1
|
Dailah HG. Therapeutic Potential of Small Molecules Targeting Oxidative Stress in the Treatment of Chronic Obstructive Pulmonary Disease (COPD): A Comprehensive Review. Molecules 2022; 27:molecules27175542. [PMID: 36080309 PMCID: PMC9458015 DOI: 10.3390/molecules27175542] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an increasing and major global health problem. COPD is also the third leading cause of death worldwide. Oxidative stress (OS) takes place when various reactive species and free radicals swamp the availability of antioxidants. Reactive nitrogen species, reactive oxygen species (ROS), and their counterpart antioxidants are important for host defense and physiological signaling pathways, and the development and progression of inflammation. During the disturbance of their normal steady states, imbalances between antioxidants and oxidants might induce pathological mechanisms that can further result in many non-respiratory and respiratory diseases including COPD. ROS might be either endogenously produced in response to various infectious pathogens including fungi, viruses, or bacteria, or exogenously generated from several inhaled particulate or gaseous agents including some occupational dust, cigarette smoke (CS), and air pollutants. Therefore, targeting systemic and local OS with therapeutic agents such as small molecules that can increase endogenous antioxidants or regulate the redox/antioxidants system can be an effective approach in treating COPD. Various thiol-based antioxidants including fudosteine, erdosteine, carbocysteine, and N-acetyl-L-cysteine have the capacity to increase thiol content in the lungs. Many synthetic molecules including inhibitors/blockers of protein carbonylation and lipid peroxidation, catalytic antioxidants including superoxide dismutase mimetics, and spin trapping agents can effectively modulate CS-induced OS and its resulting cellular alterations. Several clinical and pre-clinical studies have demonstrated that these antioxidants have the capacity to decrease OS and affect the expressions of several pro-inflammatory genes and genes that are involved with redox and glutathione biosynthesis. In this article, we have summarized the role of OS in COPD pathogenesis. Furthermore, we have particularly focused on the therapeutic potential of numerous chemicals, particularly antioxidants in the treatment of COPD.
Collapse
Affiliation(s)
- Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
2
|
Olowe R, Sandouka S, Saadi A, Shekh-Ahmad T. Approaches for Reactive Oxygen Species and Oxidative Stress Quantification in Epilepsy. Antioxidants (Basel) 2020; 9:E990. [PMID: 33066477 PMCID: PMC7602129 DOI: 10.3390/antiox9100990] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress (OS) and excessive reactive oxygen species (ROS) production have been implicated in many neurological pathologies, including acute seizures and epilepsy. Seizure-induced damage has been demonstrated both in vitro and in several in vivo seizure and epilepsy models by direct determination of ROS, and by measuring indirect markers of OS. In this manuscript, we review the current reliable methods for quantifying ROS-related and OS-related markers in pre-clinical and clinical epilepsy studies. We first provide pieces of evidence for the involvement of different sources of ROS in epilepsy. We then discuss general methods and assays used for the ROS measurements, mainly superoxide anion, hydrogen peroxide, peroxynitrite, and hydroxyl radical in in vitro and in vivo studies. In addition, we discuss the role of these ROS and markers of oxidative injury in acute seizures and epilepsy pre-clinical studies. The indirect detection of secondary products of ROS such as measurements of DNA damage, lipid peroxidation, and protein oxidation will also be discussed. This review also discusses reliable methods for the assessment of ROS, OS markers, and their by-products in epilepsy clinical studies.
Collapse
Affiliation(s)
| | | | | | - Tawfeeq Shekh-Ahmad
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (R.O.); (S.S.); (A.S.)
