak-Barańska J, Karwowski BT. The Influence of 5' R and 5' S cdA and cdG on the Activity of BsmAI and SspI Restriction Enzymes. Molecules 2021; 26:molecules26123750. [PMID: 34205449 PMCID: PMC8234751 DOI: 10.3390/molecules26123750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/03/2023] Open
Abstract
Restriction endonucleases (REs) are intra-bacterial scissors that are considered tools in the fight against foreign genetic material. SspI and BsmAI, examined in this study, cleave dsDNA at their site of recognition or within a short distance of it. Both enzymes are representatives of type II REs, which have played an extremely important role in research on the genetics of organisms and molecular biology. Therefore, the study of agents affecting their activity has become highly important. Ionizing radiation may damage basic cellular mechanisms by inducing lesions in the genome, with 5',8-cyclo-2'-deoxypurines (cdPus) as a model example. Since cdPus may become components of clustered DNA lesions (CDLs), which are unfavorable for DNA repair pathways, their impact on other cellular mechanisms is worthy of attention. This study investigated the influence of cdPus on the elements of the bacterial restriction-modification system. In this study, it was shown that cdPus present in DNA affect the activity of REs. SspI was blocked by any cdPu lesion present at the enzyme's recognition site. When lesions were placed near the recognition sequence, the SspI was inhibited up to 46%. Moreover, (5'S)-5',8-cyclo-2'-deoxyadenosine (ScdA) present in the oligonucleotide sequence lowered BsmAI activity more than (5'R)-5',8-cyclo-2'-deoxyadenosine (RcdA). Interestingly, in the case of 5',8-cyclo-2'-deoxyguanosine (cdG), both 5'S and 5'R diastereomers inhibited BsmAI activity (up to 55% more than cdA). The inhibition was weaker when cdG was present at the recognition site rather than the cleavage site.
Collapse
|
6
|
Boguszewska K, Szewczuk M, Kaźmierczak-Barańska J, Karwowski BT. How (5'S) and (5'R) 5',8-Cyclo-2'-Deoxypurines Affect Base Excision Repair of Clustered DNA Damage in Nuclear Extracts of xrs5 Cells? A Biochemical Study. Cells 2021; 10:725. [PMID: 33805115 PMCID: PMC8064110 DOI: 10.3390/cells10040725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
The clustered DNA lesions (CDLs) are a characteristic feature of ionizing radiation's impact on the human genetic material. CDLs impair the efficiency of cellular repair machinery, especially base excision repair (BER). When CDLs contain a lesion repaired by BER (e.g., apurinic/apyrimidinic (AP) sites) and a bulkier 5',8-cyclo-2'-deoxypurine (cdPu), which is not a substrate for BER, the repair efficiency of the first one may be affected. The cdPus' influence on the efficiency of nuclear BER in xrs5 cells have been investigated using synthetic oligonucleotides with bi-stranded CDL (containing (5'S) 5',8-cyclo-2'-deoxyadenosine (ScdA), (5'R) 5',8-cyclo-2'-deoxyadenosine (RcdA), (5'S) 5',8-cyclo-2'-deoxyguanosine (ScdG) or (5'R) 5',8-cyclo-2'-deoxyguanosine (RcdG) in one strand and an AP site in the other strand at different interlesion distances). Here, for the first time, the impact of ScdG and RcdG was experimentally tested in the context of nuclear BER. This study shows that the presence of RcdA inhibits BER more than ScdA; however, ScdG decreases repair level more than RcdG. Moreover, AP sites located ≤10 base pairs to the cdPu on its 5'-end side were repaired less efficiently than AP sites located ≤10 base pairs on the 3'-end side of cdPu. The strand with an AP site placed opposite cdPu or one base in the 5'-end direction was not reconstituted for cdA nor cdG. CdPus affect the repair of the other lesion within the CDL. It may translate to a prolonged lifetime of unrepaired lesions leading to mutations and impaired cellular processes. Therefore, future research should focus on exploring this subject in more detail.
