1
|
Huang X, Xie X, Huang S, Wu S, Huang L. Predicting non-chemotherapy drug-induced agranulocytosis toxicity through ensemble machine learning approaches. Front Pharmacol 2024; 15:1431941. [PMID: 39206259 PMCID: PMC11349714 DOI: 10.3389/fphar.2024.1431941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Agranulocytosis, induced by non-chemotherapy drugs, is a serious medical condition that presents a formidable challenge in predictive toxicology due to its idiosyncratic nature and complex mechanisms. In this study, we assembled a dataset of 759 compounds and applied a rigorous feature selection process prior to employing ensemble machine learning classifiers to forecast non-chemotherapy drug-induced agranulocytosis (NCDIA) toxicity. The balanced bagging classifier combined with a gradient boosting decision tree (BBC + GBDT), utilizing the combined descriptor set of DS and RDKit comprising 237 features, emerged as the top-performing model, with an external validation AUC of 0.9164, ACC of 83.55%, and MCC of 0.6095. The model's predictive reliability was further substantiated by an applicability domain analysis. Feature importance, assessed through permutation importance within the BBC + GBDT model, highlighted key molecular properties that significantly influence NCDIA toxicity. Additionally, 16 structural alerts identified by SARpy software further revealed potential molecular signatures associated with toxicity, enriching our understanding of the underlying mechanisms. We also applied the constructed models to assess the NCDIA toxicity of novel drugs approved by FDA. This study advances predictive toxicology by providing a framework to assess and mitigate agranulocytosis risks, ensuring the safety of pharmaceutical development and facilitating post-market surveillance of new drugs.
Collapse
Affiliation(s)
- Xiaojie Huang
- Department of Clinical Pharmacy, Jieyang People’s Hospital, Jieyang, China
| | | | | | | | | |
Collapse
|
2
|
Bai X, Huang L, Qing B, Zuo Z, Feng H. Catalyst‐Free Hydrogen Proton Transfer Reduction of Nitrobenzamides to Aminobenzamides with
i
PrOH/KOH System. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xueying Bai
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Bin Qing
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Zhicheng Zuo
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
- Shanghai Engineering Research Center of Textile Chemistry and Cleaner Production Shanghai University of Engineering Science Shanghai 201620 P. R. China
| |
Collapse
|
3
|
Siraki AG. The many roles of myeloperoxidase: From inflammation and immunity to biomarkers, drug metabolism and drug discovery. Redox Biol 2021; 46:102109. [PMID: 34455146 PMCID: PMC8403760 DOI: 10.1016/j.redox.2021.102109] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
This review provides a practical guide to myeloperoxidase (MPO) and presents to the reader the diversity of its presence in biology. The review provides a historical background, from peroxidase activity to the discovery of MPO, to its role in disease and drug development. MPO is discussed in terms of its necessity, as specific individuals lack MPO expression. An underlying theme presented throughout brings up the question of the benefit and burden of MPO activity. Enzyme structure is discussed, including accurate masses and glycosylation sites. The catalytic cycle of MPO and its corresponding pathways are presented, with a discussion of the importance of the redox couples of the different states of MPO. Cell lines expressing MPO are discussed and practically summarized for the reader, and locations of MPO (primary and secondary) are provided. Useful methods of MPO detection are discussed, and how these can be used for studying disease processes are implied through the presentation of MPO as a biomarker. The presence of MPO in neutrophil extracellular traps is presented, and the activators of the former are provided. Lastly, the transition from drug metabolism to a target for drug development is where the review concludes.
Collapse
Affiliation(s)
- Arno G Siraki
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Mason RP, Ganini D. Immuno-spin trapping of macromolecules free radicals in vitro and in vivo - One stop shopping for free radical detection. Free Radic Biol Med 2019; 131:318-331. [PMID: 30552998 DOI: 10.1016/j.freeradbiomed.2018.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/03/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022]
Abstract
The only general technique that allows the unambiguous detection of free radicals is electron spin resonance (ESR). However, ESR spin trapping has severe limitations especially in biological systems. The greatest limitation of ESR is poor sensitivity relative to the low steady-state concentration of free radical adducts, which in cells and in vivo is much lower than the best sensitivity of ESR. Limitations of ESR have led to an almost desperate search for alternatives to investigate free radicals in biological systems. Here we explore the use of the immuno-spin trapping technique, which combine the specificity of the spin trapping to the high sensitivity and universal use of immunological techniques. All of the immunological techniques based on antibody binding have become available for free radical detection in a wide variety of biological systems.