| |
Collapse
|
3
|
Headley CA, Hoffman CN, Freisen JM, Han Y, Macklin JM, Zweier JL, Rockenbauer A, Kuret J, Villamena FA. Membrane-specific spin trap, 5-dodecylcarbamoyl-5-N-dodecylacetamide-1-pyroline-N-oxide (diC 12PO): theoretical, bioorthogonal fluorescence imaging and EPR studies. Org Biomol Chem 2019; 17:7694-7705. [PMID: 31328213 PMCID: PMC6703941 DOI: 10.1039/c9ob01334b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membranous organelles are major endogenous sources of reactive oxygen and nitrogen species. When present at high levels, these species can cause macromolecular damage and disease. To better detect and scavenge free radical forms of the reactive species at their sources, we investigated whether nitrone spin traps could be selectively targeted to intracellular membranes using a bioorthogonal imaging approach. Electron paramagnetic resonance imaging demonstrated that the novel cyclic nitrone 5-dodecylcarbamoyl-5-N-dodecylacetamide-1-pyroline-N-oxide (diC12PO) could be used to target the nitrone moiety to liposomes composed of phosphatidyl choline. To test localization with authentic membranes in living cells, fluorophores were introduced via strain-promoted alkyne-nitrone cycloaddition (SPANC). Two fluorophore-conjugated alkynes were investigated: hexynamide-fluoresceine (HYA-FL) and dibenzylcyclooctyne-PEG4-5/6-sulforhodamine B (DBCO-Rhod). Computational and mass spectrometry experiments confirmed the cycloadduct formation of DBCO-Rhod (but not HYA-FL) with diC12PO in cell-free solution. Confocal microscopy of bovine aortic endothelial cells treated sequentially with diC12PO and DBCO-Rhod demonstrated clear localization of fluorescence with intracellular membranes. These results indicate that targeting of nitrone spin traps to cellular membranes is feasible, and that a bioorthogonal approach can aid the interrogation of their intracellular compartmentalization properties.
Collapse
Affiliation(s)
- Colwyn A Headley
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Claire N Hoffman
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Juliana M Freisen
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Yongbin Han
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Joseph M Macklin
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Jay L Zweier
- Davis Heart and Lung Research Institute, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, and Department of Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Jeff Kuret
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Gerengi H, Solomon MM, Öztürk S, Yıldırım A, Gece G, Kaya E. Evaluation of the corrosion inhibiting efficacy of a newly synthesized nitrone against St37 steel corrosion in acidic medium: Experimental and theoretical approaches. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:539-553. [PMID: 30274087 DOI: 10.1016/j.msec.2018.08.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/05/2018] [Accepted: 08/11/2018] [Indexed: 01/01/2023]
Abstract
A novel amphiphilic nitrone, N-phenyl-1-(4-((11-(pyridin-1-ium-1yl) undecanoyl) oxy)phenyl)methanimine oxide bromide (NP-1-4-11-PUOPMOB) has been synthesized from a fatty acid derivative as a starting material. Structural characterization of the new compound has been realized by spectroscopic techniques (FTIR, 1H NMR, and 13C NMR). The corrosion inhibition effect of the compound for St37 steel corrosion in 1 M HCl medium has been investigated using experimental (weight loss, electrochemical impedance spectroscopy, potentiodynamic polarization, dynamic electrochemical impedance spectroscopy) and theoretical approaches complemented by surface morphological examination using energy dispersive X-ray spectroscopy, scanning electron microscope, and atomic force spectroscopy. Results from both chemical and electrochemical techniques reveal that the presence of the nitrone in the acid solution impedes St37 steel corrosion. The inhibition efficiency obtained at 125 ppm and 150 ppm concentrations for all methods is found to be over 90%. NP-1-4-11-PUOPMOB behaves as a mixed type corrosion inhibitor according to the potentiodynamic polarization studies. The adsorption of NP-1-4-11-PUOPMOB molecules onto the metal surface follows Langmuir adsorption isotherm and the calculated Kads (equilibrium constant of the adsorption process) value reflects strong interaction. There is evidence of NP-1-4-11-PUOPMOB adsorption on the metal surface from SEM, EDAX, and AFM studies. Experimental and theoretical results are in good agreement.