Collapse
Affiliation(s)
| | | | | | - Bolesław T. Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland; (K.B.); (M.S.); (J.K.-B.)
| |
Collapse
|
7
|
Products of Oxidative Guanine Damage Form Base Pairs with Guanine. Int J Mol Sci 2020; 21:ijms21207645. [PMID: 33076559 PMCID: PMC7589758 DOI: 10.3390/ijms21207645] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 01/18/2023] Open
Abstract
Among the natural bases, guanine is the most oxidizable base. The damage caused by oxidation of guanine, commonly referred to as oxidative guanine damage, results in the formation of several products, including 2,5-diamino-4H-imidazol-4-one (Iz), 2,2,4-triamino-5(2H)-oxazolone (Oz), guanidinoformimine (Gf), guanidinohydantoin/iminoallantoin (Gh/Ia), spiroiminodihydantoin (Sp), 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), urea (Ua), 5-guanidino-4-nitroimidazole (NI), spirodi(iminohydantoin) (5-Si and 8-Si), triazine, the M+7 product, other products by peroxynitrite, alkylated guanines, and 8,5'-cyclo-2'-deoxyguanosine (cG). Herein, we summarize the present knowledge about base pairs containing the products of oxidative guanine damage and guanine. Of these products, Iz is involved in G-C transversions. Oz, Gh/Ia, and Sp form preferably Oz:G, Gh/Ia:G, and Sp:G base pairs in some cases. An involvement of Gf, 2Ih, Ua, 5-Si, 8-Si, triazine, the M+7 product, and 4-hydroxy-2,5-dioxo-imidazolidine-4-carboxylic acid (HICA) in G-C transversions requires further experiments. In addition, we describe base pairs that target the RNA-dependent RNA polymerase (RdRp) of RNA viruses and describe implications for the 2019 novel coronavirus (SARS-CoV-2): When products of oxidative guanine damage are adapted for the ribonucleoside analogs, mimics of oxidative guanine damages, which can form base pairs, may become antiviral agents for SARS-CoV-2.
Collapse
|
8
|
Zhang H. Mechanisms of mutagenesis induced by DNA lesions: multiple factors affect mutations in translesion DNA synthesis. Crit Rev Biochem Mol Biol 2020; 55:219-251. [PMID: 32448001 DOI: 10.1080/10409238.2020.1768205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Environmental mutagens lead to mutagenesis. However, the mechanisms are very complicated and not fully understood. Environmental mutagens produce various DNA lesions, including base-damaged or sugar-modified DNA lesions, as well as epigenetically modified DNA. DNA polymerases produce mutation spectra in translesion DNA synthesis (TLS) through misincorporation of incorrect nucleotides, frameshift deletions, blockage of DNA replication, imbalance of leading- and lagging-strand DNA synthesis, and genome instability. Motif or subunit in DNA polymerases further affects the mutations in TLS. Moreover, protein interactions and accessory proteins in DNA replisome also alter mutations in TLS, demonstrated by several representative DNA replisomes. Finally, in cells, multiple DNA polymerases or cellular proteins collaborate in TLS and reduce in vivo mutagenesis. Summaries and perspectives were listed. This review shows mechanisms of mutagenesis induced by DNA lesions and the effects of multiple factors on mutations in TLS in vitro and in vivo.
Collapse
Affiliation(s)
- Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
5',8-Cyclopurine Lesions in DNA Damage: Chemical, Analytical, Biological, and Diagnostic Significance. Cells 2019; 8:cells8060513. [PMID: 31141888 PMCID: PMC6628319 DOI: 10.3390/cells8060513] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Purine 5′,8-cyclo-2′-deoxynucleosides (cPu) are tandem-type lesions observed among the DNA purine modifications and identified in mammalian cellular DNA in vivo. These lesions can be present in two diasteroisomeric forms, 5′R and 5′S, for each 2′-deoxyadenosine and 2′-deoxyguanosine moiety. They are generated exclusively by hydroxyl radical attack to 2′-deoxyribose units generating C5′ radicals, followed by cyclization with the C8 position of the purine base. This review describes the main recent achievements in the preparation of the cPu molecular library for analytical and DNA synthesis applications for the studies of the enzymatic recognition and repair mechanisms, their impact on transcription and genetic instability, quantitative determination of the levels of lesions in various types of cells and animal model systems, and relationships between the levels of lesions and human health, disease, and aging, as well as the defining of the detection limits and quantification protocols.
