1
|
Li S, Leeming MG, O'Hair RAJ. What are the Potential Sites of DNA Attack by N-Acetyl-p-benzoquinone Imine (NAPQI)? Aust J Chem 2020. [DOI: 10.1071/ch19361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic bioactivation of small molecules can produce electrophilic metabolites that can covalently modify proteins and DNA. Paracetamol (APAP) is a commonly used over-the-counter analgesic, and its hepatotoxic side effects have been postulated to be due to the formation of the electrophilic metabolite N-acetylbenzoquinone imine (NAPQI). It has been established that NAPQI reacts to form covalent bonds to the side-chain functional groups of cysteine, methionine, tyrosine, and tryptophan residues. While there have been scattered reports that APAP can form adducts with DNA the nature of these adducts have not yet been fully characterised. Here the four deoxynucleosides, deoxyguanosine (dG), deoxyadenosine (dA), deoxycytidine (dC), and deoxythymidine (dT) were reacted with NAPQI and the formation of adducts was profiled using liquid chromatography–mass spectrometry with positive-ion mode electrospray ionisation and collision-induced dissociation. Covalent adducts were detected for dG, dA, and dC and tandem mass spectrometry (MS/MS) spectra revealed common neutral losses of deoxyribose (116 amu) arising from cleavage of the glyosidic bond with formation of the modified nucleobase. Of the four deoxynucleosides, dC proved to be the most reactive, followed by dG and dA. A pH dependence was found, with greater reactivity being observed at pH 5.5. The results of density functional theory calculations aimed at understanding the relative reactivities of the four deoxynucleosides towards NAPQI are described.
Collapse
|
2
|
Schmied-Tobies MIH, Paschke H, Reemtsma T. Combined chemoassay and mass spectrometric approach to study the reactive potential of electrophiles towards deoxynucleosides as model for DNA. CHEMOSPHERE 2016; 151:263-270. [PMID: 26945242 DOI: 10.1016/j.chemosphere.2016.02.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
The modification of DNA by adduct formation is a potential molecular initiating event of genotoxicity. A chemoassay was established to study adduct formation of electrophiles with deoxynucleosides. Liquid chromatography-mass spectrometry was used to determine the reactivity of the model electrophiles para-benzoquinone, hydroquinone, and 1,4-naphthoquinone with deoxynucleoside (deoxyadenosine (dA), deoxyguanosine (dG), deoxycytidine (dC) and thymidine (dT)) to detect formation of adducts via constant neutral loss scan of deoxyribose (116 Da), and to elucidate adduct structures using high resolution mass spectrometry. Of the four deoxynucleosides dG was most susceptible, followed by dC and para-benzoquinone was the most reactive electrophile. With this approach five dG and four dC adducts were detected, formed by Michael addition and subsequent condensation. Also oxidation occurred with reactive oxygen species (ROS). Three of the adducts formed by benzoquinone have not been reported before. This chemoassay combined with mass spectrometry offers a way (a) to screen a large number of chemicals for their genotoxic potential, (b) to determine novel adducts that may be searched for in in vitro and in vivo studies and thus (c) to better understand the reaction of electrophiles with nucleobases.
Collapse
Affiliation(s)
| | - Heidrun Paschke
- Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.
