1
|
Urugo MM, Teka TA, Berihune RA, Teferi SL, Garbaba CA, Adebo JA, Woldemariam HW, Astatkie T. Novel non-thermal food processing techniques and their mechanism of action in mycotoxins decontamination of foods. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
2
|
Wenzel J, Schmidt F, Blumrich M, Amberg A, Czich A. Predicting DNA-Reactivity of N-Nitrosamines: A Quantum Chemical Approach. Chem Res Toxicol 2022; 35:2068-2084. [PMID: 36302168 DOI: 10.1021/acs.chemrestox.2c00217] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
N-Nitrosamines (NAs) are a class of reactive organic chemicals that humans may be exposed to from environmental sources, food but also impurities in pharmaceutical preparations. Some NAs were identified as DNA-reactive mutagens and many of those have been classified as probable human carcinogens. Beyond high-potency mutagenic carcinogens that need to be strictly controlled, NAs of low potency need to be considered for risk assessment as well. NA impurities and nitrosylated products of active pharmaceutical ingredients (APIs) often arise from production processes or degradation. Most NAs require metabolic activation to ultimately become carcinogens, and their activation can be appropriately described by first-principles computational chemistry approaches. To this end, we treat NA-induced DNA alkylation as a series of subsequent association and dissociation reaction steps that can be calculated stringently by density functional theory (DFT), including α-hydroxylation, proton transfer, hydroxyl elimination, direct SN2/SNAr DNA alkylation, competing hydrolysis and SN1 reactions. Both toxification and detoxification reactions are considered. The activation reactions are modeled by DFT at a high level of theory with an appropriate solvent model to compute Gibbs free energies of the reactions (thermodynamical effects) and activation barriers (kinetic effects). We study congeneric series of aliphatic and cyclic NAs to identify trends. Overall, this work reveals detailed insight into mechanisms of activation for NAs, suggesting that individual steric and electronic factors have directing and rate-determining influence on the formation of carbenium ions as the ultimate pro-mutagens and thus carcinogens. Therefore, an individual risk assessment of NAs is suggested, as exemplified for the complex API-like 4-(N-nitroso-N-methyl)aminoantipyrine which is considered as low-potency NA by in silico prediction.
Collapse
Affiliation(s)
- Jan Wenzel
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Friedemann Schmidt
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Matthias Blumrich
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Alexander Amberg
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Andreas Czich
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| |
Collapse
|
3
|
Sengupta S, Das P. Application of diazonium chemistry in purine modifications: A focused review. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saumitra Sengupta
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Parthasarathi Das
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| |
Collapse
|
4
|
Berger FD, Manderville RA, Sturla SJ. Adduct Fluorescence as a Tool to Decipher Sequence Impact on Frameshift Mutations Mediated by a C-Linked C8-Biphenyl-Guanine Lesion. Chem Res Toxicol 2019; 32:784-791. [PMID: 30785283 DOI: 10.1021/acs.chemrestox.9b00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aromatic chemicals can undergo metabolic activation to afford electrophilic species that react at the C8-site of 2'-deoxyguanosine (dG) to generate bulky C8-dG adducts as a basis of initiating carcinogenesis. These DNA lesions have served as models to understand the mechanism of frameshift mutagenesis, especially within CG-dinucleotide repeat sequences, such as NarI (5'-GGCXCC-3', where X = C8-dG adduct), however there is still limited capacity to predict the likelihood of mutation arising within particular contexts, and hence chemistry-based strategies are needed for probing relationships between nucleic acid sequence and structure with replication errors. In the NarI sequence, certain C8-dG adducts may trigger in the course of DNA synthesis the formation of a slipped mutagenic intermediate (SMI) that contains a two nucleotide (XC) bulge in the template strand that can form upstream of the polymerase active site. This distortion facilitates polymerization but affords a GC dinucleotide deletion product (-2 frameshift mutation). In the current study, incorporating the fluorescent C-linked 4-fluorobiphenyl-dG (FBP-dG) adduct into two 22-mer templates containing CG-dinucleotide repeats ( NarI: 3'-CXCGGC-5' and CG3: 3'-CXCGCG-5', X = FBP-dG) and performing primer extension reactions using DNA polymerase I, Klenow fragment exo- (Kf-) revealed a dramatic sequence-based difference in polymerase bypass efficiency. Primer extension past FBP-dG within the NarI sequence was strongly blocked, whereas Kf- extended the primer past FBP-dG within a CG3 template to afford a full-length product and the GC dinucleotide deletion. To model the nucleotide insertion steps in the fully paired (FP) versus the slipped mutagenic (SM) translesion pathways, adducted template:primer duplexes were constructed and characterized by UV thermal denaturation and fluorescence spectroscopy. The emission intensity of the FBP-dG lesion exhibits sensitivity to SMI formation (turn-on) versus a FP duplex (turn-off), permitting insight into adduct base-pairing within the template:primer duplexes. This fluorescence sensitivity provides a rationale for sequence impact on -2 frameshift mutations mediated by the C-linked FBP-dG lesion.
Collapse
Affiliation(s)
- Florence D Berger
- Department of Health Sciences and Technology , ETH Zurich , 8092 Zurich , Switzerland
| | - Richard A Manderville
- Departments of Chemistry and Toxicology , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| | - Shana J Sturla
- Department of Health Sciences and Technology , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
5
|
Klopčič I, Dolenc MS. Chemicals and Drugs Forming Reactive Quinone and Quinone Imine Metabolites. Chem Res Toxicol 2018; 32:1-34. [DOI: 10.1021/acs.chemrestox.8b00213] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ivana Klopčič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
6
|
Vongsutilers V, Gannett PM. C8-Guanine modifications: effect on Z-DNA formation and its role in cancer. Org Biomol Chem 2018. [DOI: 10.1039/c8ob00030a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Participation of Z DNA in normal and disease related biological processes.