Collapse
Affiliation(s)
- Hüsnü Gerengi
- Corrosion Research Laboratory, Department of Mechanical Engineering, Faculty of Engineering, Düzce University, 81620 Düzce, Turkey
| | - Moses M Solomon
- Centre of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Serkan Öztürk
- Department of Chemistry, Faculty of Science and Arts, Uludağ University, 16059 Bursa, Turkey
| | - Ayhan Yıldırım
- Department of Chemistry, Faculty of Science and Arts, Uludağ University, 16059 Bursa, Turkey
| | - Gökhan Gece
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310 Bursa, Turkey
| | - Ertuğrul Kaya
- Corrosion Research Laboratory, Department of Mechanical Engineering, Faculty of Engineering, Düzce University, 81620 Düzce, Turkey
| |
Collapse
|
5
|
Poulhès F, Rizzato E, Bernasconi P, Rosas R, Viel S, Jicsinszky L, Rockenbauer A, Bardelang D, Siri D, Gaudel-Siri A, Karoui H, Hardy M, Ouari O. Synthesis and properties of a series of β-cyclodextrin/nitrone spin traps for improved superoxide detection. Org Biomol Chem 2018; 15:6358-6366. [PMID: 28715016 DOI: 10.1039/c7ob00961e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Three new DEPMPO-based spin traps have been designed and synthesized for improved superoxide detection, each carrying a cyclodextrin (CD) moiety but with a different alkyl chain on the phosphorus atom or with a long spacer arm. EPR spectroscopy allowed us to estimate the half-life of the superoxide spin adducts which is close to the value previously reported for CD-DEPMPO (t1/2 ≈ 50-55 min under the conditions investigated). The spectra are typical of superoxide adducts (almost no features of the HO˙ adduct that usually forms with time for other nitrone spin traps such as DMPO) and we show that at 250 μM, the new spin trap enables the reliable detection of superoxide by 1 scan at the position opposite to the corresponding spin trap without the CD moiety. The resistance of the spin adducts to a reduction process has been evaluated, and the superoxide spin adducts are sensitive to ascorbate and glutathione (GSH), but not to glutathione peroxidase/GSH, reflecting the exposed nature of the nitroxide moiety to the bulk solvent. To understand these results, 2D-ROESY NMR studies and molecular dynamics pointed to a shallow or surface self-inclusion of the nitrone spin traps and of nitroxide spin adducts presumably due to the high flexibility of the permethyl-β-CD rim.
Collapse
Affiliation(s)
- Florent Poulhès
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SREP, 13013 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rosselin M, Meyer G, Guillet P, Cheviet T, Walther G, Meister A, Hadjipavlou-Litina D, Durand G. Divalent Amino-Acid-Based Amphiphilic Antioxidants: Synthesis, Self-Assembling Properties, and Biological Evaluation. Bioconjug Chem 2016; 27:772-81. [DOI: 10.1021/acs.bioconjchem.6b00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie Rosselin
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Cedex 9 Avignon, France
| | - Grégory Meyer
- Avignon University, Laboratoire de Pharm-Ecologie
Cardiovasculaire LAPEC EA4278, F-84000 Avignon, France
| | - Pierre Guillet
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Cedex 9 Avignon, France
| | - Thomas Cheviet
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Cedex 9 Avignon, France
| | - Guillaume Walther
- Avignon University, Laboratoire de Pharm-Ecologie
Cardiovasculaire LAPEC EA4278, F-84000 Avignon, France
| | - Annette Meister
- Martin Luther University Halle—Wittenberg, Institute of Chemistry and Institute of Biochemistry/Biotechnology, von-Danckelmann-Platz 4, D-06120 Halle/Saale, Germany
| | - Dimitra Hadjipavlou-Litina
- Department
of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health
Sciences, AUTh, Thessaloniki 54124, Greece
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Cedex 9 Avignon, France
| |
Collapse
|
7
|
Headley CA, DiSilvestro D, Bryant KE, Hemann C, Chen CA, Das A, Ziouzenkova O, Durand G, Villamena FA. Nitrones reverse hyperglycemia-induced endothelial dysfunction in bovine aortic endothelial cells. Biochem Pharmacol 2016; 104:108-17. [PMID: 26774452 DOI: 10.1016/j.bcp.2016.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/07/2016] [Indexed: 12/31/2022]
Abstract
Hyperglycemia has been implicated in the development of endothelial dysfunction through heightened ROS production. Since nitrones reverse endothelial nitric oxide synthase (eNOS) dysfunction, increase antioxidant enzyme activity, and suppress pro-apoptotic signaling pathway and mitochondrial dysfunction from ROS-induced toxicity, the objective of this study was to determine whether nitrone spin traps DMPO, PBN and PBN-LA were effective at duplicating these effects and improving glucose uptake in an in vitro model of hyperglycemia-induced dysfunction using bovine aortic endothelial cells (BAEC). BAEC were cultured in DMEM medium with low (5.5mM glucose, LG) or high glucose (50mM, HG) for 14 days to model in vivo hyperglycemia as experienced in humans with metabolic disease. Improvements in cell viability, intracellular oxidative stress, NO and tetrahydrobiopterin (BH4) levels, mitochondrial membrane potential, glucose transport, and activity of antioxidant enzymes were measured from single treatment of BAEC with nitrones for 24h after hyperglycemia. Chronic hyperglycemia significantly increased intracellular ROS by 50%, decreased cell viability by 25%, reduced NO bioavailability by 50%, and decreased (BH4) levels by 15% thereby decreasing NO production. Intracellular glucose transport and superoxide dismutase (SOD) activity were also decreased by 50% and 25% respectively. Nitrone (PBN and DMPO, 50 μM) treatment of BAEC grown in hyperglycemic conditions resulted in the normalization of outcome measures except for SOD and catalase activities. Our findings demonstrate that the nitrones reverse the deleterious effects of hyperglycemia in BAEC. We believe that in vivo testing of these nitrone compounds in models of cardiometabolic disease is warranted.