| |
Collapse
|
3
|
Mikeš P, Sístek V, Krouželka J, Králík A, Frantík E, Mráz J, Linhart I. 3-(3,4-Dihydroxyphenyl)adenine, a urinary DNA adduct formed in mice exposed to high concentrations of benzene. J Appl Toxicol 2012; 33:516-20. [PMID: 22336960 DOI: 10.1002/jat.2716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/07/2011] [Accepted: 12/09/2011] [Indexed: 11/08/2022]
Abstract
Metabolism of benzene, an important environmental and industrial carcinogen, produces three electrophilic intermediates, namely, benzene oxide and 1,2- and 1,4-benzoquinone, capable of reacting with the DNA. Numerous DNA adducts formed by these metabolites in vitro have been reported in the literature, but only one of them was hitherto identified in vivo. In a search for urinary DNA adducts, specific LC-ESI-MS methods have been developed for the determination in urine of six nucleobase adducts, namely, 7-phenylguanine, 3-phenyladenine, 3-hydroxy-3,N(4) -benzethenocytosine, N(2) -(4-hydroxyphenyl)guanine, 7-(3,4-dihydroxyphenyl)guanine and 3-(3,4-dihydroxyphenyl)-adenine (DHPA), with detection limits of 200, 10, 260, 50, 400 and 200 pg ml(-1) , respectively. Mice were exposed to benzene vapors at concentrations of 900 and 1800 mg m(-3) , 6 h per day for 15 consecutive days. The only adduct detected in their urine was DHPA. It was found in eight out of 30 urine samples from the high-exposure group at concentrations of 352 ± 146 pg ml(-1) (mean ± SD; n = 8), whereas urines from the low-exposure group were negative. Assuming the DHPA concentration in the negative samples to be half of the detection limit, conversion of benzene to DHPA was estimated to 2.2 × 10(-6) % of the absorbed dose. Thus, despite the known high mutagenic and carcinogenic potential of benzene, only traces of a single DNA adduct in urine were detected. In conclusion, DHPA is an easily depurinating adduct, thus allowing indication of only high recent exposure to benzene, but not long-term damage to DNA in tissues.
Collapse
Affiliation(s)
- Petr Mikeš
- Apigenex Ltd, Poděbradská 56, CZ-180 66, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
4
|
Linhart I, Mikeš P, Králík A, Mráz J, Frantík E. Metabolism of N2-(4-hydroxyphenyl)guanine, a DNA adduct formed from p-benzoquinone, in rat. Toxicol Lett 2011; 205:273-8. [DOI: 10.1016/j.toxlet.2011.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/10/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
|
5
|
Albertini RJ, Judice SA, Recio L, Walker VE. Hprt mutant frequency and p53 gene status in mice chronically exposed by inhalation to benzene. Chem Biol Interact 2010; 184:77-85. [DOI: 10.1016/j.cbi.2009.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/11/2009] [Accepted: 12/16/2009] [Indexed: 11/30/2022]
|
6
|
Rodriguez B, Yang Y, Guliaev AB, Chenna A, Hang B. Benzene-derived N2-(4-hydroxyphenyl)-deoxyguanosine adduct: UvrABC incision and its conformation in DNA. Toxicol Lett 2009; 193:26-32. [PMID: 20006688 DOI: 10.1016/j.toxlet.2009.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/03/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
Abstract
Benzene, a ubiquitous human carcinogen, forms DNA adducts through its metabolites such as p-benzoquinone (p-BQ) and hydroquinone (HQ). N(2)-(4-Hydroxyphenyl)-2'-deoxyguanosine (N(2)-4-HOPh-dG) is the principal adduct identified in vivo by (32)P-postlabeling in cells or animals treated with p-BQ or HQ. To study its effect on repair specificity and replication fidelity, we recently synthesized defined oligonucleotides containing a site-specific adduct using phosphoramidite chemistry. We here report the repair of this adduct by Escherichia coli UvrABC complex, which performs the initial damage recognition and incision steps in the nucleotide excision repair (NER) pathway. We first showed that the p-BQ-treated plasmid was efficiently cleaved by the complex, indicating the formation of DNA lesions that are substrates for NER. Using a 40-mer substrate, we found that UvrABC incises the DNA strand containing N(2)-4-HOPh-dG in a dose- and time-dependent manner. The specificity of such repair was also compared with that of DNA glycosylases and damage-specific endonucleases of E. coli, both of which were found to have no detectable activity toward N(2)-4-HOPh-dG. To understand why this adduct is specifically recognized and processed by UvrABC, molecular modeling studies were performed. Analysis of molecular dynamics trajectories showed that stable G:C-like hydrogen bonding patterns of all three Watson-Crick hydrogen bonds are present within the N(2)-4-HOPh-G:C base pair, with the hydroxyphenyl ring at an almost planar position. In addition, N(2)-4-HOPh-dG has a tendency to form more stable stacking interactions than a normal G in B-type DNA. These conformational properties may be critical in differential recognition of this adduct by specific repair enzymes.
