1
|
Aliaga-Guerrero M, Paullada-Salmerón JA, Piquer V, Mañanós EL, Muñoz-Cueto JA. Gonadotropin-inhibitory hormone in the flatfish,Solea senegalensis: Molecular cloning, brain localization and physiological effects. J Comp Neurol 2017; 526:349-370. [DOI: 10.1002/cne.24339] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Affiliation(s)
- María Aliaga-Guerrero
- Department of Biology, Faculty of Marine and Environmental Sciences; University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; Puerto Real Spain
| | - José A. Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences; University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; Puerto Real Spain
| | - Vanesa Piquer
- Institute of Aquaculture of Torre la Sal, CSIC; Castellón Spain
| | | | - José A. Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences; University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; Puerto Real Spain
| |
Collapse
|
2
|
Servili A, Herrera-Pérez P, Kah O, Muñoz-Cueto JA. The retina is a target for GnRH-3 system in the European sea bass, Dicentrarchus labrax. Gen Comp Endocrinol 2012; 175:398-406. [PMID: 22138555 DOI: 10.1016/j.ygcen.2011.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/21/2011] [Accepted: 11/11/2011] [Indexed: 12/11/2022]
Abstract
The European sea bass expresses three GnRH (Gonadotrophin Releasing Hormone) forms that exert pleiotropic actions via several classes of receptors. The GnRH-1 form is responsible for the endogenous regulation of gonadotrophin release by the pituitary gland but the role of GnRH-2 and GnRH-3 remains unclear in fish. In a previous study performed in sea bass, we have provided evidence of direct links between the GnRH-2 cells and the pineal organ and demonstrated a functional role for GnRH-2 in the modulation of the secretory activity of this photoreceptive organ. In this study, we have investigated the possible relationship between the GnRH-3 system and the retina in the same species. Thus, using a biotinylated dextran-amine tract-tracing method, we reveal the presence of retinopetal cells in the terminal nerve of sea bass, a region that also contains GnRH-3-immunopositive cells. Moreover, GnRH-3-immunoreactive fibers were observed at the boundary between the inner nuclear and the inner plexiform layers, and also within the ganglion cell layer. These results strongly suggest that the GnRH-3 neurons located in the terminal nerve area represent the source of GnRH-3 innervation in the retina of this species. In order to clarify whether the retina is a target for GnRH, the expression pattern of GnRH receptors (dlGnRHR) was also analyzed by RT-PCR and in situ hybridization. RT-PCR revealed the retinal expression of dlGnRHR-II-2b, -1a, -1b and -1c, while in situ hybridization only showed positive signals for the receptors dlGnRHR-II-2b and -1a. Finally, double-immunohistochemistry showed that GnRH-3 projections reaching the sea bass retina end in close proximity to tyrosine hydroxylase (dopaminergic) cells, which also expressed the dlGnRHR-II-2b receptor subtype. Taken together, these results suggest an important role for GnRH-3 in the modulation of dopaminergic cell activities and retinal functions in sea bass.
Collapse
Affiliation(s)
- Arianna Servili
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEIMAR), E-11510 Puerto Real, Spain
| | | | | | | |
Collapse
|
3
|
Guzmán JM, Rubio M, Ortiz-Delgado JB, Klenke U, Kight K, Cross I, Sánchez-Ramos I, Riaza A, Rebordinos L, Sarasquete C, Zohar Y, Mañanós EL. Comparative gene expression of gonadotropins (FSH and LH) and peptide levels of gonadotropin-releasing hormones (GnRHs) in the pituitary of wild and cultured Senegalese sole (Solea senegalensis) broodstocks. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:266-77. [PMID: 19264148 DOI: 10.1016/j.cbpa.2009.02.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 02/20/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
The Senegalese sole (Solea senegalensis) is a valuable flatfish for aquaculture, but it presents important reproductive problems in captivity. Spawning is achieved by wild-caught breeders but cultured broodstocks fail to spawn spontaneously and, when they do, eggs are unfertilized. To gain knowledge on the physiological basis underlying this reproductive dysfunction, this study aimed at analyzing comparative hormone levels between wild and cultured broodstocks at the spawning season. The Senegalese sole gonadotropin (GTH) subunits, FSHbeta, LHbeta and GPalpha, were cloned and qualitative (in situ hybridization) and quantitative (real-time PCR) assays developed to analyze pituitary GTH gene expression. In females, FSHbeta and GPalpha mRNA levels were higher in wild than in cultured broodstocks, whereas in males all three subunits were highest in cultured. By ELISA, three GnRH forms were detected in the pituitary, displaying a relative abundance of GnRH2>GnRH1>GnRH3. All GnRHs were slightly more abundant in wild than cultured females, whereas no differences were observed in males. Plasma levels of vitellogenin and sex steroids were also analyzed. Results showed endocrine differences between wild and cultured broodstocks at the spawning period, which could be related to the endocrine failure of the reproductive axis in cultured breeders.