Collapse
Affiliation(s)
- Colwyn A Headley
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - David DiSilvestro
- Department of Human Nutrition, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Kelsey E Bryant
- Department of Emergency Medicine, The Ohio State University, Columbus, OH, USA; The Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Craig Hemann
- The Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Chun-An Chen
- Department of Emergency Medicine, The Ohio State University, Columbus, OH, USA; The Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Amlan Das
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Ouliana Ziouzenkova
- Department of Human Nutrition, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS-Université Montpellier-ENSCM & Avignon Université, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 33 rue Louis Pasteur, 84000 Avignon, France
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA; Department of Emergency Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Das A, Gopalakrishnan B, Druhan LJ, Wang TY, De Pascali F, Rockenbauer A, Racoma I, Varadharaj S, Zweier JL, Cardounel AJ, Villamena FA. Reversal of SIN-1-induced eNOS dysfunction by the spin trap, DMPO, in bovine aortic endothelial cells via eNOS phosphorylation. Br J Pharmacol 2014; 171:2321-34. [PMID: 24405159 DOI: 10.1111/bph.12572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/03/2013] [Accepted: 12/18/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Nitric oxide (NO) derived from eNOS is mostly responsible for the maintenance of vascular homeostasis and its decreased bioavailability is characteristic of reactive oxygen species (ROS)-induced endothelial dysfunction (ED). Because 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), a commonly used spin trap, can control intracellular nitroso-redox balance by scavenging ROS and donating NO, it was employed as a cardioprotective agent against ED but the mechanism of its protection is still not clear. This study elucidated the mechanism of protection by DMPO against SIN-1-induced oxidative injury to bovine aortic endothelial cells (BAEC). EXPERIMENTAL APPROACH BAEC were treated with SIN-1, as a source of peroxynitrite anion (ONOO⁻), and then incubated with DMPO. Cytotoxicity following SIN-1 alone and cytoprotection by adding DMPO was assessed by MTT assay. Levels of ROS and NO generation from HEK293 cells transfected with wild-type and mutant eNOS cDNAs, tetrahydrobiopterin bioavailability, eNOS activity, eNOS and Akt kinase phosphorylation were measured. KEY RESULTS Post-treatment of cells with DMPO attenuated SIN-1-mediated cytotoxicity and ROS generation, restoration of NO levels via increased in eNOS activity and phospho-eNOS levels. Treatment with DMPO alone significantly increased NO levels and induced phosphorylation of eNOS Ser¹¹⁷⁹ via Akt kinase. Transfection studies with wild-type and mutant human eNOS confirmed the dual role of eNOS as a producer of superoxide anion (O₂⁻) with SIN-1 treatment, and a producer of NO in the presence of DMPO. CONCLUSION AND IMPLICATIONS Post-treatment with DMPO of oxidatively challenged cells reversed eNOS dysfunction and could have pharmacological implications in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Amlan Das
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Xu J, Li X, Wu J, Dai WM. Synthesis of 5-alkyl-5-aryl-1-pyrroline N-oxides from 1-aryl-substituted nitroalkanes and acrolein via Michael addition and nitro reductive cyclization. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.07.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Ortial S, Morandat S, Bortolato M, Roux B, Polidori A, Pucci B, Durand G. PBN derived amphiphilic spin-traps. II/Study of their antioxidant properties in biomimetic membranes. Colloids Surf B Biointerfaces 2014; 113:384-93. [DOI: 10.1016/j.colsurfb.2013.08.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
|
11
|
Pérez-Cruz F, Vazquez-Rodriguez S, Matos MJ, Herrera-Morales A, Villamena FA, Das A, Gopalakrishnan B, Olea-Azar C, Santana L, Uriarte E. Synthesis and Electrochemical and Biological Studies of Novel Coumarin–Chalcone Hybrid Compounds. J Med Chem 2013; 56:6136-45. [DOI: 10.1021/jm400546y] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fernanda Pérez-Cruz
