1
|
Zhou W, Jiang Y, Xu Y, Wang Y, Ma X, Zhou L, Lin Y, Wang Y, Wu Z, Li M, Yin W, Lu J. Comparison of adverse drug reactions between tamoxifen and toremifene in breast cancer patients with different CYP2D6 genotypes: a propensity-score matched cohort study. Int J Cancer 2021; 150:1664-1676. [PMID: 34957551 DOI: 10.1002/ijc.33919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/18/2021] [Accepted: 12/10/2021] [Indexed: 11/06/2022]
Abstract
CYP2D6 gene polymorphism had a profound impact upon the effect of tamoxifen as adjuvant endocrine therapy in breast cancers. However, it had never been reported whether the adverse drug reactions vary by CYP2D6 metabolic status for patients treated with tamoxifen or toremifene. We conducted an retrospective study in breast cancer patients to investigate the impact of CYP2D6 metabolizers on liver dysfunction events, gynecological events, and dyslipidemia events. According to CYP2D6*10 (100C → T) genotype, the enrolled patients were further categorized into four cohorts (extensive metabolizers taking tamoxifen [EM + TAM], extensive metabolizers taking toremifene [EM + TOR], intermediate metabolizers taking tamoxifen [IM + TAM], intermediate metabolizers taking toremifene cohort [IM + TOR]). A total of 192 patients were included into the study, with a median follow-up time of 26.2 months. In EM + TAM cohort, the risks of liver dysfunction events (P = 0.004) and gynecological events (P = 0.004) were significantly higher compared with EM + TOR cohort. In IM + TAM cohort, the risks of liver dysfunction events (P = 0.14) and gynecological events (P = 0.99) were not significantly different from IM + TOR cohort. Significant decrease of total cholesterol was observed in EM + TAM cohort around 1 year after taking tamoxifen (P < 0.001). Significant interactions between CYP2D6 metabolic status and endocrine agents were observed in terms of liver dysfunction events (p-interaction = 0.007) and gynecological events (p-interaction = 0.026). These findings suggested that CYP2D6 gene polymorphism played a significant role in predicting liver dysfunction, gynecological diseases and lipid metabolism changes among patients taking tamoxifen or toremifene. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Weihang Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiwei Jiang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaqian Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Ma
- Department of Clinical Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziping Wu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Li
- Department of Clinical Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41:89-295. [PMID: 19514967 DOI: 10.1080/03602530902843483] [Citation(s) in RCA: 502] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pharmacogenetics is the study of how interindividual variations in the DNA sequence of specific genes affect drug response. This article highlights current pharmacogenetic knowledge on important human drug-metabolizing cytochrome P450s (CYPs) to understand the large interindividual variability in drug clearance and responses in clinical practice. The human CYP superfamily contains 57 functional genes and 58 pseudogenes, with members of the 1, 2, and 3 families playing an important role in the metabolism of therapeutic drugs, other xenobiotics, and some endogenous compounds. Polymorphisms in the CYP family may have had the most impact on the fate of therapeutic drugs. CYP2D6, 2C19, and 2C9 polymorphisms account for the most frequent variations in phase I metabolism of drugs, since almost 80% of drugs in use today are metabolized by these enzymes. Approximately 5-14% of Caucasians, 0-5% Africans, and 0-1% of Asians lack CYP2D6 activity, and these individuals are known as poor metabolizers. CYP2C9 is another clinically significant enzyme that demonstrates multiple genetic variants with a potentially functional impact on the efficacy and adverse effects of drugs that are mainly eliminated by this enzyme. Studies into the CYP2C9 polymorphism have highlighted the importance of the CYP2C9*2 and *3 alleles. Extensive polymorphism also occurs in other CYP genes, such as CYP1A1, 2A6, 2A13, 2C8, 3A4, and 3A5. Since several of these CYPs (e.g., CYP1A1 and 1A2) play a role in the bioactivation of many procarcinogens, polymorphisms of these enzymes may contribute to the variable susceptibility to carcinogenesis. The distribution of the common variant alleles of CYP genes varies among different ethnic populations. Pharmacogenetics has the potential to achieve optimal quality use of medicines, and to improve the efficacy and safety of both prospective and currently available drugs. Further studies are warranted to explore the gene-dose, gene-concentration, and gene-response relationships for these important drug-metabolizing CYPs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | | | |
Collapse
|
3
|
Antunes AMM, Duarte MP, Santos PP, Gamboa da Costa G, Heinze TM, Beland FA, Marques MM. Synthesis and Characterization of DNA Adducts from the HIV Reverse Transcriptase Inhibitor Nevirapine. Chem Res Toxicol 2008; 21:1443-56. [DOI: 10.1021/tx8000972] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alexandra M. M. Antunes
- REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal, and Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Mariana P. Duarte
- REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal, and Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Pedro P. Santos
- REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal, and Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Gonçalo Gamboa da Costa
- REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal, and Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Thomas M. Heinze
- REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal, and Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Frederick A. Beland
- REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal, and Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - M. Matilde Marques
- REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal, Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal, and Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| |
Collapse
|
4
|
Gamboa da Costa G, Marques MM, Fu X, Churchwell MI, Wang YP, Doerge DR, Beland FA. Effect of N,N-didesmethyltamoxifen upon DNA adduct formation by tamoxifen and alpha-hydroxytamoxifen. Cancer Lett 2007; 257:191-8. [PMID: 17765393 DOI: 10.1016/j.canlet.2007.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/16/2007] [Accepted: 07/17/2007] [Indexed: 11/30/2022]
Abstract
Tamoxifen undergoes sequential metabolism to N-desmethyltamoxifen and N,N-didesmethyltamoxifen. Whereas N-desmethyltamoxifen is a major metabolite in humans, nonhuman primates, and rats, appreciable concentrations of N,N-didesmethyltamoxifen are formed in humans and nonhuman primates but not in rats. This difference in the extent of N,N-didesmethyltamoxifen formation may be important because it has been proposed that N,N-didesmethyltamoxifen inhibits the cytochrome P450 (CYP)-catalyzed alpha-hydroxylation of tamoxifen and resultant tamoxifen-DNA adduct formation. To test this hypothesis directly, we compared the extent of tamoxifen-DNA adduct formation in rats co-administered 27micromol N,N-didesmethyltamoxifen per kg body weight and either 27micromol tamoxifen per kg body weight or 27micromol alpha-hydroxytamoxifen per kg body weight daily for 7days. Female Sprague-Dawley rats treated with N,N-didesmethyltamoxifen had a 44% decrease (p >0.05) in CYP 3A2 content (the CYP isoform responsible for tamoxifen alpha-hydroxylation), an 18% decrease (p =0.010) in CYP 3A activity, and higher blood levels of tamoxifen and N-desmethyltamoxifen compared to rats treated with solvent. Total tamoxifen-DNA adduct levels were 4.1-fold higher (p <0.001) in rats given alpha-hydroxytamoxifen as compared to tamoxifen. N,N-Didesmethyltamoxifen treatment caused a 1.2-fold increase in total tamoxifen-DNA adduct levels with both tamoxifen and alpha-hydroxytamoxifen, a difference that was not significant. These results indicate that, with this experimental model, N,N-didesmethyltamoxifen does not impair the metabolism of tamoxifen to a reactive electrophile.
Collapse
Affiliation(s)
- Gonçalo Gamboa da Costa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
5
|
Brown K, Tompkins EM, Boocock DJ, Martin EA, Farmer PB, Turteltaub KW, Ubick E, Hemingway D, Horner-Glister E, White INH. Tamoxifen forms DNA adducts in human colon after administration of a single [14C]-labeled therapeutic dose. Cancer Res 2007; 67:6995-7002. [PMID: 17638912 DOI: 10.1158/0008-5472.can-07-0913] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tamoxifen is widely prescribed for the treatment of breast cancer and is also licensed in the United States for the prevention of this disease. However, tamoxifen therapy is associated with an increased occurrence of endometrial cancer in women, and there is also evidence that it may elevate the risk of colorectal cancer. The underlying mechanisms responsible for tamoxifen-induced carcinogenesis in women have not yet been elucidated, but much interest has focused on the role of DNA adduct formation. We investigated the propensity of tamoxifen to bind irreversibly to colorectal DNA when given to 10 women as a single [(14)C]-labeled therapeutic (20 mg) dose, approximately 18 h before undergoing colon resections. Using the sensitive technique of accelerator mass spectrometry, coupled with high-performance liquid chromatography separation of enzymatically digested DNA, a peak corresponding to authentic dG-N(2)-tamoxifen adduct was detected in samples from three patients, at levels ranging from 1 to 7 adducts/10(9) nucleotides. No [(14)C]-radiolabel associated with tamoxifen or its major metabolites was detected. The presence of detectable CYP3A4 protein in all colon samples suggests that this tissue has the potential to activate tamoxifen to alpha-hydroxytamoxifen, in addition to that occurring in the systemic circulation, and direct interaction of this metabolite with DNA could account for the binding observed. Although the level of tamoxifen-induced damage displayed a degree of interindividual variability, when present, it was approximately 10 to 100 times higher than that reported for other suspect human colon carcinogens such as 2-amino-1-methyl-6-phenyimidazo[4,5-b]pyridine. These findings provide a mechanistic basis through which tamoxifen could increase the incidence of colon cancers in women.