Collapse
Affiliation(s)
- Ben Rodriguez
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
| | | | | | | | | |
Collapse
|
7
|
Chenna A, Gupta RC, Bonala RR, Johnson F, Hang B. Synthesis of the fully protected phosphoramidite of the benzene-DNA adduct, N2-(4-Hydroxyphenyl)-2'-deoxyguanosine and incorporation of the later into DNA oligomers. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:979-91. [PMID: 18696366 DOI: 10.1080/15257770802258034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
N(2)- (4-Hydroxyphenyl)-2'-deoxyguanosine-5'-O-DMT-3'-phosphoramidite has been synthesized and used to incorporate the N(2)-(4-hydroxyphenyl)-2'-dG (N(2)-4-HOPh-dG) into DNA, using solid-state synthesis technology. The key step to obtaining the xenonucleoside is a palladium (Xantphos-chelated) catalyzed N(2)-arylation (Buchwald-Hartwig reaction) of a fully protected 2'-deoxyguanosine derivative by 4-isobutyryloxybromobenzene. The reaction proceeded in good yield and the adduct was converted to the required 5'-O-DMT-3'-O-phosphoramidite by standard methods. The latter was used to synthesize oligodeoxynucleotides in which the N(2)-4-HOPh-dG adduct was incorporated site-specifically. The oligomers were purified by reverse-phase HPLC. Enzymatic hydrolysis and HPLC analysis confirmed the presence of this adduct in the oligomers.
Collapse
Affiliation(s)
- Ahmed Chenna
- Monogram Biosciences Inc, South San Francisco, California, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
The potential role of genotoxicity in human leukemias associated with benzene (BZ) exposures was investigated by a systematic review of over 1400 genotoxicity test results for BZ and its metabolites. Studies of rodents exposed to radiolabeled BZ found a low level of radiolabel in isolated DNA with no preferential binding in target tissues of neoplasia. Adducts were not identified by 32P-postlabeling (equivalent to a covalent binding index <0.002) under the dosage conditions producing neoplasia in the rodent bioassays, and this method would have detected adducts at 1/10,000th the levels reported in the DNA-binding studies. Adducts were detected by 32P-postlabeling in vitro and following high acute BZ doses in vivo, but levels were about 100-fold less than those found by DNA binding. These findings suggest that DNA-adduct formation may not be a significant mechanism for BZ-induced neoplasia in rodents. The evaluation of other genotoxicity test results revealed that BZ and its metabolites did not produce reverse mutations in Salmonella typhimurium but were clastogenic and aneugenic, producing micronuclei, chromosomal aberrations, sister chromatid exchanges and DNA strand breaks. Rodent and human data were compared, and BZ genotoxicity results in both were similar for the available tests. Also, the biotransformation of BZ was qualitatively similar in rodents, humans and non-human primates, further indicating that rodent and human genotoxicity data were compatible. The genotoxicity test results for BZ and its metabolites were the most similar to those of topoisomerase II inhibitors and provided less support for proposed mechanisms involving DNA reactivity, mitotic spindle poisoning or oxidative DNA damage as genotoxic mechanisms; all of which have been demonstrated experimentally for BZ or its metabolites. Studies of the chromosomal translocations found in BZ-exposed persons and secondary human leukemias produced by topoisomerase II inhibitors provide some additional support for this mechanism being potentially operative in BZ-induced leukemia.