- Free Radical and Antioxidants
Laboratory, Inorganic and Analytical Department, Faculty of Chemical
and Pharmaceutical Sciences, University of Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile
| | - Saleta Vazquez-Rodriguez
- Department of Organic Chemistry,
Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida s/n, 15782, Santiago de Compostela, Spain
| | - Maria João Matos
- Department of Organic Chemistry,
Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida s/n, 15782, Santiago de Compostela, Spain
| | - Alejandra Herrera-Morales
- Free Radical and Antioxidants
Laboratory, Inorganic and Analytical Department, Faculty of Chemical
and Pharmaceutical Sciences, University of Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile
| | - Frederick A. Villamena
- Department of Pharmacology and
Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Amlan Das
- Department of Pharmacology and
Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Bhavani Gopalakrishnan
- Department of Pharmacology and
Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Claudio Olea-Azar
- Free Radical and Antioxidants
Laboratory, Inorganic and Analytical Department, Faculty of Chemical
and Pharmaceutical Sciences, University of Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile
| | - Lourdes Santana
- Department of Organic Chemistry,
Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida s/n, 15782, Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Department of Organic Chemistry,
Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida s/n, 15782, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Pérez-Cruz F, Villamena FA, Zapata-Torres G, Das A, Headley CA, Quezada E, Lopez-Alarcon C, Olea-Azar C. Selected hydroxycoumarins as antioxidants in cells: physicochemical and reactive oxygen species scavenging studies. J PHYS ORG CHEM 2013. [DOI: 10.1002/poc.3155] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fernanda Pérez-Cruz
- Free Radical and Antioxidants Laboratory, Faculty of Chemical and Pharmaceutical Sciences; University of Chile; Santiago Chile
| | - Frederick A. Villamena
- Department of Pharmacology, Davis Heart and Lung Research Institute, College of Medicine; The Ohio State University; Columbus OH 43210 USA
| | - Gerald Zapata-Torres
- Molecular Graphics Unit, Faculty of Chemical and Pharmaceutical Sciences; University of Chile; Santiago Chile
| | - Amlan Das
- Department of Pharmacology, Davis Heart and Lung Research Institute, College of Medicine; The Ohio State University; Columbus OH 43210 USA
| | - Colwyn A. Headley
- Department of Pharmacology, Davis Heart and Lung Research Institute, College of Medicine; The Ohio State University; Columbus OH 43210 USA
| | - Elias Quezada
- Departamento de Química Orgánica, Facultad de Farmacia; Universidad de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | | | - Claudio Olea-Azar
- Free Radical and Antioxidants Laboratory, Faculty of Chemical and Pharmaceutical Sciences; University of Chile; Santiago Chile
| |
Collapse
|
13
|
Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics. Future Med Chem 2012; 4:1171-207. [PMID: 22709256 DOI: 10.4155/fmc.12.74] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nitrone therapeutics has been employed in the treatment of oxidative stress-related diseases such as neurodegeneration, cardiovascular disease and cancer. The nitrone-based compound NXY-059, which is the first drug to reach clinical trials for the treatment of acute ischemic stroke, has provided promise for the development of more robust pharmacological agents. However, the specific mechanism of nitrone bioactivity remains unclear. In this review, we present a variety of nitrone chemistry and biological activity that could be implicated for the nitrone's pharmacological activity. The chemistries of spin trapping and spin adduct reveal insights on the possible roles of nitrones for altering cellular redox status through radical scavenging or nitric oxide donation, and their biological effects are presented. An interdisciplinary approach towards the development of novel synthetic antioxidants with improved pharmacological properties encompassing theoretical, synthetic, biochemical and in vitro/in vivo studies is covered.