Collapse
Affiliation(s)
- V. Vongsutilers
- Department of Food and Pharmaceutical Chemistry
- Faculty of Pharmaceutical Sciences
- Chulalongkorn University
- Thailand
| | - P. M. Gannett
- College of Pharmacy
- Nova Southeastern University
- Ft. Lauderdale
- USA
| |
Collapse
|
7
|
Berger FD, Sturla SJ, Kung RW, Montina T, Wetmore SD, Manderville RA. Conformational Preference and Fluorescence Response of a C-Linked C8-Biphenyl-Guanine Lesion in the NarI Mutational Hotspot: Evidence for Enhanced Syn Adduct Formation. Chem Res Toxicol 2017; 31:37-47. [DOI: 10.1021/acs.chemrestox.7b00266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Florence D. Berger
- Department
of Health Sciences and Technology, Institute of Food, Nutrition, and
Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Shana J. Sturla
- Department
of Health Sciences and Technology, Institute of Food, Nutrition, and
Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Ryan W. Kung
- Department
of Chemistry and Biochemistry, and the Canadian Centre for Research
in Advanced Fluorine Technologies, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Tony Montina
- Department
of Chemistry and Biochemistry, and the Canadian Centre for Research
in Advanced Fluorine Technologies, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department
of Chemistry and Biochemistry, and the Canadian Centre for Research
in Advanced Fluorine Technologies, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Richard A. Manderville
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
8
|
Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins (Basel) 2016; 8:111. [PMID: 27092524 PMCID: PMC4848637 DOI: 10.3390/toxins8040111] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 01/28/2023] Open
Abstract
Ochratoxin A (OTA) is a widely-spread mycotoxin all over the world causing major health risks. The focus of the present review is on the molecular and cellular interactions of OTA. In order to get better insight into the mechanism of its toxicity and on the several attempts made for prevention or attenuation of its toxic action, a detailed description is given on chemistry and toxicokinetics of this mycotoxin. The mode of action of OTA is not clearly understood yet, and seems to be very complex. Inhibition of protein synthesis and energy production, induction of oxidative stress, DNA adduct formation, as well as apoptosis/necrosis and cell cycle arrest are possibly involved in its toxic action. Since OTA binds very strongly to human and animal albumin, a major emphasis is done regarding OTA-albumin interaction. Displacement of OTA from albumin by drugs and by natural flavonoids are discussed in detail, hypothesizing their potentially beneficial effect in order to prevent or attenuate the OTA-induced toxic consequences.
Collapse
|
9
|
Colis LC, Woo CM, Hegan DC, Li Z, Glazer PM, Herzon SB. The cytotoxicity of (-)-lomaiviticin A arises from induction of double-strand breaks in DNA. Nat Chem 2014; 6:504-10. [PMID: 24848236 PMCID: PMC4090708 DOI: 10.1038/nchem.1944] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/04/2014] [Indexed: 11/09/2022]
Abstract
The metabolite (-)-lomaiviticin A, which contains two diazotetrahydrobenzo[b]fluorene (diazofluorene) functional groups, inhibits the growth of cultured human cancer cells at nanomolar-picomolar concentrations; however, the mechanism responsible for the potent cytotoxicity of this natural product is not known. Here we report that (-)-lomaiviticin A nicks and cleaves plasmid DNA by a pathway that is independent of reactive oxygen species and iron, and that the potent cytotoxicity of (-)-lomaiviticin A arises from the induction of DNA double-strand breaks (dsbs). In a plasmid cleavage assay, the ratio of single-strand breaks (ssbs) to dsbs is 5.3 ± 0.6:1. Labelling studies suggest that this cleavage occurs via a radical pathway. The structurally related isolates (-)-lomaiviticin C and (-)-kinamycin C, which contain one diazofluorene, are demonstrated to be much less effective DNA cleavage agents, thereby providing an explanation for the enhanced cytotoxicity of (-)-lomaiviticin A compared to that of other members of this family.
Collapse
Affiliation(s)
- Laureen C Colis
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Christina M Woo
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Denise C Hegan
- Departments of Therapeutic Radiology and Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Zhenwu Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Peter M Glazer
- Departments of Therapeutic Radiology and Genetics, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
10
|
Sproviero M, Rankin KM, Witham AA, Manderville RA. Utility of 5'-O-2,7-dimethylpixyl for solid-phase synthesis of oligonucleotides containing acid-sensitive 8-aryl-guanine adducts. J Org Chem 2014; 79:692-9. [PMID: 24392939 DOI: 10.1021/jo4024842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To study the structural and biological impact of 8-aryl-2'-deoxyguanosine adducts, an efficient protocol is required to incorporate them site-specifically into oligonucleotide substrates. Traditional phosphoramidite chemistry using 5'-O-DMT protection can be limiting because 8-aryl-dG adducts suffer from greater rates of acid-catalyzed depurination than dG and are sensitive to the acidic deblock conditions required to remove the DMT group. Herein we show that the 5'-O-2,7-dimethylpixyl (DMPx) protecting group can be used to limit acid exposure and improve DNA synthesis efficiency for DNA substrates containing 8-aryl-dG adducts. Our studies focus on 8-aryl-dG adducts with 8-substituents consisting of furyl ((Fur)dG), phenyl ((Ph)dG), 4-cyanophenyl ((CNPh)dG), and quinolyl ((Q)dG). These adducts differ in ring size and sensitivity to acid-promoted deglycosylation. A kinetic study for adduct hydrolysis in 0.1 M aqueous HCl determined that (Fur)dG was the most acid-sensitive (55.2-fold > dG), while (Q)dG was the most resistant (5.6-fold > dG). The most acid-sensitive (Fur)dG was chosen for optimization of solid-phase DNA synthesis. Our studies show that the 5'-O-DMPx group can provide a 4-fold increase in yield compared to 5'-O-DMT for incorporation of (Fur)dG into DNA substrates critical for determining adduct impact on DNA synthesis and repair.
