1
|
Pozzetti L, Asquith CRM. Pentathiepins are an understudied molecular prism of biological activities. Arch Pharm (Weinheim) 2024:e2400646. [PMID: 39382224 DOI: 10.1002/ardp.202400646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
The pentathiepin core was first synthesized in 1971, and while synthetic techniques have progressed over subsequent decades, the biological applications of this heterocycle have received less attention and are only now becoming more apparent. The first natural product, varacin, was identified in 1991, showing cytotoxicity toward a human colon cancer cell line. More recently, the pentathiepin has acted as a surrogate to replace elemental sulfur, that was discovered as a hit in neurodegenerative animal models. A variety of other medicinal chemistry applications have recently been disclosed. Here, we summarize these indications and highlight the main synthetic pathways to access the pentathiepin core. We offer a concise summary and future perspective of this unique sulfur isosteric replacement.
Collapse
Affiliation(s)
- Luca Pozzetti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Christopher R M Asquith
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
2
|
Tallarita R, Jacobsen LM, Bandaru SSM, Elvers BJ, Schulzke C. The Role of -OEt Substituents in Molybdenum-Assisted Pentathiepine Formation-Access to Diversely Functionalized Azines. Molecules 2024; 29:3806. [PMID: 39202885 DOI: 10.3390/molecules29163806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
1,2,3,4,5-pentathiepines (PTEs) are naturally occurring polysulfides of increasing scientific interest based on their identified pharmacological activities. Artificial PTEs with N-heterocyclic backbones are efficiently synthesized via mediation by a molybdenum-oxo-bistetrasulfido complex. A common feature of all precursor alkynes successfully used to date in this reaction is the presence of a -CH(OEt)2 group since the previously postulated mechanism requires the presence of one OEt- as the leaving group, and the second must become a transient ethoxonium moiety. This raised the question of whether there really is a need for two, maybe only one, or possibly even zero ethoxy substituents. This research problem was systematically addressed by respective variations in the precursor-alkyne derivatives and by employing one related allene species. It was found that the total absence of ethoxy substituents prevents the formation of PTEs entirely, while the presence of a single ethoxy group results in the possibility to distinctly functionalize the position on the resulting N-heterocyclic pyrrole five ring in the target compound. This position was previously exclusively occupied by an -OEt for all products of the molybdenum-mediated reaction. The allene was applied with similar success as precursor as with the related alkyne. The now-employable significant change in precursor composition gives access to a whole new PTE subfamily, allowing further modulation of (physico)-chemical properties such as solubility, and provides additional insight into the mechanism of PTE formation; it comprises a merely partial validation of the previous hypothesis. The new alkyne precursors and pentathiepines were characterized by a variety of instrumental analyses (NMR, mass spec, UV-vis) and in six cases (one alkyne precursor, one unexpected side product, and four PTEs) by single-crystal X-ray diffraction. Syntheses, isolation procedures, analytical data, and the impact of the findings on the previously proposed mechanism are described in detail herein.
Collapse
Affiliation(s)
- Roberto Tallarita
- Institute of Biochemistry, Bioinorganic Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Lukas M Jacobsen
- Institute of Biochemistry, Bioinorganic Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Siva S M Bandaru
- Institute of Biochemistry, Bioinorganic Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Benedict J Elvers
- Institute of Biochemistry, Bioinorganic Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Carola Schulzke
- Institute of Biochemistry, Bioinorganic Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| |
Collapse
|
3
|
Tallarita R, Jacobsen LM, Elvers BJ, Richter S, Bandaru SSM, Correia JV, Schulzke C. Synthesis of Seven Indolizine-Derived Pentathiepines: Strong Electronic Structure Response to Nitro Substitution in Position C-9. Molecules 2023; 29:216. [PMID: 38202800 PMCID: PMC10780577 DOI: 10.3390/molecules29010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Seven new 1,2,3,4,5-pentathiepino[6,7-a]indolizines were synthesized in which the pentathiepine moieties bear an indolizine backbone that is derivatized from C-H to F-, Cl-, Br-, I-, NO2-, and CH3-substitutions, respectively, in a meta position relative to the aza group on the pyridine moiety. Their preparation took place via two common steps: (i) a Sonogashira coupling between (4-substituted) 2-bromo- or 2-chloropyridines and propynyl 3,3-diethylacetal, and (ii) a ring closing reaction mediated by a molybdenum oxo-bistetrasulfido complex and elemental sulfur. The latter simultaneously facilitates the 1,2,3,4,5-pentathiepino chain/ring- and indolizine ring-formations. The fluoro derivative was addressed with 2-bromo-5-aminopyridine as the starting material via a Sandmeyer reaction. The iodo derivative was obtained from 5-bromo-2-alkynylpiridine using a metal-assisted variation of the Finkelstein reaction. The requirement to explore different reaction conditions and the varied respective yields of the final products are discussed. The influence of the distinct substitutions on the pyridine moieties, their electronic structures, and respective chemical properties was investigated through a set of spectroscopic/analytical characterizations. Intriguingly, in all cases, the nitro-substituted derivative exhibited a distinct behavior compared to the six other investigated derivatives, which was also addressed computationally. All seven new pentathiepines were crystallized, and their respective molecular structures were determined using single crystal X-ray diffraction. These structures are compared and discussed as are their respective packing patterns.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carola Schulzke
- Bioinorganic Chemistry, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany; (R.T.); (L.M.J.); (B.J.E.); (S.R.); (S.S.M.B.); (J.V.C.)