Collapse
Affiliation(s)
- Karen Brown
- Cancer Biomarkers and Prevention Group, Reproductive Sciences, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kim SY, Laxmi YRS, Suzuki N, Ogura K, Watabe T, Duffel MW, Shibutani S. Formation of tamoxifen-DNA adducts via O-sulfonation, not O-acetylation, of alpha-hydroxytamoxifen in rat and human livers. Drug Metab Dispos 2005; 33:1673-8. [PMID: 16099924 DOI: 10.1124/dmd.105.005330] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tamoxifen (TAM) is used as the standard endocrine therapy for breast cancer patients and as a chemopreventive agent for women at high risk for this disease. Unfortunately, treatment of TAM increases the incidence of endometrial cancer; this may be due to the genotoxic damage induced by TAM metabolites. Formation of TAM-DNA adducts in rat liver correlates with the development of hepatocarcinoma. TAM-DNA adducts are proposed to be formed through O-sulfonation and/or O-acetylation of alpha-hydroxylated TAM and its metabolites. However, the role of O-sulfonation and O-acetylation in the formation of TAM-DNA adducts has not been extensively investigated. Rat or human hydroxysteroid sulfotransferases (HST), acetyltransferases, and liver cytosol were incubated with calf thymus DNA, alpha-OHTAM, and either 3'-phosphoadenosine 5'-phosphosulfate (PAPS) or acetyl coenzyme A (acetyl-CoA) as a cofactor and analyzed for TAM-DNA adduct formation, using 32P postlableling/polyacrylamide gel electrophoresis analysis. TAM-DNA adduct was formed when PAPS, not acetyl-CoA, was used. No TAM-DNA adducts were produced using human N-acetyltransferase I and II. HST antibody inhibited approximately 90% of TAM-DNA adduct formation generated by the cytosol or HST, suggesting that HST is primarily involved in the formation of TAM-DNA adducts. The formation of TAM-DNA adducts with rat liver cytosol and HST was much higher than that of human liver cytosol and HST. Our results indicate that TAM-DNA adducts are formed via O-sulfonation, not O-acetylation, of alpha-hydroxylated TAM and its metabolites.
Collapse
Affiliation(s)
- Sung Yeon Kim
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, State University of New York at Stony Brook, NY 11794-8651, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Phillips DH, Hewer A, Osborne MR, Cole KJ, Churchill C, Arlt VM. Organ specificity of DNA adduct formation by tamoxifen and α-hydroxytamoxifen in the rat: implications for understanding the mechanism(s) of tamoxifen carcinogenicity and for human risk assessment. Mutagenesis 2005; 20:297-303. [PMID: 15928012 DOI: 10.1093/mutage/gei038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tamoxifen is an anti-oestrogen widely used in the adjuvant therapy of breast cancer and is also used as a prophylactic to prevent the disease in high-risk women. An increased risk of endometrial cancer has been observed in both settings. In rats, tamoxifen potently induces liver carcinomas and also induces uterine tumours when given neonatally. It forms DNA adducts in rat liver via the formation of alpha-hydroxytamoxifen, the ultimately reactive form being generated by sulfotransferase. In order to investigate the formation of tamoxifen-derived DNA adducts in other rat tissues, female Fischer F344 or Sprague-Dawley rats were treated with tamoxifen or alpha-hydroxytamoxifen by gavage or by intraperitoneal injection, daily for 1, 4 or 7 days, and DNA adducts were detected by (32)P-postlabelling analysis. Tamoxifen formed DNA adducts in the liver but not in other tissues (uterus, stomach, kidney, spleen and colon). alpha-Hydroxytamoxifen also formed adducts at high levels in liver, but with the exception of single animals (1/8) in which a low level of adducts was detected in the stomach in one case, and in the kidney in the other; it also did not give rise to adducts in other tissues. The results suggest that tamoxifen is a genotoxic carcinogen in rat liver, but a non-genotoxic carcinogen in rat uterus, making it, uniquely, a carcinogen with more than one mechanism of action. Mutagenicity experiments conducted in Salmonella typhimurium strains expressing bacterial or human N,O-acetyltransferase did not provide evidence that either alpha-hydroxytamoxifen or alpha-hydroxy-N-desmethyltamoxifen undergoes metabolic activation by acetylation. The confinement of ST2A2, the isozyme of hydroxysteroid sulfotransferase that can activate the compounds, mainly to rat liver is the possible reason for the formation of ducts in the liver but not in other organs of the rat.