Collapse
Affiliation(s)
- Michael Sproviero
- Departments of Chemistry and Toxicology, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
11
|
C8-linked bulky guanosine DNA adducts: experimental and computational insights into adduct conformational preferences and resulting mutagenicity. Future Med Chem 2012; 4:1981-2007. [PMID: 23088278 DOI: 10.4155/fmc.12.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bulky DNA adducts are formed through the covalent attachment of aryl groups to the DNA nucleobases. Many of these adducts are known to possess conformational heterogeneity, which is responsible for the variety of mutagenic outcomes associated with these lesions. The present contribution reviews several conformational and mutagenic themes that are prevalent among the DNA adducts formed at the C8-site of the guanine nucleobase. The most important conclusions obtained (to date) from experiments are summarized including the anti/syn conformational preference of the adducts, their potential to inflict DNA mutations and mismatch stabilization, and their interactions with DNA polymerases and repair enzymes. Additionally, the unique role that computer calculations can play in understanding the structural properties of these adducts are highlighted.
Collapse
|
12
|
Pfohl-Leszkowicz A, Manderville RA. An update on direct genotoxicity as a molecular mechanism of ochratoxin a carcinogenicity. Chem Res Toxicol 2011; 25:252-62. [PMID: 22054007 DOI: 10.1021/tx200430f] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ochratoxin A (OTA) is a naturally occurring chlorophenolic fungal toxin that contaminates a wide range of food products and poses a cancer threat to humans. The mechanism of action (MOA) for OTA renal carcinogenicity is a controversial issue. In 2005, direct genotoxicity (covalent DNA adduct formation) was proposed as a MOA for OTA-mediated carcinogenicity [ Manderville , R. A. ( 2005 ) Chem. Res. Toxicol. 18 , 1091 - 1097 ]. At that time, inconsistent results had been published on OTA genotoxicity/mutagenicity, and conclusive evidence for OTA-mediated DNA adduction had been lacking. In this update, published data from the past 6-7 years are presented that provide new hypotheses for the MOA of OTA-mediated carcinogenicity. While direct genotoxicity remains a controversial issue for OTA, new findings from the Umemura and Nohmi laboratories provide definitive results for the mutagenicity of OTA in the target tissue (outer medulla) of male rat kidney that rules out oxidative DNA damage. These findings, coupled with our own efforts that provide new structural evidence for DNA adduction by OTA, has strengthened the argument for involvement of direct genotoxicity in OTA-mediated renal carcinogenesis. This MOA should be taken into consideration for OTA human risk assessment.
Collapse
Affiliation(s)
- Annie Pfohl-Leszkowicz
- Laboratoire de Génie Chimique , UMR CNRS/INPT/UPS 5503, INP/ENSA Toulouse, 1 Avenue Agrobiopole, F-31326 Auzeville-Tolosane, France.
| | | |
Collapse
|
13
|
Omumi A, Millen AL, Wetmore SD, Manderville RA. Fluorescent properties and conformational preferences of C-linked phenolic-DNA adducts. Chem Res Toxicol 2011; 24:1694-709. [PMID: 21905681 DOI: 10.1021/tx200247f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phenolic toxins and mutagenic diazoquinones generate C-linked adducts at the C8 site of 2'-deoxyguanosine (dG) through the intermediacy of radical species. We have previously reported the site-specific incorporation of these adducts into oligonucleotides using a postsynthetic palladium-catalyzed cross-coupling strategy [Omumi (2011 ) J. Am. Chem. Soc. 133 , 42 - 50 ]. We report here the structural impact of these lesions within two decanucleotide sequences containing either 5'- and 3'-flanking pyrimidines or purines. In the complementary strands, the base opposite (N) the C-linked adduct was varied to determine the possibility of mismatch stabilization by the modified nucleobases. The resulting adducted duplex structures were characterized using UV thermal denaturation studies, circular dichroism, fluorescence spectroscopy, and molecular dynamics (MD) simulations. The experimental data showed the C-linked adducts to destabilize the duplex when base paired with its normal partner C but to increase duplex stability within a G:G mismatch. The stabilization within the G:G mismatch was sequence dependent, with flanking purine bases playing a key role in the stabilizing influence of the adduct. MD simulations showed no large structural changes to the B form double helix, regardless of the (anti/syn) adduct preference. Consideration of H-bonding and stacking interactions derived from the MD simulations together with the thermal melting data and changes in fluorescent emission of the adducts upon hybridization to the complementary strands implied that the C-linked phenolic adducts preferentially adopt the syn-conformation within both duplexes regardless of the opposite base N. Given that biological outcome in terms of mutagenicity appears to be strongly correlated to the conformational preference of the corresponding N-linked C8-dG adducts, the potential biological implications of phenolic C-linked adducts are discussed.