| |
Collapse
|
4
|
Algarra AG. Computational insights into the S 3 transfer reaction: A special case of double group transfer reaction featuring bicyclically delocalized aromatic transition state geometries. J Comput Chem 2017; 38:1966-1973. [PMID: 28573687 DOI: 10.1002/jcc.24844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 11/07/2022]
Abstract
An unusual pericyclic process that involves the intermolecular transfer of thiozone (S3 ) is computationally described. The process can be considered as a special case of double group transfer reaction whereby the two migrating groups are connected to the same substituent, taking place in a concerted manner via transition states featuring two five-membered C2 S3 rings fused together. Analysis of the aromaticity at the TS geometries by computing NICS values at the (3,+1) RCPS as well as ACID calculations confirms the aromatic character of each C2 S3 ring, thus resulting in bicyclically delocalized aromatic structures. The free energy barriers for the transfer of S3 are relatively similar (40-50 kcal mol-1 ) to those computed for typical double H group transfer reactions. The similarities and differences between these processes have been further analysed by applying ASM-EDA and NBO approaches to the model reactions between ethene and ethane, and ethene and 1,2,3-trithiolane. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrés G Algarra
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Instituto de Biomoléculas, Universidad de Cádiz, Puerto Real, Cádiz, 11510, Spain
| |
Collapse
|
5
|
Mahendran A, Ghogare AA, Bittman R, Arthur G, Greer A. Synthesis and antiproliferative properties of a new ceramide analog of varacin. Chem Phys Lipids 2015; 194:165-70. [PMID: 26254858 DOI: 10.1016/j.chemphyslip.2015.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 12/14/2022]
Abstract
A benzopentasulfane was synthesized in 8 steps with a ceramide attached through an amide bond to the 7-position of the heterocycle structure. The anticancer activity of this synthetic ceramide-benzopolysulfane drug conjugate was analyzed against five human cancer cell lines MDA-MB-231 (breast), DU145 (prostate), MIA PaCa-2 (pancreas), HeLa (cervix), and U251 (glioblastoma). The ceramide-benzopolysulfane conjugate had IC50 values ranging from 10 to >20 μM with complete cell killing at 12.5 μM for MDA-MB-231 and 20 μM for DU145 and HeLa cells. The ceramide-benzopolysulfane conjugate had IC50 values 1.8 and 4.0 times lower than a PEG benzopolysulfane, N-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)benzo[f][1,2,3,4,5]-pentathiepine-7-carboxamide, for MDA-MB-231 and DU145 cells, respectively. The parent "unsubstituted" benzopolysulfane, o-C6H4S5, had IC50 values 4.2 times lower and 2.7 times higher than the ceramide benzopolysulfane for MDA-MB-231 and DU145 cells, respectively. The results indicate that the polysulfur linkage is needed for activity since benzenedithiol, o-C6H4(SH)2, had IC50 values greater than 30 μM with little effect on MDA-MB-231 and DU145 cells. Thus, to account for the bioactivity, a bimolecular reaction of cellular thiol with the ceramide benzopolysulfane is a proposed followed by thiozone (S3) extrusion.