Collapse
|
10
|
Shafirovich V, Kolbanovskiy M, Kropachev K, Liu Z, Cai Y, Terzidis MA, Masi A, Chatgilialoglu C, Amin S, Dadali A, Broyde S, Geacintov NE. Nucleotide Excision Repair and Impact of Site-Specific 5',8-Cyclopurine and Bulky DNA Lesions on the Physical Properties of Nucleosomes. Biochemistry 2019; 58:561-574. [PMID: 30570250 PMCID: PMC6373774 DOI: 10.1021/acs.biochem.8b01066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nonbulky 5',8-cyclopurine DNA lesions (cP) and the bulky, benzo[ a]pyrene diol epoxide-derived stereoisomeric cis- and trans- N2-guanine adducts (BPDE-dG) are good substrates of the human nucleotide excision repair (NER) mechanism. These DNA lesions were embedded at the In or Out rotational settings near the dyad axis in nucleosome core particles reconstituted either with native histones extracted from HeLa cells (HeLa-NCP) or with recombinant histones (Rec-NCP). The cP lesions are completely resistant to NER in human HeLa cell extracts. The BPDE-dG adducts are also NER-resistant in Rec-NCPs but are good substrates of NER in HeLa-NCPs. The four BPDE-dG adduct samples are excised with different efficiencies in free DNA, but in HeLa-NCPs, the efficiencies are reduced by a common factor of 2.2 ± 0.2 relative to the NER efficiencies in free DNA. The NER response of the BPDE-dG adducts in HeLa-NCPs is not directly correlated with the observed differences in the thermodynamic destabilization of HeLa-NCPs, the Förster resonance energy transfer values, or hydroxyl radical footprint patterns and is weakly dependent on the rotational settings. These and other observations suggest that NER is initiated by the binding of the DNA damage-sensing NER factor XPC-RAD23B to a transiently opened BPDE-modified DNA sequence that corresponds to the known footprint of XPC-DNA-RAD23B complexes (≥30 bp). These observations are consistent with the hypothesis that post-translational modifications and the dimensions and properties of the DNA lesions are the major factors that have an impact on the dynamics and initiation of NER in nucleosomes.
Collapse
Affiliation(s)
- Vladimir Shafirovich
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Marina Kolbanovskiy
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Konstantin Kropachev
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Zhi Liu
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Yuquin Cai
- Department of Biology, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Michael A. Terzidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Shantu Amin
- Department of Pharmacology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Alexander Dadali
- Bronx College of the City University of New York, Bronx, NY 10453, United States
| | - Suse Broyde
- Department of Biology, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Nicholas E. Geacintov
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| |
Collapse
|
11
|
Diastereomeric Recognition of 5',8-cyclo-2'-Deoxyadenosine Lesions by Human Poly(ADP-ribose) Polymerase 1 in a Biomimetic Model. Cells 2019; 8:cells8020116. [PMID: 30717407 PMCID: PMC6406461 DOI: 10.3390/cells8020116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/20/2019] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
5’,8-Cyclo-2’-deoxyadenosine (cdA), in the 5’R and 5’Sdiastereomeric forms, are typical non strand-break oxidative DNA lesions, induced by hydroxyl radicals, with emerging importance as a molecular marker. These lesions are exclusively repaired by the nucleotide excision repair (NER) mechanism with a low efficiency, thus readily accumulating in the genome. Poly(ADP-ribose) polymerase1 (PARP1) acts as an early responder to DNA damage and plays a key role as a nick sensor in the maintenance of the integrity of the genome by recognizing nicked DNA. So far, it was unknown whether the two diastereomeric cdA lesions could induce specific PARP1 binding. Here, we provide the first evidence of PARP1 to selectively recognize the diastereomeric lesions of 5’S-cdA and 5’R-cdA in vitro as compared to deoxyadenosine in model DNA substrates (23-mers) by using circular dichroism, fluorescence spectroscopy, immunoblotting analysis, and gel mobility shift assay. Several features of the recognition of the damaged and undamaged oligonucleotides by PARP1 were characterized. Remarkably, PARP1 exhibits different affinities in binding to a double strand (ds) oligonucleotide, which incorporates cdA lesions in R and S diastereomeric form. In particular, PARP1 proved to bind oligonucleotides, including a 5’S-cdA, with a higher affinity constant for the 5’S lesion in a model of ds DNA than 5’R-cdA, showing different recognition patterns, also compared with undamaged dA. This new finding highlights the ability of PARP1 to recognize and differentiate the distorted DNA backbone in a biomimetic system caused by different diastereomeric forms of a cdA lesion.