Collapse
Affiliation(s)
- John Whysner
- Division of Pathology and Toxicology, American Heath Foundation, 1 Dana Road, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
9
|
Gaikwad NW, Bodell WJ. Formation of DNA adducts in HL-60 cells treated with the toluene metabolite p-cresol: a potential biomarker for toluene exposure. Chem Biol Interact 2003; 145:149-58. [PMID: 12686491 DOI: 10.1016/s0009-2797(02)00249-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have examined DNA adduct formation in myeloperoxidase containing HL-60 cells treated with the toluene metabolite p-cresol. Treatment of HL-60 cells with the combination of p-cresol and H(2)O(2) produced four DNA adducts 1: (75.0%), 2: (9.1%), 3: (7.0%) and 4: (8.8%) and adduct levels ranging from 0.3 to 33.6 x 10(-7). The levels of DNA adducts formed by p-cresol were dependent on concentrations of p-cresol, H(2)O(2) and treatment time. In vitro incubation of p-cresol with myeloperoxidase and H(2)O(2) produced three DNA adducts 1: (40.5%), 2: (28.4%) and 3: (29.7%) with a relative adduct level of 0.7x10(-7). The quinone methide derivative of p-cresol (PCQM) was prepared by Ag(I)O oxidation. Reaction of calf thymus DNA with PCQM produced four adducts 1: (18.5%), 2: (36.4%), 3: (29.0%) and 5: (16.0%) with a relative adduct level 1.6x10(-7). Rechromatography analyses indicates that DNA adducts 1-3 formed in HL-60 cells treated with p-cresol and after myeloperoxidase activation of p-cresol were similar to those formed by reaction of DNA with PCQM. This observation suggests that p-cresol is activated to a quinone methide intermediate in each of these activation systems. Taken together, these results suggest PCQM is the reactive intermediate leading to the formation of DNA adducts in HL-60 cells treated with p-cresol. Furthermore, the DNA adducts formed by PCQM may provide a biomarker to assess occupational exposure to toluene.
Collapse
Affiliation(s)
- Nilesh W Gaikwad
- Department of Neurological Surgery, Brain Tumor Research Center, Box 0555, University of California-San Francisco, San Francisco, CA 94143-0555, USA
| | | |
Collapse
|
10
|
Affiliation(s)
- Robert Snyder
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854-8020, USA
| |
Collapse
|
11
|
Gaikwad NW, Bodell WJ. Formation of DNA adducts by microsomal and peroxidase activation of p-cresol: role of quinone methide in DNA adduct formation. Chem Biol Interact 2001; 138:217-29. [PMID: 11714480 DOI: 10.1016/s0009-2797(01)00274-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have investigated the activation of p-cresol to form DNA adducts using horseradish peroxidase, rat liver microsomes and MnO(2). In vitro activation of p-cresol with horseradish peroxidase produced six DNA adducts with a relative adduct level of 8.03+/-0.43 x 10(-7). The formation of DNA adducts by oxidation of p-cresol with horseradish peroxidase was inhibited 65 and 95% by the addition of either 250 or 500 microM ascorbic acid to the incubation. Activation of p-cresol with phenobarbital-induced rat liver microsomes with NADPH as the cofactor; resulted in the formation of a single DNA adduct with a relative adduct level of 0.28+/-0.08 x 10(-7). Similar incubations of p-cresol with microsomes and cumene hydroperoxide yielded three DNA adducts with a relative adduct level of 0.35+/-0.03 x 10(-7). p-Cresol was oxidized with MnO(2) to a quinone methide. Reaction of p-cresol (QM) with DNA produced five major adducts and a relative adduct level of 20.38+/-1.16 x 10(-7). DNA adducts 1,2 and 3 formed by activation of p-cresol with either horseradish peroxidase or microsomes, are the same as that produced by p-cresol (QM). This observation suggests that p-cresol is activated to a quinone methide intermediate by these activation systems. Incubation of deoxyguanosine-3'-phosphate with p-cresol (QM) resulted in a adduct pattern similar to that observed with DNA; suggesting that guanine is the principal site for modification. Taken together these results demonstrate that oxidation of p-cresol to the quinone methide intermediate results in the formation of DNA adducts. We propose that the DNA adducts formed by p-cresol may be used as molecular biomarkers of occupational exposure to toluene.
Collapse
Affiliation(s)
- N W Gaikwad
- Department of Neurological Surgery, Brain Tumor Research Center, Box-0555, University of California, San Francisco, CA 94143-0555, USA
| | | |
Collapse
|
12
|
Abstract
The family of human peroxidases described includes myeloperoxidase, eosinophil peroxidase, uterine peroxidase, lactoperoxidase, salivary peroxidase, thyroid peroxidase and prostaglandin H1/2 synthases. The chemical identity of the peroxidase compound I and II oxidation states for the different peroxidases are compared. The identities of the distal and proximal amino acids of the catalytic site of each peroxidase are also compared. The gene characteristics and chromosomal location of the human peroxidase family have been tabulated and their molecular evolution discussed. Myeloperoxidase polymorphism and the mutations identified so far that affect myeloperoxidase activity and modulate their susceptibility to disease is described. The mechanisms for hypohalous and hypothiocyanate formation by the various peroxidases have been compared. The cellular function of the peroxidases and their hypohalites have been described as well as their inflammatory effects. The peroxidase catalysed cooxidation of drugs and xenobiotics that results in oxygen activation by redox cycling has been included. Low-density lipoprotein oxidation (initiation of atherosclerosis), chemical carcinogenesis, idiosyncratic drug reactions (e.g. agranulocytosis), liver necrosis or teratogenicity initiated by the cooxidation of endogenous substrates, plasma amino acids, drugs and xenobiotics catalysed by peroxidases or peroxidase containing cells have also been compared. Finally, peroxidase inhibitors currently in use for treating various diseases are described.