Collapse
Affiliation(s)
- Adaickapillai Mahendran
- Department of Chemistry and Graduate Center, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
| | - Ashwini A Ghogare
- Department of Chemistry and Graduate Center, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
| | - Robert Bittman
- Department of Chemistry and Biochemistry, and Graduate Center, Queens College of the City University of New York, Flushing, New York 11367, USA
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0W3, Canada
| | - Alexander Greer
- Department of Chemistry and Graduate Center, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA.
| |
Collapse
|
6
|
Castillo A, Lee L, Greer A. Encapsulation and convex-face thiozonolysis of triatomic sulfur (S(3)) with carbon nanotubes. J PHYS ORG CHEM 2011; 25:42-49. [PMID: 22701272 DOI: 10.1002/poc.1866] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nanotubes are a class of host cavities increasingly used to encapsulate unstable molecules, yet none have been exploited to host reactive sulfur species, such as thiozone (S(3)). In this paper, density functional theory and (ONIOM) calculations were used to compute single-walled carbon nanotube (SWNT)-thiozone combinations for the inclusion of S(3) into the hollow nanotube space and to rationalize when 1,2,3-thiozonide formation can take place. Nanotube diameter selectivity for the isomerization of the C(2v) form of S(3) to the D(3h) form proved to be elusive. Acyclic C(2v) S(3) was ~6 kcal/mol more stable than cyclic D(3h) S(3) whether it was free or encapsulated within an SWNT. 1,2,3-Thiozonide formation took place on the convex side of nanotubes of low tube radii, such as the armchair (4,4) and (5,5) SWNTs. In terms of the reaction mode of C(2v) S(3), the 1,3-dipolar addition reaction was preferred compared with the [2 + 2] cycloaddition and chelotrope paths.
Collapse
Affiliation(s)
- Alvaro Castillo
- Department of Chemistry and Graduate Center, City University of New York, Brooklyn College, Brooklyn, NY 11210, USA
| | | | | |
Collapse
|
7
|
Dixit VA, Bharatam PV. Toxic Metabolite Formation from Troglitazone (TGZ): New Insights from a DFT Study. Chem Res Toxicol 2011; 24:1113-22. [DOI: 10.1021/tx200110h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vaibhav A. Dixit
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab-160062, India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab-160062, India
| |
Collapse
|
8
|
Mahendran A, Vuong A, Aebisher D, Gong Y, Bittman R, Arthur G, Kawamura A, Greer A. Synthesis, characterization, mechanism of decomposition, and antiproliferative activity of a class of PEGylated benzopolysulfanes structurally similar to the natural product varacin. J Org Chem 2010; 75:5549-57. [PMID: 20704430 DOI: 10.1021/jo100870q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Benzopolysulfanes, 4-CH(3)(OCH(2)CH(2))(3)NHC(O)-C(6)H(4)-1,2-S(x) (x = 3-7 and 9) were synthesized with a PEG group attached through an amide bond and examined for water solubility, antitumor activity, and propensity to equilibrate and desulfurate. LCMS and HPLC data show the PEG pentasulfane ring structure predominates, and the tri-, tetra-, hexa-, hepta-, and nonasulfanes were present at very low concentrations. The presence of the PEG group improved water solubility by 50-fold compared to the unsubstituted benzopolysulfanes, C(6)H(4)S(x) (x = 3, 5, and 7), based on intrinsic solubility measurements. Polysulfur linkages in the PEG compounds decomposed in the presence of ethanethiol and hydroxide ion. The PEG pentathiepin desulfurated rapidly, and an S(3) transfer reaction was observed in the presence of norbornene; no S(2) transfer reaction was observed with 2,3-dimethylbutadiene. The antitumor activities of the PEG-substituted benzopolysulfane mixtures were analyzed against four human tumor cell lines PC3 (prostate), DU145 (prostate), MDA-MB-231 (breast), and Jurkat (T-cell leukemia). The PEG-conjugated polysulfanes had IC(50) values 1.2-5.8 times lower than the parent "unsubstituted" benzopolysulfanes. Complete cell killing was observed for the PEG polysulfanes at 4 microM for PC3 and DU145 cells and at 12 muM for MDA-MB-231 cells. The results suggest that solubilization of the polysulfur linkage is a key parameter to the success of these compounds as drug leads.
Collapse
Affiliation(s)
- Adaickapillai Mahendran
- Department of Chemistry, Brooklyn College of The City University of New York, Brooklyn, New York 11210, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2009; 26:170-244. [PMID: 19177222 DOI: 10.1039/b805113p] [Citation(s) in RCA: 410] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review covers the literature published in 2007 for marine natural products, with 948 citations(627 for the period January to December 2007) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, cnidarians,bryozoans, molluscs, tunicates, echinoderms and true mangrove plants. The emphasis is on new compounds (961 for 2007), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.1 Introduction, 2 Reviews, 3 Marine microorganisms and phytoplankton, 4 Green algae, 5 Brown algae, 6 Red algae, 7 Sponges, 8 Cnidarians, 9 Bryozoans, 10 Molluscs, 11 Tunicates (ascidians),12 Echinoderms, 13 Miscellaneous, 14 Conclusion, 15 References.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|