Collapse
Affiliation(s)
- Alireza Omumi
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
14
|
Duncton MAJ. Minisci reactions: Versatile CH-functionalizations for medicinal chemists. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00134e] [Citation(s) in RCA: 426] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Omumi A, Beach DG, Baker M, Gabryelski W, Manderville RA. Postsynthetic guanine arylation of DNA by Suzuki-Miyaura cross-coupling. J Am Chem Soc 2010; 133:42-50. [PMID: 21067186 DOI: 10.1021/ja106158b] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Direct radical addition reactions at the C(8)-site of 2'-deoxyguanosine (dG) can afford C(8)-Ar-dG adducts that are produced by carcinogenic arylhydrazines, polycyclic aromatic hydrocarbons, and certain phenolic toxins. Such modified nucleobases are also highly fluorescent for sensing applications and possess useful electron transfer properties. The site-specific synthesis of oligonucleotides containing the C(8)-Ar-G adduct can be problematic. These lesions are sensitive to acids and oxidants that are commonly used in solid-phase DNA synthesis and are too bulky to be accepted as substrates for enzymatic synthesis by DNA polymerases. Using the Suzuki-Miyaura cross-coupling reaction, we have synthesized a number of C(8)-Ar-G-modified oligonucleotides (dimers, trimers, decamers, and a 15-mer) using a range of arylboronic acids. Good to excellent yields were obtained, and the reaction is insensitive to the nature of the bases flanking the convertible 8-Br-G nucleobase, as both pyrimidines and purines are tolerated. The impact of the C(8)-Ar-G lesion was also characterized by electrospray ionization tandem mass spectrometry, UV melting temperature analysis, circular dichroism, and fluorescence spectroscopy. The C(8)-Ar-G-modified oligonucleotides are expected to be useful substrates for diagnostic applications and understanding the biological impact of the C(8)-Ar-G lesion.
Collapse
Affiliation(s)
- Alireza Omumi
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
16
|
Vongsutilers V, Daft JR, Shaughnessy KH, Gannett PM. A general synthesis of C8-arylpurine phosphoramidites. Molecules 2009; 14:3339-52. [PMID: 19783928 PMCID: PMC6255102 DOI: 10.3390/molecules14093339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/20/2009] [Accepted: 08/27/2009] [Indexed: 11/16/2022] Open
Abstract
A general scheme for the synthesis of C8-arylpurine phosphoramidites has been developed. C8-Arylation of C8-bromo-2′-deoxyguanosine is the key step and has been achieved through the use of a Suzuki coupling. Since the coupling reaction is conducted under aqueous conditions, it is unnecessary to protect and then deprotect the hydroxyl groups, thus saving several steps and improving overall yields. Once the C8-arylgroup is introduced, the glycosidic bond becomes very sensitive to acid catalyzed cleavage. Protection of the amino groups as the corresponding N,N-dimethylformamidine derivative improves stability of the derivatives. Synthetic C8-arylpurines were successfully used to prepare synthetic oligonucleotides.
Collapse
Affiliation(s)
- Vorasit Vongsutilers
- West Virginia University, Department of Basic Pharmaceutical Sciences, P.O. Box 9530, Morgantown, WV 26506, USA; E-mails: (V.V.); (J.R.D.)
| | - Jonathan R. Daft
- West Virginia University, Department of Basic Pharmaceutical Sciences, P.O. Box 9530, Morgantown, WV 26506, USA; E-mails: (V.V.); (J.R.D.)
| | - Kevin H. Shaughnessy
- Department of Chemistry and Center for Green Manufacturing, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487-0336, USA; E-mail: (K.H.S.)
| | - Peter M. Gannett
- West Virginia University, Department of Basic Pharmaceutical Sciences, P.O. Box 9530, Morgantown, WV 26506, USA; E-mails: (V.V.); (J.R.D.)
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
17
|
Yang ZZ, Qi SF, Zhao DX, Gong LD. Insight into mechanism of formation of c8 adducts in carcinogenic reactions of arylnitrenium ions with purine nucleosides. J Phys Chem B 2009; 113:254-9. [PMID: 19072693 DOI: 10.1021/jp804128s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For the most important arylnitrenium ion-guanosine C8 adducts in the reactions involving arylamine-initiated carcinogenesis, a detailed mechanism of their formation still remains unclear. In this paper, we employ quantum chemistry methods to explore this issue. Our study indicates that formation of these C8 adducts proceeds directly by additions of arylnitrenium ions to C8 position of nucleoside bases in DNA. The good agreements of theoretical rate constants, pK(a) value, and NMR chemical shifts of C8 intermediate with experimental data support this theoretical finding. Excitingly, predictions of what adducts can be observed in reactions of arylnitrenium ions with guanine and hypoxanthine are in fair agreement with experimental observations. This study answers an important question, in carcinogenesis researches, of what is the mechanism for formation of C8 adducts.