Collapse
|
14
|
Nash KM, Rockenbauer A, Villamena FA. Reactive nitrogen species reactivities with nitrones: theoretical and experimental studies. Chem Res Toxicol 2012; 25:1581-97. [PMID: 22775566 DOI: 10.1021/tx200526y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reactive nitrogen species (RNS) such as nitrogen dioxide ((•)NO(2)), peroxynitrite (ONOO(-)), and nitrosoperoxycarbonate (ONOOCO(2)(-)) are among the most damaging species present in biological systems due to their ability to cause modification of key biomolecular systems through oxidation, nitrosylation, and nitration. Nitrone spin traps are known to react with free radicals and nonradicals via electrophilic and nucleophilic addition reactions and have been employed as reagents to detect radicals using electron paramagnetic resonance (EPR) spectroscopy and as pharmacological agents against oxidative stress-mediated injury. This study examines the reactivity of cyclic nitrones such as 5,5-dimethylpyrroline N-oxide (DMPO) with (•)NO(2), ONOO(-), ONOOCO(2)(-), SNAP, and SIN-1 using EPR. The thermochemistries of nitrone reactivity with RNS and isotropic hfsc's of the addition products were also calculated at the PCM(water)/B3LYP/6-31+G**//B3LYP/6-31G* level of theory with and without explicit water molecules to rationalize the nature of the observed EPR spectra. Spin trapping of other RNS such as azide ((•)N(3)), nitrogen trioxide ((•)NO(3)), amino ((•)NH(2)) radicals and nitroxyl (HNO) were also theoretically and experimentally investigated by EPR spin trapping and mass spectrometry. This study also shows that other spin traps such as 5-carbamoyl-5-methyl-pyrroline N-oxide, 5-ethoxycarbonyl-5-methyl-pyrroline N-oxide, and 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide can react with radical and nonradical RNS, thus making spin traps suitable probes as well as antioxidants against RNS-mediated oxidative damage.
Collapse
Affiliation(s)
- Kevin M Nash
- Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
15
|
Das A, Gopalakrishnan B, Voss OH, Doseff AI, Villamena FA. Inhibition of ROS-induced apoptosis in endothelial cells by nitrone spin traps via induction of phase II enzymes and suppression of mitochondria-dependent pro-apoptotic signaling. Biochem Pharmacol 2012; 84:486-97. [PMID: 22580046 DOI: 10.1016/j.bcp.2012.04.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 12/30/2022]
Abstract
Oxidative stress is the main etiological factor behind the pathogenesis of various diseases including inflammation, cancer, cardiovascular and neurodegenerative disorders. Due to the spin trapping abilities and various pharmacological properties of nitrones, their application as therapeutic agent has been gaining attention. Though the antioxidant properties of the nitrones are well known, the mechanism by which they modulate the cellular defense machinery against oxidative stress is not well investigated and requires further elucidation. Here, we have investigated the mechanisms of cytoprotection of the nitrone spin traps against oxidative stress in bovine aortic endothelial cells (BAEC). Cytoprotective properties of both the cyclic nitrone 5,5-dimethyl-pyrroline N-oxide (DMPO) and linear nitrone α-phenyl N-tert-butyl nitrone (PBN) against H₂O₂-induced cytotoxicity were investigated. Preincubation of BAEC with PBN or DMPO resulted in the inhibition of H₂O₂-mediated cytotoxicity and apoptosis. Nitrone-treatment resulted in the induction and restoration of phase II antioxidant enzymes via nuclear translocation of NF-E2-related factor 2 (Nrf-2) in oxidatively-challenged cells. Furthermore, the nitrones were found to inhibit the mitochondrial depolarization and subsequent activation of caspase-3 induced by H₂O₂. Significant down-regulation of the pro-apoptotic proteins p53 and Bax, and up-regulation of the anti-apoptotic proteins Bcl-2 and p-Bad were observed when the cells were preincubated with the nitrones prior to H₂O₂-treatment. It was also observed that Nrf-2 silencing completely abolished the protective effects of nitrones. Hence, these findings suggest that nitrones confer protection to the endothelial cells against oxidative stress by modulating phase II antioxidant enzymes and subsequently inhibiting mitochondria-dependent apoptotic cascade.