Collapse
Affiliation(s)
- J M Guzmán
- Institute of Aquaculture of Torre Sal, Spanish Council for Scientific Research (CSIC), Torre Sal s/n, 12595-Cabanes, Castellón, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Amiya N, Amano M, Takahashi A, Yamanome T, Yamamori K. Profiles of alpha-melanocyte-stimulating hormone in the Japanese flounder as revealed by a newly developed time-resolved fluoroimmunoassay and immunohistochemistry. Gen Comp Endocrinol 2007; 151:135-41. [PMID: 17286977 DOI: 10.1016/j.ygcen.2006.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 12/07/2006] [Accepted: 12/26/2006] [Indexed: 11/16/2022]
Abstract
Profiles of alpha-melanocyte-stimulating hormone (alpha-MSH) in the Japanese flounder were examined by a newly developed time-resolved fluoroimmunoassay (TR-FIA) and immunohistochemistry. A TR-FIA for alpha-MSH was newly developed, and its levels in the pituitary gland and plasma of Japanese flounder reared in a white or black tank for 5 months were compared. A competitive assay using two antibodies was performed among secondary antibodies in the solid phase, alpha-MSH antibodies, samples, and europium-labeled Des-Ac-alpha-MSH. The sensitivity of the assay, defined as twice the standard deviation at a zero dose, was 0.98 ng/ml (49 pg/well). The intra- and interassay coefficients of variation of the assay were 8.8% (n=8) and 17.3% (n=5), respectively, at about 50% binding. Cross-reactivities of Des-Ac-alpha-MSH and Di-Ac-alpha-MSH were about 100%. Cross-reactivities of adrenocorticotropic hormone, salmon gonadotropin-releasing hormone (sGnRH), and chicken GnRH-II were less than 0.2%, and that of melanin-concentrating hormone was less than 2.0% at 50% binding. Displacement curves of serially twofold-diluted hypothalamus extract, pituitary gland extract, and plasma extract of Japanese flounder with the assay buffer were parallel to the alpha-MSH standard curve. Moreover, displacement curves of serially twofold-diluted hypothalamus and/or pituitary gland extract of masu salmon, goldfish, red seabream, Japanese eel, tiger puffer, and barfin flounder with the assay buffer were also parallel to the alpha-MSH standard. In Japanese flounder, total immunoreactive (ir)-alpha-MSH levels in the pituitary gland were lower in the black tank, whereas those in the plasma tended to be higher in the black tank, suggesting that the synthesis and release of alpha-MSH are higher in the black tank. alpha-MSH-ir cells were detected in the pars intermedia and a small part of the pars distalis of the pituitary gland. alpha-MSH-ir cell bodies were located in the basal hypothalamus and alpha-MSH-ir fibers were distributed not only in the hypothalamus but also in the telencephalon, midbrain, cerebellum, and medulla oblongata, suggesting that alpha-MSH functions as a neuromodulator in the brain.
Collapse
Affiliation(s)
- Noriko Amiya
- School of Fisheries Sciences, Kitasato University, Ofunato, Iwate 022-0101, Japan
| | | | | | | | | |
Collapse
|
5
|
Amano M, Takahashi A, Yamanome T, Oka Y, Amiya N, Kawauchi H, Yamamori K. Immunocytochemical localization and ontogenic development of alpha-melanocyte-stimulating hormone (alpha-MSH) in the brain of a pleuronectiform fish, barfin flounder. Cell Tissue Res 2005; 320:127-34. [PMID: 15726422 DOI: 10.1007/s00441-004-1058-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Accepted: 11/23/2004] [Indexed: 10/25/2022]
Abstract
Alpha-melanocyte-stimulating hormone (alpha-MSH) is a pituitary hormone derived by post-translational processing from proopiomelanocortin and is involved in background adaptation in teleost fish. It has also been reported to suppress food intake in mammals. Here, we examined the immunocytochemical localization of alpha-MSH in the brain and pituitary of a pleuronectiform fish, the barfin flounder (Verasper moseri), as a first step in unraveling the possible function of alpha-MSH in the brain. The ontogenic development of the alpha-MSH system was also studied. In the pituitary, alpha-MSH-immunoreactive (ir) cells were preferentially detected in the pars intermedia. In the brain, alpha-MSH-ir neuronal somata were located in the nucleus tuberis lateralis of the basal hypothalamus, and alpha-MSH-ir fibers were located mainly in the telencephalon, hypothalamus, and midbrain. Alpha-MSH-ir neuronal somata did not project their axons to the pituitary. The alpha-MSH-ir neurons differed from those immunoreactive to melanin-concentrating hormone. Alpha-MSH cells in the pituitary and alpha-MSH-ir neuronal somata in the brain were first detected 1 day and 5 days after hatching, respectively. The distribution of alpha-MSH-ir cells, neuronal somata, and fibers showed a pattern similar to that in adult fish 30 days after hatching. These results indicate that the functions of alpha-MSH in the brain and pituitary are different and that alpha-MSH plays physiological roles in the early development of the barfin flounder.