Collapse
Affiliation(s)
- P J O'Brien
- Faculty of Pharmacy, University of Toronto, 19 Russell Street, Ont., M5S 2S2, Toronto, Canada.
| |
Collapse
|
13
|
Prusiewicz CM, Sangaiah R, Gold A, Ball LM. Synthesis of 3′-Phosphate Adducts of Cyclopenta[cd]Pyrene with Deoxyguanosine via 3′-H-Phosphonate Intermediates. Polycycl Aromat Compd 1999. [DOI: 10.1080/10406639908020597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Mani C, Freeman S, Nelson DO, Vogel JS, Turteltaub KW. Species and strain comparisons in the macromolecular binding of extremely low doses of [14C]benzene in rodents, using accelerator mass spectrometry. Toxicol Appl Pharmacol 1999; 159:83-90. [PMID: 10495771 DOI: 10.1006/taap.1999.8707] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The kinetics of macromolecular binding of a 5 micrograms/kg body wt dose of [14C]benzene was studied over 48 h in B6C3F1, DBA/2, and C57BL/6 mice and Fischer rats to determine if adduct levels reflect known differences in metabolic capacity, genotoxicity, and carcinogenic potency. Previous studies have suggested that differences in benzene toxicity among strains result from differences in metabolism. Rats and mice were administered [14C]benzene (i.p.), followed by removal of liver and bone marrow at time intervals up to 48 h postexposure. Protein and DNA were isolated and analyzed by accelerator mass spectrometry. Area under the curves for protein and DNA adducts in bone marrow were greatest in B6C3F1 mouse > DBA/2 mouse > C57BL/6 mouse > Fischer rat. These data are consistent with the hypothesis that metabolic capacity contributes to the difference in benzene's carcinogenicity among species. Additionally, these data suggest that target organ adduct levels correlate with tumorigenicity and thus may be indicative of an individuals risk.
Collapse
Affiliation(s)
- C Mani
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
15
|
DeCaprio AP. The toxicology of hydroquinone--relevance to occupational and environmental exposure. Crit Rev Toxicol 1999; 29:283-330. [PMID: 10379810 DOI: 10.1080/10408449991349221] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hydroquinone (HQ) is a high-volume commodity chemical used as a reducing agent, antioxidant, polymerization inhibitor, and chemical intermediate. It is also used in over-the-counter (OTC) drugs as an ingredient in skin lighteners and is a natural ingredient in many plant-derived products, including vegetables, fruits, grains, coffee, tea, beer, and wine. While there are few reports of adverse health effects associated with the production and use of HQ, a great deal of research has been conducted with HQ because it is a metabolite of benzene. Physicochemical differences between HQ and benzene play a significant role in altering the pharmacokinetics of directly administered when compared with benzene-derived HQ. HQ is only weakly positive in in vivo chromosomal assays when expected human exposure routes are used. Chromosomal effects are increased significantly when parenteral or in vitro assays are used. In cancer bioassays, HQ has reproducibly produced renal adenomas in male F344 rats. The mechanism of tumorigenesis is unclear but probably involves a species-, strain-, and sex-specific interaction between renal tubule toxicity and an interaction with the chronic progressive nephropathy that is characteristic of aged male rats. Mouse liver tumors (adenomas) and mononuclear cell leukemia (female F344 rat) have also been reported following HQ exposure, but their significance is uncertain. Various tumor initiation/promotion assays with HQ have shown generally negative results. Epidemiological studies with HQ have demonstrated lower death rates and reduced cancer rates in production workers when compared with both general and employed referent populations. Parenteral administration of HQ is associated with changes in several hematopoietic and immunologic endpoints. This toxicity is more severe when combined with parenteral administration