Collapse
Affiliation(s)
- Ronald P Mason
- Inflammation, Immunity and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Douglas Ganini
- Inflammation, Immunity and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
5
|
Borges RS, Nagurniak GR, Queiroz LMD, Maia CSF, Barros CAL, Orestes E, da Silva ABF. Structure and toxicity of clozapine and olanzapine on agranulocytosis. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1484-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
Horinouchi Y, Summers FA, Ehrenshaft M, Mason RP. Free radical generation from an aniline derivative in HepG2 cells: a possible captodative effect. Free Radic Biol Med 2015; 78:111-7. [PMID: 25450331 DOI: 10.1016/j.freeradbiomed.2014.10.577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 10/17/2014] [Accepted: 10/27/2014] [Indexed: 11/23/2022]
Abstract
Xenobiotic metabolism can induce the generation of protein radicals, which are believed to play an important role in the toxicity of chemicals and drugs. It is therefore important to identify chemical structures capable of inducing macromolecular free radical formation in living cells. In this study, we evaluated the ability of four structurally related environmental chemicals, aniline, nitrosobenzene, N,N-dimethylaniline, and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase assays, and morphological changes were observed using phase contrast microscopy. Protein free radicals were detected by immuno-spin trapping using in-cell western experiments and confocal microscopy to determine the subcellular locale of free radical generation. DMNA induced free radical generation, lactate dehydrogenase release, and morphological changes in HepG2 cells, whereas aniline, nitrosobenzene, N,N-dimethylaniline did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2'-dipyridyl significantly prevented free radical generation on subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide had no effect. These results suggest that DMNA is metabolized to reactive free radicals capable of generating protein radicals which may play a critical role in DMNA toxicity. We propose that the captodative effect, the combined action of the electron-releasing dimethylamine substituent, and the electron-withdrawing nitroso substituent, leads to a thermodynamically stabilized radical, facilitating enhanced protein radical formation by DMNA.
Collapse
Affiliation(s)
- Yuya Horinouchi
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Fiona A Summers
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Marilyn Ehrenshaft
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Ronald P Mason
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
7
|
Gomez-Mejiba SE, Zhai Z, Della-Vedova MC, Muñoz MD, Chatterjee S, Towner RA, Hensley K, Floyd RA, Mason RP, Ramirez DC. Immuno-spin trapping from biochemistry to medicine: advances, challenges, and pitfalls. Focus on protein-centered radicals. Biochim Biophys Acta Gen Subj 2013; 1840:722-9. [PMID: 23644035 DOI: 10.1016/j.bbagen.2013.04.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/24/2013] [Accepted: 04/27/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Immuno-spin trapping (IST) is based on the reaction of a spin trap with a free radical to form a stable nitrone adduct, followed by the use of antibodies, rather than traditional electron paramagnetic resonance spectroscopy, to detect the nitrone adduct. IST has been successfully applied to mechanistic in vitro studies, and recently, macromolecule-centered radicals have been detected in models of drug-induced agranulocytosis, hepatotoxicity, cardiotoxicity, and ischemia/reperfusion, as well as in models of neurological, metabolic and immunological diseases. SCOPE OF THE REVIEW To critically evaluate advances, challenges, and pitfalls as well as the scientific opportunities of IST as applied to the study of protein-centered free radicals generated in stressed organelles, cells, tissues and animal models of disease and exposure. MAJOR CONCLUSIONS Because the spin trap has to be present at high enough concentrations in the microenvironment where the radical is formed, the possible effects of the spin trap on gene expression, metabolism and cell physiology have to be considered in the use of IST and in the interpretation of results. These factors have not yet been thoroughly dealt with in the literature. GENERAL SIGNIFICANCE The identification of radicalized proteins during cell/tissue response to stressors will help define their role in the complex cellular response to stressors and pathogenesis; however, the fidelity of spin trapping/immuno-detection and the effects of the spin trap on the biological system should be considered. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Sandra E Gomez-Mejiba