Collapse
Affiliation(s)
- Amlan Das
- Department of Pharmacology, and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
16
|
Soto-Otero R, Méndez-Álvarez E, Sánchez-Iglesias S, Labandeira-García JL, Rodríguez-Pallares J, Zubkov FI, Zaytsev VP, Voskressensky LG, Varlamov AV, de Candia M, Fiorella F, Altomare C. 2-Benzazepine Nitrones Protect Dopaminergic Neurons against 6-Hydroxydopamine-Induced Oxidative Toxicity. Arch Pharm (Weinheim) 2012; 345:598-609. [DOI: 10.1002/ardp.201200007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 01/27/2023]
|
17
|
Choteau F, Tuccio B, Villamena FA, Charles L, Pucci B, Durand G. Synthesis of tris-hydroxymethyl-based nitrone derivatives with highly reactive nitronyl carbon. J Org Chem 2012; 77:938-48. [PMID: 22188016 DOI: 10.1021/jo202098x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A novel series of α-phenyl-N-tert-butyl nitrone derivatives, bearing a hydrophobic chain on the aromatic ring and three hydroxyl functions on the tert-butyl group, was synthesized through a short and convenient synthetic route based on a one-pot reduction/condensation of tris(hydroxymethyl)nitromethane with a benzaldehyde derivative. Because of the presence of hydroxyl functions on the tert-butyl group, an intramolecular Forrester-Hepburn reaction leading to the formation of an oxazolidine-N-oxyl compound was observed by electron paramagnetic resonance (EPR). The mechanism of cyclization was further studied by computational methods showing that intramolecular hydrogen bonding and high positive charge on the nitronyl carbon could facilitate the nucleophilic addition of a hydroxyl group onto the nitronyl carbon. At high nitrone concentrations, a second paramagnetic species, very likely formed by intermolecular nucleophilic addition of two nitrone molecules, was also observed but to a lesser extent. In addition, theoretical data confirmed that the intramolecular reaction is much more favored than the intermolecular one. These nitrones were also found to efficiently trap carbon-centered radicals, but complex spectra were observed due to the presence of oxazolidine-N-oxyl derivatives.
Collapse
Affiliation(s)
- Fanny Choteau
- Université d'Avignon et des Pays de Vaucluse, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 33 rue Louis Pasteur, F-84000 Avignon, France
| | | | | | | | | | | |
Collapse
|
18
|
SAR study of tyrosine-chlorambucil hybrid regioisomers; synthesis and biological evaluation against breast cancer cell lines. Amino Acids 2011; 43:923-35. [PMID: 22102055 DOI: 10.1007/s00726-011-1152-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
Abstract
Amino acids were transformed and coupled to chlorambucil, a well-known chemotherapeutic agent, in an attempt to create new anticancer drugs with selectivity for breast cancer cells. Among the amino acids available, tyrosine was selected to act as an estrogenic ligand. It is hypothesized that tyrosine, which shows some structural similitude with estradiol, could possibly mimic the natural hormone and, subsequently, bind to the estrogen receptor. In this exploratory study, several tyrosine-drug conjugates have been designed. Thus, ortho-, meta- and para-tyrosine-chlorambucil analogs were synthesized in order to generate new anticancer drugs with structural diversity, more specifically in regards to the phenol group location. These new analogs were produced in good yield following efficient synthetic methodology. All the tyrosine-chlorambucil hybrids were more effective than the parent drug, chlorambucil. In vitro biological evaluation on estrogen receptor positive and estrogen receptor negative (ER(+) and ER(-)) breast cancer cell lines revealed an enhanced cytotoxic activity for compounds with the phenol function located at position meta. Molecular docking calculations were performed for the pure L-ortho, L-meta- and L-para-tyrosine phenolic regioisomers. The synthesis of all tyrosine-chlorambucil hybrid regioisomers and their biological activity are reported herein. Possible orientations within the targeted protein [estrogen receptor alpha (ERα)] are discussed in relation to the biological activity.