Collapse
Affiliation(s)
- David H Phillips
- Institute of Cancer Research, Brookes Lawley Building, Cotswold Road, Sutton SM2 5NG, UK.
| | | | | | | | | | | |
Collapse
|
8
|
Schild LJ, Phillips DH, Osborne MR, Hewer A, Beland FA, Churchwell MI, Brown K, Gaskell M, Wright E, Poirier MC. Hepatic DNA adduct dosimetry in rats fed tamoxifen: a comparison of methods. Mutagenesis 2005; 20:115-24. [PMID: 15755801 DOI: 10.1093/mutage/gei015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Liver homogenates from rats fed tamoxifen (TAM) in the diet were shared among four different laboratories. TAM-DNA adducts were assayed by high pressure liquid chromatography-electrospray tandem mass spectrometry (HPLC-ES-MS/MS), TAM-DNA chemiluminescence immunoassay (TAM-DNA CIA), and (32)P-postlabeling with either thin layer ((32)P-P-TLC) or liquid chromatography ((32)P-P-HPLC) separation. In the first study, rats were fed a diet containing 500 p.p.m. TAM for 2 months, and the values for measurements of the (E)-alpha-(deoxyguanosin-N(2)-yl)-tamoxifen (dG-N(2)-TAM) adduct in replicate rat livers varied by 3.5-fold when quantified using 'in house' TAM-DNA standards, or other approaches where appropriate. In the second study, rats were fed 0, 50, 250 or 500 p.p.m. TAM for 2 months, and TAM-DNA values were quantified using both 'in house' approaches as well as a newly synthesized [N-methyl-(3)H]TAM-DNA standard that was shared among all the participating groups. In the second study, the total TAM-DNA adduct values varied by 2-fold, while values for the dG-N(2)-TAM varied by 2.5-fold. Ratios of dG-N(2)-TAM:(E)-alpha-(deoxyguanosin-N(2)-yl)-N-desmethyltamoxifen (dG-N(2)-N-desmethyl-TAM) in the second study were approximately 1:1 over the range of doses examined. The study demonstrated a remarkably good agreement for TAM-DNA adduct measurements among the diverse methods employed.
Collapse
Affiliation(s)
- Laura J Schild
- Carcinogen-DNA Interactions Section, National Cancer Institute, Building 37, Room 4032 NIH, 37 Convent Drive MSC-4255, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Beland FA, Churchwell MI, Hewer A, Phillips DH, Gamboa da Costa G, Marques MM. Analysis of tamoxifen-DNA adducts in endometrial explants by MS and 32P-postlabeling. Biochem Biophys Res Commun 2004; 320:297-302. [PMID: 15219826 DOI: 10.1016/j.bbrc.2004.05.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Indexed: 12/01/2022]
Abstract
The nonsteroidal antiestrogen tamoxifen increases the risk of endometrial cancer; however, the mechanism for the induction of these tumors is not known. Recently, Sharma et al. [Biochem. Biophys. Res. Commun. 307 (2003) 157], using high performance liquid chromatography (HPLC) with online postcolumn photochemical activation and fluorescence detection, reported the presence of (E)-alpha-(deoxyguanosin- N2-yl)tamoxifen in DNA from human endometrial explants incubated with tamoxifen. Inasmuch as the methodology used by these investigators does not allow unambiguous characterization of tamoxifen-DNA adducts, we have used two additional techniques (HPLC coupled with electrospray ionization tandem mass spectrometry and 32P-postlabeling analyses) to assay for the presence of tamoxifen-DNA adducts in the human endometrial explant DNA. Tamoxifen-DNA adducts were not detected by either method.