- Laboratory of Experimental Medicine and Therapeutics, Institute Multidisciplinary of Biological Investigations-San Luis (IMIBIO-SL), National Bureau of Science and Technology (CONICET) and National University of San Luis, San Luis, 5700 San Luis, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Michail K, Aljuhani N, Siraki AG. The interaction of diamines and polyamines with the peroxidase-catalyzed metabolism of aromatic amines: a potential mechanism for the modulation of aniline toxicity. Can J Physiol Pharmacol 2013; 91:228-35. [DOI: 10.1139/cjpp-2012-0253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synthetic and biological amines such as ethylenediamine (EDA), spermine, and spermidine have not been previously investigated in free-radical biochemical systems involving aniline-based drugs or xenobiotics. We aimed to study the influence of polyamines in the modulation of aromatic amine radical metabolites in peroxidase-mediated free radical reactions. The aniline compounds tested caused a relatively low oxidation rate of glutathione in the presence of horseradish peroxidase (HRP), and H2O2; however, they demonstrated marked oxygen consumption when a polyamine molecule was present. Next, we characterized the free-radical products generated by these reactions using spin-trapping and electron paramagnetic resonance (EPR) spectrometry. Primary and secondary but not tertiary polyamines dose-dependently enhanced the N-centered radicals of different aniline compounds catalyzed by either HRP or myeloperoxidase, which we believe occurred via charge transfer intermediates and subsequent stabilization of aniline-derived radical species as suggested by isotopically labeled aniline. Aniline/peroxidase reaction product(s) were monitored at 435 nm by kinetic spectrophotometry in the presence and absence of a polyamine additive. Using gas chromatography – mass spectrometry, the dimerziation product of aniline, azobenzene, was significantly amplified when EDA was present. In conclusion, di- and poly-amines are capable of enhancing the formation of aromatic-amine-derived free radicals, a fact that is expected to have toxicological consequences.
Collapse
Affiliation(s)
- Karim Michail
- Faculty of Pharmacy and Pharmaceutical Sciences, 2-043 Katz Group Centre for Pharmacy & Health Research, University of Alberta, 11361 87th Avenue, Edmonton, AB T6G 2E1, Canada
- Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Naif Aljuhani
- Faculty of Pharmacy and Pharmaceutical Sciences, 2-043 Katz Group Centre for Pharmacy & Health Research, University of Alberta, 11361 87th Avenue, Edmonton, AB T6G 2E1, Canada
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Arno G. Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, 2-043 Katz Group Centre for Pharmacy & Health Research, University of Alberta, 11361 87th Avenue, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
9
|
|
10
|
Arvadia P, Narwaley M, Whittal RM, Siraki AG. 4-Aminobenzoic acid hydrazide inhibition of microperoxidase-11: catalytic inhibition by reactive metabolites. Arch Biochem Biophys 2011; 515:120-6. [PMID: 21840294 DOI: 10.1016/j.abb.2011.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 11/30/2022]
Abstract
Inhibition of human peroxidase enzymes such as myeloperoxidase or eosinophil peroxidase represents a novel therapeutic area, for which there are no current clinical therapeutics. We utilized 4-aminobenzoic acid hydrazide which was reported to be a potent irreversible inhibitor of myeloperoxidase to gain insight into the role of reactive metabolites in catalytic inhibition. In order to carry out detailed studies, we used a model peroxidase, microperoxidase-11 (MP-11). We investigated the heme spectrum of MP-11 in the presence of 4-ABAH and found that heme bleaching occurred that was irreversible. This coincided with an absence of catalytic activity. The spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was able to significantly prevent inactivation of peroxidase activity, therefore, we performed ESR spin trapping studies and detected a carbonyl carbon-centered radical of 4-ABAH. In order to determine if the free radical metabolites became bound to MP-11, we performed high-resolution MALDI with elemental analysis to determine the change in elemental composition that occurred in these reactions. These masses were assigned to free radical metabolites of 4-ABAH and were not observed in reactions containing DMPO. We conclude that the 4-ABAH free radical metabolites which were bound to MP-11 were involved in the catalytic inhibition and were scavenged by DMPO.
Collapse
Affiliation(s)
- Pratik Arvadia
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
11
|
Narwaley M, Michail K, Arvadia P, Siraki AG. Drug-Induced Protein Free Radical Formation Is Attenuated by Unsaturated Fatty Acids by Scavenging Drug-Derived Phenyl Radical Metabolites. Chem Res Toxicol 2011; 24:1031-9. [DOI: 10.1021/tx200016h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Malyaj Narwaley
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | - Karim Michail
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | - Pratik Arvadia
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | - Arno G. Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| |
Collapse
|