Collapse
Affiliation(s)
- Zhong-Zhi Yang
- Chemistry and Chemical Engineering Faculty, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | | | | | | |
Collapse
|
18
|
Structural and biological impact of radical addition reactions with DNA nucleobases. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2009. [DOI: 10.1016/s0065-3160(08)00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
19
|
Çeken B, Kízíl M. Synthesis and DNA-cleaving activity of a series of substituted arenediazonium ions. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:546-57. [DOI: 10.1134/s1068162008040158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Weishar JL, McLaughlin CK, Baker M, Gabryelski W, Manderville RA. Oxidation of a Biomarker for Phenol Carcinogen Exposure: Expanding the Redox Chemistry of 2′-Deoxyguanosine. Org Lett 2008; 10:1839-42. [DOI: 10.1021/ol8004694] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jennifer L. Weishar
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | - Michael Baker
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Wojciech Gabryelski
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Richard A. Manderville
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
21
|
Cerna I, Pohl R, Hocek M. The first direct C-H arylation of purine nucleosides. Chem Commun (Camb) 2007:4729-30. [PMID: 18004422 DOI: 10.1039/b714253f] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd-catalyzed direct C-H arylation of unprotected purine nucleosides with aryl iodides at position 8 was developed to allow a straightforward single-step introduction of diverse aryl groups.
Collapse
Affiliation(s)
- Igor Cerna
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | | | | |
Collapse
|
22
|
Beda NV, Nedospasov AA. NO-dependent modifications of nucleic acids. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2007; 33:195-228. [PMID: 17476982 DOI: 10.1134/s106816200702001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review is devoted to chemical transformations of nucleic acids and their components under the action of nitrogen oxide metabolites. The deamination reaction of bases is discussed in the context of possible competing transformations of its intermediates (nitrosamines, diazonium cations, diazotates, triazenes, and diazoanhydrides) and mechanisms of crosslink formation with proteins and nucleic acids. The oxidation and nitration of bases by NO2 is considered together with the possibility of radical transfer to domains from the base stacks in DNA. Reduction of redox potentials of bases as a result of stacking interactions explains the possibility of their reactions within nucleic acids with the oxidants whose redox potential is insufficient for the effective reactions with mononucleotides. Modifications of nucleic acids with peroxynitrite derivatives are discussed in the context of the effect of the DNA primary structure and the modification products formed on the reactivity of single bases. The possibility of reduction of nitro groups within modified bases to amino derivatives and their subsequent diazotation is considered. The substitution of oxoguanine for nitroguanine residues may result; the reductive diazotation can lead to undamaged guanine. The intermediate modified bases, e.g., 8-aminoguanine and 8-diazoguanine, were shown to participate in noncanonical base pairing, including the formation of more stable bonds with two bases, which is characteristic of the DNA Z-form. A higher sensitivity of RNA in comparison with DNA to NO-dependent modifications (NODMs) is predicted on the basis of the contribution of medium microheterogeneity and the known mechanisms of nitrosylation and nitration. The possible biological consequences of nucleic acids NODMs are briefly considered. It is shown that the NODMs under the action of nitrogen oxide metabolites generated by macrophages and similar cells in inflammations or infections should lead to a sharp increase in the number of mutations in the case of RNA-containing viruses. As a result, the defense mechanisms of the host organism may contribute to the appearance of new, including more dangerous, variants of infecting viruses.
Collapse
|
23
|
Adeuya A, Yang L, Amegayibor FS, Nash JJ, Kenttämaa HI. Reactivity of aromatic sigma, sigma-biradicals toward riboses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1325-34. [PMID: 16938462 DOI: 10.1016/j.jasms.2006.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 07/17/2006] [Accepted: 07/18/2006] [Indexed: 05/11/2023]
Abstract
The gas-phase reactions of sugars with aromatic, carbon-centered sigma,sigma-biradicals with varying polarities [as reflected by their calculated electron affinities (EA)] and extent of spin-spin coupling [as reflected by their calculated singlet-triplet (S-T) gaps] have been studied. The biradicals are positively charged, which allows them to be manipulated and their reactions to be studied in a Fourier-transform ion cyclotron resonance mass spectrometer. Hydrogen atom abstraction from sugars was found to be the dominant reaction for the biradicals with large EA values, while the biradicals with large S-T gaps tend to form addition/elimination products instead. Hence, not all sigma, sigma-biradicals may be able to damage DNA by hydrogen atom abstraction. The overall reaction efficiencies of the biradicals towards a given substrate were found to be directly related to the magnitude of their EA values, and inversely related to their S-T gaps. The EA of a biradical appears to be a very important rate-controlling factor, and it may even counterbalance the reduced radical reactivity characteristic of singlet biradicals that have large S-T gaps.