Collapse
|
12
|
Coskun E, Jaruga P, Vartanian V, Erdem O, Egner PA, Groopman JD, Lloyd RS, Dizdaroglu M. Aflatoxin-Guanine DNA Adducts and Oxidatively Induced DNA Damage in Aflatoxin-Treated Mice in Vivo as Measured by Liquid Chromatography-Tandem Mass Spectrometry with Isotope Dilution. Chem Res Toxicol 2018; 32:80-89. [PMID: 30525498 DOI: 10.1021/acs.chemrestox.8b00202] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dietary exposure to aflatoxin B1 (AFB1) is a significant contributor to the incidence of hepatocellular carcinomas globally. AFB1 exposure leads to the formation of AFB1-N7-guanine (AFB1-N7-Gua) and two diastereomers of the imidazole ring-opened 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua) in DNA. These adducts lead to G → T transversion mutations with the ring-opened adduct being more mutagenic than the cationic species. Accurate measurement of these three adducts as biomarkers in DNA and urine will help identify dietary exposure to AFB1 as a risk factor in the development of hepatocellular carcinoma worldwide. Herein, we report an improved methodology for the measurement of AFB1-N7-Gua and the two diastereomers of AFB1-FapyGua using liquid chromatography-tandem mass spectrometry with isotope dilution. We measured the levels of these compounds in liver DNA of six control mice and six AFB1-treated mice. Levels varying from 1.5 to 45 lesions/106 DNA bases in AFB1-treated mice were detected depending on the compound and animal. No background levels of these adducts were detected in control mice. We also tested whether the AFB1 treatment caused oxidatively induced DNA base damage using gas chromatography-tandem mass spectrometry with isotope dilution. Although background levels of several pyrimidine- and purine-derived lesions were detected, no increases in these levels were found upon AFB1 treatment of mice. On the other hand, significantly increased levels of (5' R)- and (5' S)-8,5'-cyclo-2'-deoxyadenosines were observed in liver DNA of AFB1-treated mice. The impact of this work is expected to achieve the accurate measurement of three AFB1-DNA adducts and oxidatively induced DNA lesions as biomarkers of AFB1 exposure as germane to investigations designed for the prevention of aflatoxin-related hepatocellular carcinomas and for determining the effects of genetic deficiencies in human populations.
Collapse
Affiliation(s)
- Erdem Coskun
- Biomolecular Measurement Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | - Pawel Jaruga
- Biomolecular Measurement Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | - Vladimir Vartanian
- Oregon Institute of Occupational Health Sciences , Oregon Health & Science University , Portland , Oregon 97239 , United States
| | - Onur Erdem
- Biomolecular Measurement Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States.,Department of Toxicology, Gülhane Faculty of Pharmacy , University of Health Sciences , Ankara 06010 , Turkey
| | - Patricia A Egner
- Department of Environmental Health and Engineering , Johns Hopkins University Bloomberg School of Public Health , Baltimore , Maryland 21205 , United States
| | - John D Groopman
- Department of Environmental Health and Engineering , Johns Hopkins University Bloomberg School of Public Health , Baltimore , Maryland 21205 , United States
| | - R Stephen Lloyd
- Department of Toxicology, Gülhane Faculty of Pharmacy , University of Health Sciences , Ankara 06010 , Turkey
| | - Miral Dizdaroglu
- Biomolecular Measurement Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| |
Collapse
|
13
|
Gooch A, Sizochenko N, Rasulev B, Gorb L, Leszczynski J. In vivo toxicity of nitroaromatics: A comprehensive quantitative structure-activity relationship study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2227-2233. [PMID: 28169452 DOI: 10.1002/etc.3761] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/01/2016] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
The toxicity data of 90 nitroaromatic compounds related to their 50% lethal dose concentration for rats (LD50) were analyzed to develop quantitative structure-activity relationship (QSAR) models. Quantum-chemically calculated descriptors together with molecular descriptors generated by DRAGON, PaDEL, and HiT-QSAR software were utilized to build QSAR models. Quality and validity of the models were determined by internal and external validation techniques. The results show that the toxicity of nitroaromatic compounds depends on various factors, such as the number of nitro-groups, the topological state, and the presence of certain structural fragments. The developed models based on the largest (to date) dataset of nitroaromatics in vivo toxicity showed a good predictive ability. The results provide important input that could be applied in a preliminary assessment of nitroaromatic compounds' toxicity to mammals. Environ Toxicol Chem 2017;36:2227-2233. © 2017 SETAC.