Collapse
|
19
|
Choteau F, Durand G, Ranchon-Cole I, Cercy C, Pucci B. Cholesterol-based α-phenyl-N-tert-butyl nitrone derivatives as antioxidants against light-induced retinal degeneration. Bioorg Med Chem Lett 2010; 20:7405-9. [PMID: 21071218 DOI: 10.1016/j.bmcl.2010.10.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 01/19/2023]
Abstract
Two cholesterol-based α-phenyl-N-tert-butyl nitrone derivatives were synthesized as antioxidants against light-induced retinal degeneration. Whereas nitrone 10 significantly protected retina against bright fluorescent light exposure when injected into the vitreous at 1 mM, no protection was observed with nitrone 6. The parent compound α-phenyl-N-tert-butyl nitrone also exhibited protective activity at 9 mM but not at 1 mM. This suggests that nitrone 10 may be a candidate for the treatment of retinal diseases.
Collapse
Affiliation(s)
- Fanny Choteau
- Laboratoire de Chimie Bioorganique et des Systèmes Moléculaires Vectoriels, Université d'Avignon et des Pays de Vaucluse, Faculté des Sciences, Avignon, France
| | | | | | | | | |
Collapse
|
20
|
Durand G, Poeggeler B, Ortial S, Polidori A, Villamena FA, Böker J, Hardeland R, Pappolla MA, Pucci B. Amphiphilic Amide Nitrones: A New Class of Protective Agents Acting as Modifiers of Mitochondrial Metabolism. J Med Chem 2010; 53:4849-61. [DOI: 10.1021/jm100212x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Grégory Durand
- Laboratoire de Chimie BioOrganique et des Systèmes Moléculaires Vectoriels, Université d’Avignon et des Pays de Vaucluse, Faculté des Sciences, 33 Rue Louis Pasteur, 84000 Avignon, France
| | - Burkhard Poeggeler
- Department of Dermatology, University of Luebeck, Ratzeburger Allee 160, D-23538 Luebeck, Germany
- Abteilung fuer Stoffwechselphysiologie, Institut fuer Zoologie, Anthropologie und Entwicklungsbiologie der Georg August Universität Göttingen, Berliner Strasse 28, D-37073 Göttingen, Germany
| | - Stéphanie Ortial
- Laboratoire de Chimie BioOrganique et des Systèmes Moléculaires Vectoriels, Université d’Avignon et des Pays de Vaucluse, Faculté des Sciences, 33 Rue Louis Pasteur, 84000 Avignon, France
| | - Ange Polidori
- Laboratoire de Chimie BioOrganique et des Systèmes Moléculaires Vectoriels, Université d’Avignon et des Pays de Vaucluse, Faculté des Sciences, 33 Rue Louis Pasteur, 84000 Avignon, France
| | - Frederick A. Villamena
- Department of Pharmacology and Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Jutta Böker
- Abteilung fuer Stoffwechselphysiologie, Institut fuer Zoologie, Anthropologie und Entwicklungsbiologie der Georg August Universität Göttingen, Berliner Strasse 28, D-37073 Göttingen, Germany
| | - Rüdiger Hardeland
- Abteilung fuer Stoffwechselphysiologie, Institut fuer Zoologie, Anthropologie und Entwicklungsbiologie der Georg August Universität Göttingen, Berliner Strasse 28, D-37073 Göttingen, Germany
| | - Miguel A. Pappolla
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Bernard Pucci
- Laboratoire de Chimie BioOrganique et des Systèmes Moléculaires Vectoriels, Université d’Avignon et des Pays de Vaucluse, Faculté des Sciences, 33 Rue Louis Pasteur, 84000 Avignon, France
| |
Collapse
|
21
|
Durand G, Choteau F, Prosak RA, Rockenbauer A, Villamena FA, Pucci B. Synthesis, physical-chemical and biological properties of amphiphilic amino acid conjugates of nitroxides. NEW J CHEM 2010. [DOI: 10.1039/c0nj00024h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|