Collapse
Affiliation(s)
- Anthony Adeuya
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA
| | | | | | | | | |
Collapse
|
24
|
Dai Q, Ran C, Harvey RG. Regioselective arylation of 2′-deoxyribonucleosides on amido or imino sites by copper(II)-mediated direct coupling with arylboronic acids. Tetrahedron 2006. [DOI: 10.1016/j.tet.2005.11.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Quintero B, Planells E, del Carmen Cabeza M, Esquivias J, del Pilar Gutiérrez M, Sánchez C, Aranda P, Zarzuelo A, Llopis J. Tumor-promoting activity of p-hydroxybenzenediazonium is accelerated in Mg-deficient rats. Chem Biol Interact 2006; 159:186-95. [PMID: 16387288 DOI: 10.1016/j.cbi.2005.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/18/2005] [Accepted: 11/21/2005] [Indexed: 11/29/2022]
Abstract
Tumor-promoting activity caused by the short-term administration of p-hydroxybenzenediazonium (PDQ) has been assayed in rats fed on a Mg-deficient diet as a reference model versus rats fed on a standard diet as controls. For 5 weeks groups of 20 rats, fed either on the Mg-deficient or standard diet, were treated simultaneously with PDQ. A group of 10 Mg-deficient rats remained untreated. Topical application of PDQ was followed by the appearance of macroscopic alterations in the skin, which were more evident in the Mg-deficient rats. No deaths occurred during the treatment. After 5 weeks' PDQ treatment the rats were killed and histological analyses were made. Tissues from the skin, liver, heart, kidney, lung and thymus were screened by conventional staining methods. Both the PDQ-treated Mg-deficient and PDQ-treated control rats presented tissue lesions, although to a different extent. The untreated Mg-deficient rats showed no such lesions. Mg-deficient rats treated with PDQ developed significant incipient fibrosarcomas (p<0.05) and extended hyperplasia (p<0.001), particularly in the skin, accompanied by a significant increase in the thickness of collagen (mean value: 445.4+/-47.2microm, p<0.05) compared to the control PDQ-treated group (mean values: 258.7+/-36.4microm). The overall results provide objective proof of tumor-promoting activity after 5 weeks' treatment with PDQ. Such a fast response is interpreted as being linked to the increased vulnerability of the membrane caused by Mg deficiency, which would more readily facilitate the toxic activity of p-hydroxybenzenediazonium ions.
Collapse
Affiliation(s)
- Bartolome Quintero
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu JA, Petzold CJ, Ramirez-Arizmendi LE, Perez J, Kenttämaa H. Phenyl radicals react with dinucleoside phosphates by addition to purine bases and H-atom abstraction from a sugar moiety. J Am Chem Soc 2005; 127:12758-9. [PMID: 16159243 DOI: 10.1021/ja052766a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Laser-induced acoustic desorption combined with mass spectrometry has been used to demonstrate that phenyl radicals can attack dinucleoside phosphates at both the sugar and base moieties, that purine bases are more susceptible to the attack than pyrimidine bases, and that the more electrophilic the radical, the more efficient the damage to dinucleoside phosphates.
Collapse
Affiliation(s)
- Ji-ang Liu
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2038, USA
| | | | | | | | | |
Collapse
|
27
|
Heavner S, Gannett PM. Molecular dynamics and free energy calculations of the B and Z forms of C8-arylguanine modified oligonucleotides. J Biomol Struct Dyn 2005; 23:203-20. [PMID: 16060694 DOI: 10.1080/07391102.2005.10507060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Arylhydrazines found in the mushroom Agaricus bisporus have been shown to be carcinogenic. Upon metabolic activation, arylhydrazines are transformed into aryl radicals, forming 8-arylpurines, which may play a role in arylhydrazine carcinogenesis. These adducts are poorly read and inhibit chain extension but do alter the conformational preferences of oligonucleotides. We have shown that C8-phenylguanine modification of d(CGCGCG*CGCG) (G*= 8-phenylguanine) stabilizes it in the Z-DNA conformation (B/Z-DNA=1:1, 200 mM NaCl, pH 7.4). Here we have conducted molecular dynamics and free energy calculations to determine the sources(s) of these conformational affects and to predict the affect of the related C8-tolyl and C8-hydroxymethylphenyl guanine adducts on B/Z-DNA equilibrium. Force field parameters for the modified guanines were first developed using Guassian98 employing the B3LYP method and the standard 6-31G* basis set and fit to the Cornell 94 force field with RESP. Molecular dynamics simulations and free energy calculations, using the suite of programs contained in Amber 6 and 7 with the Cornell 94 force field, were used to determine the structural and thermodynamic properties of the DNA. The principal factors that drive conformation are stacking of the aryl group over the 5'-cytosine in the phenyl and tolyl modified oligonucleotides while hydrogen bonding opposes stacking in the hydroxymethylphenyl derivative. The phenyl and tolyl-modified DNA's favored the Z-DNA form as did the hydroxymethylphenyl derivative when hydrogen bonding was not present. The B-DNA conformation was preferred by the unmodified oligonucleotide and by the hydroxymethylphenyl-modified oligonucleotide when hydrogen bonding was considered. Z-DNA stability was not found to directly correlated with carcinogenicity and additional biological factors, such as recognition and repair, may also need to be considered in addition to Z-DNA formation.
Collapse
Affiliation(s)
- Sue Heavner
- West Virginia University, Dept. of Basic Pharmaceutical Sciences, PO Box 9530, Morgantown, WV 26506, USA
| | | |
Collapse
|
28
|
Western EC, Shaughnessy KH. Inhibitory effects of the guanine moiety on Suzuki couplings of unprotected halonucleosides in aqueous media. J Org Chem 2005; 70:6378-88. [PMID: 16050700 DOI: 10.1021/jo050832l] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the Suzuki arylations of unprotected halonucleosides in aqueous media, 8-bromo-2'-deoxyguanosine (8BrdG) couplings were slower to reach completion than the corresponding 8-bromo-2'-deoxyadenosine (8BrdA) couplings. The guanine moiety has an acidic proton, which under our Suzuki conditions (pH congruent with 10) may be deprotonated to give an anion that can coordinate to palladium. The possibility that guanine coordination was responsible for the observed slower rates was explored using additive experiments in which nonhalogenated nucleosides were added to the Suzuki coupling reaction of 8BrdA or 4-bromotoluene and PhB(OH)2 and the reaction progress monitored by HPLC or GC. Adding dG slowed these reactions, and an induction period was observed. The addition of dA or 1-methyl-2'-deoxyguanosine (1MedG) to these couplings did not affect the rate of conversion to product. Guanine coordination was further explored using 13C and 31P NMR spectroscopy, which implies that guanine is coordinating to palladium through N-1 or O-6, or both. Furthermore, the presence of dG inhibited the formation of the active palladium(0) catalytic species, which may account for both the observed induction period and the sluggishness of reactions where guanine is involved.