Collapse
Affiliation(s)
- Aminah Gooch
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi, USA
| | - Natalia Sizochenko
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi, USA
| | - Bakhtiyor Rasulev
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi, USA
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, USA
| | - Leonid Gorb
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi, USA
- HX5, Vicksburg, Mississippi, USA
| | - Jerzy Leszczynski
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi, USA
| |
Collapse
|
14
|
Brooks PJ. The cyclopurine deoxynucleosides: DNA repair, biological effects, mechanistic insights, and unanswered questions. Free Radic Biol Med 2017; 107:90-100. [PMID: 28011151 DOI: 10.1016/j.freeradbiomed.2016.12.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
Abstract
Patients with the genetic disease xeroderma pigmentosum (XP) who lack the capacity to carry out nucleotides excision repair (NER) have a dramatically elevated risk of skin cancer on sun exposed areas of the body. NER is the DNA repair mechanism responsible for the removal of DNA lesions resulting from ultraviolet light. In addition, a subset of XP patients develop a progressive neurodegenerative disease, referred to as XP neurologic disease, which is thought to be the result of accumulation of endogenous DNA lesions that are repaired by NER but not other repair pathways. The 8,5-cyclopurine deoxynucleotides (cyPu) have emerged as leading candidates for such lesions, in that they result from the reaction of the hydroxyl radical with DNA, are strong blocks to transcription in human cells, and are repaired by NER but not base excision repair. Here I present a focused perspective on progress into understating the repair and biological effects of these lesions. In doing so, I emphasize the role of Tomas Lindahl and his laboratory in stimulating cyPu research. I also include a critical evaluation of the evidence supporting a role for cyPu lesions in XP neurologic disease, with a focus on outstanding questions, and conceptual and technologic challenges.
Collapse
Affiliation(s)
- Philip J Brooks
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|
15
|
AbdulSalam SF, Thowfeik FS, Merino EJ. Excessive Reactive Oxygen Species and Exotic DNA Lesions as an Exploitable Liability. Biochemistry 2016; 55:5341-52. [PMID: 27582430 DOI: 10.1021/acs.biochem.6b00703] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the terms "excessive reactive oxygen species (ROS)" and "oxidative stress" are widely used, the implications of oxidative stress are often misunderstood. ROS are not a single species but a variety of compounds, each with unique biochemical properties and abilities to react with biomolecules. ROS cause activation of growth signals through thiol oxidation and may lead to DNA damage at elevated levels. In this review, we first discuss a conceptual framework for the interplay of ROS and antioxidants. This review then describes ROS signaling using FLT3-mediated growth signaling as an example. We then focus on ROS-mediated DNA damage. High concentrations of ROS result in various DNA lesions, including 8-oxo-7,8-dihydro-guanine, oxazolone, DNA-protein cross-links, and hydantoins, that have unique biological impacts. Here we delve into the biochemistry of nine well-characterized DNA lesions. Within each lesion, the types of repair mechanisms, the mutations induced, and their effects on transcription and replication are discussed. Finally, this review will discuss biochemically inspired implications for cancer therapy. Several teams have put forward designs to harness the excessive ROS and the burdened DNA repair systems of tumor cells for treating cancer. We discuss inhibition of the antioxidant system, the targeting of DNA repair, and ROS-activated prodrugs.
Collapse
Affiliation(s)
- Safnas F AbdulSalam
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Fathima Shazna Thowfeik
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Edward J Merino
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
16
|
Jiang Z, Xu M, Lai Y, Laverde EE, Terzidis MA, Masi A, Chatgilialoglu C, Liu Y. Bypass of a 5',8-cyclopurine-2'-deoxynucleoside by DNA polymerase β during DNA replication and base excision repair leads to nucleotide misinsertions and DNA strand breaks. DNA Repair (Amst) 2015; 33:24-34. [PMID: 26123757 DOI: 10.1016/j.dnarep.2015.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/23/2015] [Accepted: 06/09/2015] [Indexed: 12/18/2022]
Abstract
5',8-Cyclopurine-2'-deoxynucleosides including 5',8-cyclo-dA (cdA) and 5',8-cyclo-dG (cdG) are induced by hydroxyl radicals resulting from oxidative stress such as ionizing radiation. 5',8-cyclopurine-2'-deoxynucleoside lesions are repaired by nucleotide excision repair with low efficiency, thereby leading to their accumulation in the human genome and lesion bypass by DNA polymerases during DNA replication and base excision repair (BER). In this study, for the first time, we discovered that DNA polymerase β (pol β) efficiently bypassed a 5'R-cdA, but inefficiently bypassed a 5'S-cdA during DNA replication and BER. We found that cell extracts from pol β wild-type mouse embryonic fibroblasts exhibited significant DNA synthesis activity in bypassing a cdA lesion located in replication and BER intermediates. However, pol β knock-out cell extracts exhibited little DNA synthesis to bypass the lesion. This indicates that pol β plays an important role in bypassing a cdA lesion during DNA replication and BER. Furthermore, we demonstrated that pol β inserted both a correct and incorrect nucleotide to bypass a cdA at a low concentration. Nucleotide misinsertion was significantly stimulated by a high concentration of pol β, indicating a mutagenic effect induced by pol β lesion bypass synthesis of a 5',8-cyclopurine-2'-deoxynucleoside. Moreover, we found that bypass of a 5'S-cdA by pol β generated an intermediate that failed to be extended by pol β, resulting in accumulation of single-strand DNA breaks. Our study provides the first evidence that pol β plays an important role in bypassing a 5',8-cyclo-dA during DNA replication and repair, as well as new insight into mutagenic effects and genome instability resulting from pol β bypassing of a cdA lesion.