of phenol. It is likely that oxidation of HQ within the bone marrow compartment to the semiquinone or p-benzoquinone (BQ), followed by covalent macromolecular binding, is critical to these effects. Bone marrow and hematologic effects are generally not characteristic of HQ exposures in animal studies employing routes of exposure other than parenteral. Myelotoxicity is also not associated with human exposure to HQ. These differences are likely due to significant route-dependent toxicokinetic factors. Fetotoxicity (growth retardation) accompanies repeated administration of HQ at maternally toxic dose levels in animal studies. HQ exposure has not been associated with other reproductive and developmental effects using current USEPA test guidelines. The skin pigment lightening properties of HQ appear to be due to inhibition of melanocyte tyrosinase. Adverse effects associated with OTC use of HQ in FDA-regulated products have been limited to a small number of cases of exogenous ochronosis, although higher incidences of this syndrome have been reported with inappropriate use of unregulated OTC products containing higher HQ concentrations. The most serious human health effect related to HQ is pigmentation of the eye and, in a small number of cases, permanent corneal damage. This effect has been observed in HQ production workers, but the relative contributions of HQ and BQ to this process have not been delineated. Corneal pigmentation and damage has not been reported at current exposure levels of <2 mg/m3. Current work with HQ is being focused on tissue-specific HQ-glutathione metabolites. These metabolites appear to play a critical role in the renal effects observed in F344 rats following HQ exposure and may also be responsible for bone marrow toxicity seen after parenteral exposure to HQ or benzene-derived HQ.
Collapse
Affiliation(s)
- A P DeCaprio
- ChemRisk Division, McLaren/Hart, Inc., Albany, NY 12203, USA.
| |
Collapse
|
16
|
Chenna A, Singer B. Synthesis of a benzene metabolite adduct, 3"-hydroxy-1,N2-benzetheno-2'-deoxyguanosine, and its site-specific incorporation into DNA oligonucleotides. Chem Res Toxicol 1997; 10:165-71. [PMID: 9049427 DOI: 10.1021/tx960168r] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
p-Benzoquinone (p-BQ) is a stable metabolite of benzene and a number of other drugs and chemicals. 2'-Deoxyguanosine was allowed to react with p-BQ in aqueous solution (pH 4.5, 7.4, and 9.3). At pH 7.4 and 9.3 one major product was found in low yield; at pH 4.5 no product was detected. In nonaqueous conditions (DMF or DMSO, in the presence of K2CO3), an unstable intermediate with two p-BQ moieties was found which slowly converted to the product formed in aqueous solution. These products were isolated by silica gel, column chromatography, or reverse-phase HPLC and characterized by UV, 1H NMR, FAB-MS, and electrospray MS. The major stable product of the reaction of dG with p-BQ is an exocyclic compound. 3"-hydroxy-1,N2-benzetheno-2'-deoxyguanosine (p-BQ-dG). Incorporation of the adduct into oligonucleotides requires the protection of three hydroxyl groups (C7, 5', 3') and the amino group at N5. The exocyclic hydroxyl and the amino group were protected by acylation after protecting the 5'-and the 3'-hydroxyl groups of the sugar moiety by 4,4'-dimethoxytrityl and a cyanoethyl N,N-diisopropylphosphoramidite group, respectively. This is the first time the fully protected phosphoramidite of p-BQ-dG has been prepared and used in the synthesis of site specifically modified oligonucleotides. After deprotection with 1,3-diazabicyclo[5.4.0]undec-7-ene (DBU), in ethanol, oligomers purified by gel electrophoresis and HPLC. Enzymatic hydrolysis and analysis by HPLC confirmed the presence of p-BQ-dG in the oligomers. These oligomers are now under investigation for their biochemical properties.
Collapse
Affiliation(s)
- A Chenna
- Donner Laboratory, Berkeley National Laboratory, University of California 94720, USA
| | | |
Collapse
|