Collapse
Affiliation(s)
- Elizabeth C Western
- Department of Chemistry and the Center for Green Manufacturing, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487-0336, USA
| | | |
Collapse
|
29
|
Mohler DL, Downs JR, Hurley-Predecki AL, Sallman JR, Gannett PM, Shi X. DNA Cleavage by the Photolysis of Cyclopentadienyl Metal Complexes: Mechanistic Studies and Sequence Selectivity of Strand Scission by CpW(CO)3CH3. J Org Chem 2005; 70:9093-102. [PMID: 16268578 DOI: 10.1021/jo050338h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[Reaction: see text]. The photolysis of CpW(CO)3Me has been shown to produce methyl radicals and to cleave DNA in a single-stranded manner, and preliminary evidence implicated a carbon-centered radical in this process. In this work, the mechanism of strand scission in this reaction was determined to occur by hydrogen atom abstraction from the 4'- and 5'-positions of the deoxyribose moiety of the backbone of DNA. Additionally, in a side reaction that does not lead to frank strand scission, all four bases of DNA are methylated under these conditions; however, none of these base or backbone modifications lead to the formation of abasic sites.
Collapse
Affiliation(s)
- Debra L Mohler
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Quintero B, Martínez Puentedura MI, Megías MT, Cabeza MC, Gutiérrez MP, Martínez de las Parras PJ. Oxidative effects induced by dediazoniation of the p-hydroxybenzenediazonium ion in a neutral aqueous medium. J Chromatogr A 2004; 1035:227-36. [PMID: 15124816 DOI: 10.1016/j.chroma.2004.02.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The toxicity of arenediazonium ions is believed to result from the appearance of very reactive compounds during the dediazoniation process. In the case of the p-hydroxybenzenediazonium ion (PDQ), radical species generated during dediazoniation could potentially initiate lipid peroxidation. The data obtained in spectrophotometric experiments suggest that an interaction between PDQ and linoleic acid (LA) gives rise to the characteristic absorption of oxidized products deriving from LA, both in the presence and absence of a mixed micellar medium containing the surfactant Tween 20 (Tw20). Spectroscopic evidence also clearly points to the interference of these processes in the dediazoniation of PDQ. Analysis by reverse-phase, high-pressure liquid chromatography (HPLC) confirms that the decomposition of PDQ in a mixed micellar medium induces the peroxidation of both LA and methyl linoleate (MEL), thus causing the appearance of peaks characteristic of dienic conjugated hydroperoxides. The same products are observed after interaction between LA and the water-soluble 2,2'-azobis (2-amidinopropane), a frequently used initiator of lipid peroxidation. The proportion of isomers produced during the peroxidation process agrees well with that reported for reactions mediated by free radicals. A further chromatographic analysis of the decomposition of PDQ in the presence of 2-methylcyclohexa-2,5-diene-1-carboxylic acid (CHD) shows that phenol and quinone are the main products of the reaction. These results are discussed on the understanding that aryl and peroxyl radicals abstract a hydrogen atom from CHD, in accordance with our general scheme for PDQ dediazoniation described in a previous publication.
Collapse
Affiliation(s)
- B Quintero
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain.
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Western EC, Daft JR, Johnson EM, Gannett PM, Shaughnessy KH. Efficient one-step Suzuki arylation of unprotected halonucleosides, using water-soluble palladium catalysts. J Org Chem 2003; 68:6767-74. [PMID: 12919046 DOI: 10.1021/jo034289p] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modification of nucleosides to give pharmaceutically active compounds, mutagenesis models, and oligonucleotide structural probes continues to be of great interest. The aqueous-phase modification of unprotected halonucleosides is reported herein. Using a catalyst derived from tris(3-sulfonatophenyl)phosphine (TPPTS) and palladium acetate, 8-bromo-2'-deoxyguanosine (8-BrdG) is coupled with arylboronic acids to give 8-aryl-2'-deoxyguanosine adducts (8-ArdG) in excellent yield in a 2:1 water:acetonitrile solvent mixture. The TPPTS ligand was found to be superior to water-soluble alkylphosphines for this coupling reaction. The coupling chemistry has been extended to 8-bromo-2'-deoxyadenosine (8-BrdA) and 5-iodo-2'-deoxyuridine (5-IdU), as well as the ribonucleosides 8-bromoguanosine and 8-bromoadenosine. Good to excellent yields of arylated adducts are obtained in all cases. With use of tri(4,6-dimethyl-3-sulfonatophenyl)phosphine (TXPTS), the Suzuki coupling of 8-BrdA and 5-IdU can be accomplished in less than 1 h at room temperature. This methodology represents an efficient and general method for halonucleoside arylation that does not require prior protection of the nucleoside.