Collapse
Affiliation(s)
- Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Beland FA, Churchwell MI, Doerge DR, Parkin DR, Malejka-Giganti D, Hewer A, Phillips DH, Carmichael PL, Gamboa da Costa G, Marques MM. Electrospray ionization-tandem mass spectrometry and 32P-postlabeling analyses of tamoxifen-DNA adducts in humans. J Natl Cancer Inst 2004; 96:1099-104. [PMID: 15265972 DOI: 10.1093/jnci/djh195] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Although the nonsteroidal antiestrogen tamoxifen is used as an adjuvant chemotherapeutic agent to treat hormone-dependent breast cancer and as a chemopreventive agent in women with elevated risk of breast cancer, it has also been reported to increase the risk of endometrial cancer. Reports of low levels of tamoxifen-DNA adducts in human endometrial tissue have suggested that tamoxifen induces endometrial cancer by a genotoxic mechanism. However, these findings have been controversial. We used electrospray ionization-tandem mass spectrometry (ES-MS/MS) and 32P-postlabeling analyses to investigate the presence of tamoxifen-DNA adducts in human endometrial tissue. METHODS Endometrial DNA from eight tamoxifen-treated women and eight untreated women was hydrolyzed to nucleosides and assayed for (E)-alpha-(deoxyguanosin-N2-yl)-tamoxifen (dG-Tam) and (E)-alpha-(deoxyguanosin-N2-yl)-N-desmethyltamoxifen (dG-desMeTam), the two major tamoxifen-DNA adducts that have been reported to be present in humans and/or experimental animals treated with tamoxifen, using on-line sample preparation coupled with high-performance liquid chromatography (HPLC) and ES-MS/MS. The same DNA samples were assayed for the presence of dG-Tam and dG-desMeTam by (32)P-postlabeling methodology, using two different DNA digestion and labeling protocols, followed by both thin-layer chromatography and HPLC. RESULTS We did not detect either tamoxifen-DNA adduct by HPLC-ES-MS/MS analyses (limits of detection for dG-Tam and dG-desMeTam were two adducts per 10(9) nucleotides and two adducts per 10(8) nucleotides, respectively) or by 32P-postlabeling analyses (limit of detection for both adducts was one adduct per 10(9) nucleotides) in any of the endometrial DNA samples. CONCLUSION The initiation of endometrial cancer by tamoxifen is probably not due to a genotoxic mechanism involving the formation of dG-Tam or dG-desMeTam.
Collapse
Affiliation(s)
- Frederick A Beland
- Division of Biochemical Toxicology, HFT-110, National Center for Toxicological Research, 3900 NCTR Rd., Jefferson, AR 72079, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kim SY, Suzuki N, Laxmi YRS, Shibutani S. Genotoxic Mechanism of Tamoxifen in Developing Endometrial Cancer. Drug Metab Rev 2004; 36:199-218. [PMID: 15237851 DOI: 10.1081/dmr-120033997] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Increased risk of developing endometrial cancers has been observed in women treated with tamoxifen (TAM), a widely used drug for breast cancer therapy and chemoprevention. The carcinogenic effect may be due to genotoxic DNA damage induced by TAM. In fact, TAM-DNA adducts were detected in the endometrium of women treated with this drug. TAM is alpha-hydroxylated by cytochrome P450 3A4 followed by O-sulfonation by hydroxysteroid sulfotransferase, and reacts with guanine residues in DNA, resulting in the formation of alpha-(N2-deoxyguanosinyl)tamoxifen adducts. During this metabolic process, short-lived carbocations are produced at the ethyl moiety of TAM as reactive intermediates. TAM-DNA adducts promote primarily G -->T transversions in mammalian cells. The same mutations have been frequently detected at codon 12 of the K-ras gene in the endometrial tissue of women treated with this drug. TAM-DNA adducts, if not readily repaired, may act as initiators, leading to development of endometrial cancers. The reactivity of TAM metabolites with DNA is inhibited in toremifene, where the hydrogen atom has been replaced by a chlorine atom at the ethyl moiety. Therefore, toremifene may be a safer alternative to TAM. This article describes an overview of the mechanism of TAM-DNA adduct formation, mutagenic events of this adduct, and detection of TAM-DNA adducts in the endometrium of women treated with TAM.