Collapse
Affiliation(s)
- Zhongliang Jiang
- Department of Chemistry and Biochemistry, USA; Biochemistry Ph.D. Program, USA
| | - Meng Xu
- Department of Chemistry and Biochemistry, USA
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, USA
| | | | - Michael A Terzidis
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Masi
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15341, Agia Paraskevi, Athens, Greece
| | - Yuan Liu
- Department of Chemistry and Biochemistry, USA; Biochemistry Ph.D. Program, USA; Biomolecular Sciences Institute, School of Integrated Sciences and Humanities, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.
| |
Collapse
|
17
|
Xu W, Ouellette AM, Wawrzak Z, Shriver SJ, Anderson SM, Zhao L. Kinetic and structural mechanisms of (5'S)-8,5'-cyclo-2'-deoxyguanosine-induced dna replication stalling. Biochemistry 2015; 54:639-51. [PMID: 25569151 DOI: 10.1021/bi5014936] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The (5'S)-8,5'-cyclo-2'-deoxyguanosine (S-cdG) lesion is produced from reactions of DNA with hydroxyl radicals generated from ionizing radiation or endogenous oxidative metabolisms. An elevated level of S-cdG has been detected in Xeroderma pigmentosum, Cockayne syndrome, breast cancer patients, and aged mice. S-dG blocks DNA replication and transcription in vitro and in human cells and produces mutant replication and transcription products in vitro and in vivo. Major cellular protection against S-dG includes nucleotide excision repair and translesion DNA synthesis. We used kinetic and crystallographic approaches to elucidate the molecular mechanisms of S-cdG-induced DNA replication stalling using model B-family Sulfolobus solfataricus P2 DNA polymerase B1 (Dpo1) and Y-family S. solfataricus P2 DNA polymerase IV (Dpo4). Dpo1 and Dpo4 inefficiently bypassed S-cdG with dCTP preferably incorporated and dTTP (for Dpo4) or dATP (for Dpo1) misincorporated. Pre-steady-state kinetics and crystallographic data mechanistically explained the low-efficiency bypass. For Dpo1, S-cdG attenuated Kd,dNTP,app and kpol. For Dpo4, the S-cdG-adducted duplex caused a 6-fold decrease in Dpo4:DNA binding affinity and significantly reduced the concentration of the productive Dpo4:DNA:dCTP complex. Consistent with the inefficient bypass, crystal structures of Dpo4:DNA(S-cdG):dCTP (error-free) and Dpo4:DNA(S-cdG):dTTP (error-prone) complexes were catalytically incompetent. In the Dpo4:DNA(S-cdG):dTTP structure, S-cdG induced a loop structure and caused an unusual 5'-template base clustering at the active site, providing the first structural evidence of the previously suggested template loop structure that can be induced by a cyclopurine lesion. Together, our results provided mechanistic insights into S-cdG-induced DNA replication stalling.