Collapse
Affiliation(s)
- Elizabeth C Western
- Department of Chemistry and the Center for Green Manufacturing, The University of Alabama, Box 870336, Tuscaloosa, Alabama 35487-0336, USA
| | | | | | | | | |
Collapse
|
33
|
Quintero B, Cabeza MC, Martínez MI, Gutiérrez P, Martínez PJ. Dediazoniation of p-hydroxy and p-nitrobenzenediazonium ions in an aqueous medium: Interference by the chelating agent diethylenetriaminepentaacetic acid. CAN J CHEM 2003. [DOI: 10.1139/v03-088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have made a comparative study of the dediazoniation of p-hydroxy and p-nitrobenzenediazonium ions. The electron-withdrawing and donating properties of the -NO2 and -OH groups strongly determine the reactivity of both compounds, thus exerting different influences upon the dediazoniation reaction. We describe here how the decomposition of p-hydroxy and p-nitrobenzenediazonium ions in a neutral aqueous medium follows a different pattern in the presence of the metal-chelator diethylenetriaminepentaacetic acid (DTPA). The decomposition rate of p-hydroxybenzene diazonium decreases whilst the decomposition of the p-nitrobenzenediazonium ion is enhanced. The experimental data are discussed with reference to a common scheme of interference for both benzenediazonium ions in the light of the radical-scavenging capacity of DTPA.Key words: p-hydroxybenzenediazonium ion, p-nitrobenzenediazonium ion, di-ethylenetriaminepentaacetic acid, dediazoniation, radical scavenging, artifacts.
Collapse
|
34
|
Ramírez-Arizmendi LE, Heidbrink JL, Guler LP, Kenttämaa HI. Reactivity of substituted charged phenyl radicals toward components of nucleic acids. J Am Chem Soc 2003; 125:2272-81. [PMID: 12590557 DOI: 10.1021/ja020632g] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions of differently substituted phenyl radicals with components of nucleic acids have been investigated in the gas phase. A positively charged group located meta with respect to the radical site was employed to allow manipulation of the radicals in a Fourier-transform ion cyclotron resonance mass spectrometer. All of these electrophilic radicals react with sugars via exclusive hydrogen atom abstraction, with adenine and uracil almost exclusively via addition (likely at the C8 and C5 carbons, respectively), and with the nucleoside thymidine by hydrogen atom abstraction and addition at C5 in the base moiety (followed by elimination of (*)CH(3)). These findings parallel the reactivity of the phenyl radical with components of nucleic acids in solution, except that the selectivity for addition is different. Like HO(*), the electrophilic charged phenyl radicals appear to favor addition to the C5-end of the C5-C6 double bond of thymine and thymidine, whereas the phenyl radical preferentially adds to C6. The charged phenyl radicals do not predominantly add to thymine, as the neutral phenyl radical and HO(*), but mainly react by hydrogen atom abstraction from the methyl group (some addition to C5 in the base followed by loss of (*)CH(3) also occurs). Adenine appears to be the preferred target among the nucleobases, while uracil is the least favored. A systematic increase in the electrophilicity of the radicals by modification of the radicals' structures was found to facilitate all reactions, but the addition even more than hydrogen atom abstraction. Therefore, the least reactive radicals are most selective toward hydrogen atom abstraction, while the most reactive radicals also efficiently add to the base. Traditional enthalpy arguments do not rationalize the rate variations. Instead, the rates reflect the radicals' electron affinities used as a measure for their ability to polarize the transition state of each reaction.
Collapse
Affiliation(s)
- Luis E Ramírez-Arizmendi
- Contribution from the Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA
| | | | | | | |
Collapse
|
35
|
Laufer RS, Dmitrienko GI. Diazo group electrophilicity in kinamycins and lomaiviticin A: potential insights into the molecular mechanism of antibacterial and antitumor activity. J Am Chem Soc 2002; 124:1854-5. [PMID: 11866589 DOI: 10.1021/ja0167809] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Theoretical and chemical studies of the reactivity of isoprekinamycin, the kinamycins, and the lomaiviticins support the proposal that these natural products exhibit enhanced diazonium salt character and may owe their antitumor antibiotic properties to their ability to act as electrophilic azo-coupling agents in vivo.
Collapse
Affiliation(s)
- Radoslaw S Laufer
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | | |
Collapse
|
36
|
Quintero B, Morales JJ, Quirós M, Martínez-Puentedura MI, Cabeza MC. Dediazoniation of p-hydroxybenzenediazonium ion in a neutral aqueous medium. Free Radic Biol Med 2000; 29:464-79. [PMID: 11020668 DOI: 10.1016/s0891-5849(00)00321-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The dediazoniation of p-hydroxybenzenediazonium ion (PDQ) in a neutral aqueous medium has been studied under controlled experimental conditions to prevent photochemical and/or heterolytic side-reactions. Oxygen increased the dediazoniation rate of PDQ and caused the appearance of quinone and hydroquinone. An accumulation of quinone deriving from the reduction of PDQ by hydroquinone was also observed. In ESR analyses with different spin traps, the most stable signal was identified as belonging to the adduct of the p-hydroxyphenyl radical, even in the presence of dimethylsulfoxide or ethanol. A general scheme is proposed including three pathways for the homolytic dediazoniation of PDQ. Pathway 1 represents dediazoniation induced by a hydroxyl ion, a slow process at neutral pH and an even slower one with deaerated samples; a favored quinoid structure is put forward to explain these results. In pathway 2, the formation of a semiquinone radical via the reaction of an aryl radical with oxygen is put forward to justify the increase in the dediazoniation rate in the presence of oxygen. In pathway 3, hydroquinone, produced by semiquinone dismutation, may act as a reducing agent.
Collapse
Affiliation(s)
- B Quintero
- Department of Physical Chemistry, University of Granada, Granada, Spain.
| | | | | | | | | |
Collapse
|