Collapse
Affiliation(s)
- Sung Yeon Kim
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-8651, USA
| | | | | | | |
Collapse
|
12
|
Sharma M, Shubert DE, Sharma M, Lewis J, McGarrigle BP, Bofinger DP, Olson JR. Biotransformation of tamoxifen in a human endometrial explant culture model. Chem Biol Interact 2003; 146:237-49. [PMID: 14642736 DOI: 10.1016/j.cbi.2003.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although long-term tamoxifen therapy is associated with increased risk of endometrial cancer, little is known about the ability of endometrial tissue to biotransform tamoxifen to potentially reactive intermediates, capable of forming DNA adducts. The present study examined whether explant cultures of human endometrium provide a suitable in vitro model to investigate the tissue-specific biotransformation of tamoxifen. Fresh human endometrial tissue, microscopically uninvolved in disease, was cut into 1 x 2-mm uniform explants and incubated with media containing either 25 or 100 microM tamoxifen in a 24-well plate. Metabolites were analyzed by reversed-phase HPLC using postcolumn, online, photochemical activation and fluorescence detection. Three metabolites, namely, alpha-hydroxytamoxifen, 4-hydroxytamoxifen, and N-desmethyltamoxifen were identified in culture medium and tissue lysates. N-desmethyltamoxifen was found to be the major metabolite in both tissue and media extracts of tamoxifen-exposed explants. Incubations of tamoxifen with recombinant human cytochrome P-450s (CYPs) found that CYP2C9 and CYP2D6 produced all three of the above tamoxifen metabolites, while CYP1A1 and CYP3A4 catalyzed the formation of alpha-hydroxytamoxifen and N-desmethyltamoxifen, and CYP1A2 and CYP1B1 only formed the alpha-hydroxy metabolite. CYP2D6 exhibited the greatest activity for the formation of all three tamoxifen metabolites. Western immunoblots of microsomes from human endometrium detected the presence of CYPs 2C9, 3A, 1A1 and 1B1 in fresh endometrium, while CYPs 2D6 and 1A2 were not detected. Immunohistochemical (IHC) analysis also confirmed the presence of CYPs 2C9, 3A and 1B1 in fresh human endometrium and in viable tissue cultured for 24 h with or without tamoxifen. Together, the results support the use of explant cultures of human endometrium as a suitable in vitro model to investigate the biotransformation of tamoxifen in this target tissue. In addition, the results support the role of CYPs 2C9, 3A, 1A1 and 1B1 in the biotransformation of tamoxifen, including the formation of the DNA reactive alpha-hydroxytamoxifen metabolite, in human endometrium.
Collapse
Affiliation(s)
- Minoti Sharma
- Department of Molecular and Cellular Biophysics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Jordan VC. Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 2. Clinical considerations and new agents. J Med Chem 2003; 46:1081-111. [PMID: 12646017 DOI: 10.1021/jm020450x] [Citation(s) in RCA: 320] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- V Craig Jordan
- Robert H. Lurie Comprehensive Cancer Center, The Feinberg School of Medicine of Northwestern University, 303 East Chicago Avenue, MS N505, Chicago, Illinois 60611, USA
| |
Collapse
|
14
|
Gamboa da Costa G, Manjanatha MG, Marques MM, Beland FA. Induction of lacI mutations in Big Blue rats treated with tamoxifen and alpha-hydroxytamoxifen. Cancer Lett 2002; 176:37-45. [PMID: 11790452 DOI: 10.1016/s0304-3835(01)00741-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The antiestrogen tamoxifen is carcinogenic in the liver and uterus of rats. Liver tumors appear to result from sequential hydroxylation and esterification of the alpha-carbon of tamoxifen followed by DNA adduct formation. The mechanism for the induction of uterine tumors is not known. Big Blue rats were treated by intraperitoneal injection with 21 daily doses of 54 micromol/kg tamoxifen or its proximate carcinogenic metabolite alpha-hydroxytamoxifen. One month after the last treatment, the mutant frequency in the lacI transgene was determined in the liver and uterus. For comparison, the mutant frequency in the hypoxanthine phosphoribosyl transferase (Hprt) gene of spleen lymphocytes was also measured. In the liver, tamoxifen (32+/-18 mutants/10(6) plaques; mean+/-SD) and alpha-hydroxytamoxifen (770+/-270 mutants/10(6) plaques) caused a significant increase in the mutant frequency of the lacI gene compared to solvent treated controls (10+/-10 mutants/10(6) plaques). 32P-Postlabeling analyses of liver DNA indicated three DNA adducts, one each from tamoxifen, N-desmethyltamoxifen, and N,N-didesmethyltamoxifen. Neither tamoxifen nor alpha-hydroxytamoxifen caused an increase in the mutant frequency in the lacI gene of the uterus or in the Hprt gene of spleen lymphocytes. These results suggest that induction of endometrial tumors in rats is not due to the genotoxicity of tamoxifen.
Collapse
Affiliation(s)
- Gonçalo Gamboa da Costa
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | | | | | | |
Collapse
|