Collapse
Affiliation(s)
- Wenyan Xu
- Department of Chemistry and Biochemistry and ‡Science of Advanced Materials Program, Central Michigan University , Mount Pleasant, Michigan 48859, United States
| | | | | | | | | | | |
Collapse
|
18
|
Xu M, Lai Y, Jiang Z, Terzidis MA, Masi A, Chatgilialoglu C, Liu Y. A 5', 8-cyclo-2'-deoxypurine lesion induces trinucleotide repeat deletion via a unique lesion bypass by DNA polymerase β. Nucleic Acids Res 2014; 42:13749-63. [PMID: 25428354 PMCID: PMC4267656 DOI: 10.1093/nar/gku1239] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
5',8-cyclo-2'-deoxypurines (cdPus) are common forms of oxidized DNA lesions resulting from endogenous and environmental oxidative stress such as ionizing radiation. The lesions can only be repaired by nucleotide excision repair with a low efficiency. This results in their accumulation in the genome that leads to stalling of the replication DNA polymerases and poor lesion bypass by translesion DNA polymerases. Trinucleotide repeats (TNRs) consist of tandem repeats of Gs and As and therefore are hotspots of cdPus. In this study, we provided the first evidence that both (5'R)- and (5'S)-5',8-cyclo-2'-deoxyadenosine (cdA) in a CAG repeat tract caused CTG repeat deletion exclusively during DNA lagging strand maturation and base excision repair. We found that a cdA induced the formation of a CAG loop in the template strand, which was skipped over by DNA polymerase β (pol β) lesion bypass synthesis. This subsequently resulted in the formation of a long flap that was efficiently cleaved by flap endonuclease 1, thereby leading to repeat deletion. Our study indicates that accumulation of cdPus in the human genome can lead to TNR instability via a unique lesion bypass by pol β.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| | - Zhongliang Jiang
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| | - Michael A Terzidis
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Masi
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy Institute of Nanoscience and Nanotechnology, N.C.S.R. 'Demokritos', 15341 Agia, Paraskevi, Athens, Greece
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA Biomolecular Sciences Institute, School of Integrated Sciences and Humanities, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| |
Collapse
|
19
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
20
|
Khan I, Suhasini AN, Banerjee T, Sommers JA, Kaplan DL, Kuper J, Kisker C, Brosh RM. Impact of age-associated cyclopurine lesions on DNA repair helicases. PLoS One 2014; 9:e113293. [PMID: 25409515 PMCID: PMC4237422 DOI: 10.1371/journal.pone.0113293] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023] Open
Abstract
8,5′ cyclopurine deoxynucleosides (cPu) are locally distorting DNA base lesions corrected by nucleotide excision repair (NER) and proposed to play a role in neurodegeneration prevalent in genetically defined Xeroderma pigmentosum (XP) patients. In the current study, purified recombinant helicases from different classifications based on sequence homology were examined for their ability to unwind partial duplex DNA substrates harboring a single site-specific cPu adduct. Superfamily (SF) 2 RecQ helicases (RECQ1, BLM, WRN, RecQ) were inhibited by cPu in the helicase translocating strand, whereas helicases from SF1 (UvrD) and SF4 (DnaB) tolerated cPu in either strand. SF2 Fe-S helicases (FANCJ, DDX11 (ChlR1), DinG, XPD) displayed marked differences in their ability to unwind the cPu DNA substrates. Archaeal Thermoplasma acidophilum XPD (taXPD), homologue to the human XPD helicase involved in NER DNA damage verification, was impeded by cPu in the non-translocating strand, while FANCJ was uniquely inhibited by the cPu in the translocating strand. Sequestration experiments demonstrated that FANCJ became trapped by the translocating strand cPu whereas RECQ1 was not, suggesting the two SF2 helicases interact with the cPu lesion by distinct mechanisms despite strand-specific inhibition for both. Using a protein trap to simulate single-turnover conditions, the rate of FANCJ or RECQ1 helicase activity was reduced 10-fold and 4.5-fold, respectively, by cPu in the translocating strand. In contrast, single-turnover rates of DNA unwinding by DDX11 and UvrD helicases were only modestly affected by the cPu lesion in the translocating strand. The marked difference in effect of the translocating strand cPu on rate of DNA unwinding between DDX11 and FANCJ helicase suggests the two Fe-S cluster helicases unwind damaged DNA by distinct mechanisms. The apparent complexity of helicase encounters with an unusual form of oxidative damage is likely to have important consequences in the cellular response to DNA damage and DNA repair.
Collapse
Affiliation(s)
- Irfan Khan
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland, United States of America
| | - Avvaru N. Suhasini
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland, United States of America
| | - Taraswi Banerjee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland, United States of America
| | - Joshua A. Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland, United States of America
| | - Daniel L. Kaplan
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Weerasooriya S, Jasti VP, Basu AK. Replicative bypass of abasic site in Escherichia coli and human cells: similarities and differences. PLoS One 2014; 9:e107915. [PMID: 25226389 PMCID: PMC4167244 DOI: 10.1371/journal.pone.0107915] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/20/2014] [Indexed: 12/18/2022] Open
Abstract
Abasic [apurinic/apyrimidinic (AP)] sites are the most common DNA damages, opposite which dAMP is frequently inserted (‘A-rule’) in Escherichia coli. Nucleotide insertion opposite the AP-site in eukaryotic cells depends on the assay system and the type of cells. Accordingly, a ‘C-rule’, ‘A-rule’, or the lack of specificity has been reported. DNA sequence context also modulates nucleotide insertion opposite AP-site. Herein, we have compared replication of tetrahydrofuran (Z), a stable analog of AP-site, in E. coli and human embryonic kidney 293T cells in two different sequences. The efficiency of translesion synthesis or viability of the AP-site construct in E. coli was less than 1%, but it was 7- to 8-fold higher in the GZGTC sequence than in the GTGZC sequence. The difference in viability increased even more in pol V-deficient strains. Targeted one-base deletions occurred in 63% frequency in the GZG and 68% frequency in GZC sequence, which dropped to 49% and 21%, respectively, upon induction of SOS. The full-length products with SOS primarily involved dAMP insertion opposite the AP-site, which occurred in 49% and 71% frequency, respectively, in the GZG and GZC sequence. dAMP insertion, largely carried out by pol V, was more efficient when the AP-site was a stronger replication block. In contrast to these results in E. coli, viability was 2 to 3 orders of magnitude higher in human cells, and the ‘A-rule’ was more rigidly followed. The AP-site in the GZG and GZC sequences gave 76% and 89%, respectively, Z→T substitutions. In human cells, targeted one-base deletion was undetectable, and dTMP>dCMP were the next preferred nucleotides inserted opposite Z. siRNA knockdown of Rev1 or pol ζ established that both these polymerases are vital for AP-site bypass, as demonstrated by 36–67% reduction in bypass efficiency. However, neither polymerase was indispensable, suggesting roles of additional DNA polymerases in AP-site bypass in human cells.
Collapse
Affiliation(s)
- Savithri Weerasooriya
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, United States of America
| | - Vijay P. Jasti
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, United States of America
| | - Ashis K. Basu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
22
|
Jain V, Vaidyanathan VG, Patnaik S, Gopal S, Cho BP. Conformational insights into the lesion and sequence effects for arylamine-induced translesion DNA synthesis: 19F NMR, surface plasmon resonance, and primer kinetic studies. Biochemistry 2014; 53:4059-71. [PMID: 24915610 PMCID: PMC4075988 DOI: 10.1021/bi5003212] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Adduct-induced DNA damage can affect
transcription efficiency and
DNA replication and repair. We previously investigated the effects
of the 3′-next flanking base (G*CT vs G*CA; G*, FABP, N-(2′-deoxyguanosin-8-yl)-4′-fluoro-4-aminobiphenyl;
FAF, N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene)
on the conformation of arylamine-DNA lesions in relation to E. coli nucleotide excision repair (JainV., HiltonB., LinB., PatnaikS., LiangF., DarianE., ZouY., MackerellA. D.Jr., and ChoB. P. (2013) , 41, 869−88023180767). Here,
we report the differential effects of the same pair of sequences on
DNA replication in vitro by the polymerases exofree
Klenow fragment (Kf-exo–) and Dpo4. We obtained
dynamic 19F NMR spectra for two 19-mer modified templates
during primer elongation: G*CA [d(5′-CTTACCATCG*CAACCATTC-3′)]
and G*CT [d(5′-CTTACCATCG*CTACCATTC-3′)].
We found that lesion stacking is favored in the G*CT sequence compared to the G*CA counterpart. Surface
plasmon resonance binding results showed consistently weaker affinities
for the modified DNA with the binding strength in the order of FABP
> FAF and G*CA > G*CT. Primer extension was stalled at
(n) and near (n – 1 and n + 1) the lesion site, and the extent of blockage and the extension
rates across the lesion were influenced by not only the DNA sequences
but also the nature of the adduct’s chemical structure (FAF
vs FABP) and the polymerase employed (Kf-exo– vs
Dpo4). Steady-state kinetics analysis with Kf-exo– revealed the most dramatic sequence and lesion effects at the lesion
(n) and postinsertion (n + 1) sites,
respectively. Taken together, these results provide insights into
the important role of lesion-induced conformational heterogeneity
in modulating translesion DNA synthesis.
Collapse
Affiliation(s)
- Vipin Jain
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | | | | | | | | |
Collapse
|
23
|
Chatgilialoglu C, Ferreri C, Masi A, Sansone A, Terzidis MA, Tsakos M. A problem solving approach for the diastereoselective synthesis of (5′S)- and (5′R)-5′,8-cyclopurine lesions. Org Chem Front 2014. [DOI: 10.1039/c4qo00133h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|