Collapse
Affiliation(s)
- Masafumi Amano
- School of Fisheries Sciences, Kitasato University, Ofunato, Iwate, 022-0101, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Bayarri MJ, Muñoz-Cueto JA, López-Olmeda JF, Vera LM, Rol de Lama MA, Madrid JA, Sánchez-Vázquez FJ. Daily locomotor activity and melatonin rhythms in Senegal sole (Solea senegalensis). Physiol Behav 2004; 81:577-83. [PMID: 15178150 DOI: 10.1016/j.physbeh.2004.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 01/21/2004] [Accepted: 02/04/2004] [Indexed: 11/18/2022]
Abstract
The daily locomotor and melatonin rhythms of the Senegal sole, a benthonic species of increasing interest in aquaculture, are still unknown, despite the fact that such knowledge is of prime importance for optimising its production. The aim of the present research was therefore to investigate the daily rhythms of locomotor activity and melatonin in the Senegal sole. For this purpose, the individual locomotor activity rhythms of fish were registered using a photocell. Plasma and ocular melatonin rhythms were studied in animals reared in circular tanks placed in earth under an LD 12:12 light regime and 16-18 degrees C temperature range (spring equinox). Blood and eye samples were taken every 3 h during a complete 24-h cycle. The impact of a light pulse in the middle of the dark period (MD) on plasma melatonin was also studied. Locomotor activity was mainly nocturnal, with 84.3% of the total activity occurring during darkness. The levels of plasma melatonin were higher at night (55 pg/ml) than during the day (2 pg/ml), while ocular melatonin levels appeared to be arrhythmic. Both weight and melatonin content were found to be significantly higher in the left eye in relation to the right eye. A light pulse in MD provoked a significant decrease in plasma melatonin levels. In summary, photoperiod is a key factor in synchronizing locomotor activity and melatonin rhythms in the Senegal sole, whose nocturnal habits should be taken into account for their rearing by aquaculture.
Collapse
Affiliation(s)
- M J Bayarri
- Department of Physiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
González-Martínez D, Zmora N, Mañanos E, Saligaut D, Zanuy S, Zohar Y, Elizur A, Kah O, Muñoz-Cueto JA. Immunohistochemical localization of three different prepro-GnRHs in the brain and pituitary of the European sea bass (Dicentrarchus labrax) using antibodies to the corresponding GnRH-associated peptides. J Comp Neurol 2002; 446:95-113. [PMID: 11932929 DOI: 10.1002/cne.10190] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The distribution of the cells expressing three prepro-gonadotrophin-releasing hormones (GnRH), corresponding to salmon GnRH (sGnRH), seabream GnRH (sbGnRH), and chicken GnRH-II (cGnRH-II) forms, was studied in the brain and pituitary of the sea bass (Dicentrarchus labrax) by using immunohistochemistry. To circumvent the cross-reactivity problems of antibodies raised to GnRH decapeptides, we used specific antibodies generated against the different sea bass GnRH-associated peptides (GAP): salmon GAP (sGAP), seabream GAP (sbGAP), and chicken-II GAP (cIIGAP). The salmon GAP immunostaining was mostly detected in terminal nerve neurons but also in ventral telencephalic and preoptic perikarya. Salmon GAP-immunoreactive (ir) fibers were observed mainly in the forebrain, although sGAP-ir projections were also evident in the optic tectum, mesencephalic tegmentum, and ventral rhombencephalon. The pituitary only receives a few sGAP-ir fibers. The seabream GAP-ir cells were mainly detected in the preoptic area. Nevertheless, sbGAP-ir neurons were also found in olfactory bulbs, ventral telencephalon, and ventrolateral hypothalamus. The sbGAP-ir fibers were only observed in the ventral forebrain, innervating strongly the pituitary gland. Finally, chicken-II GAP immunoreactivity was only detected in large synencephalic cells, which are the origin of a profuse innervation reaching the telencephalon, preoptic area, hypothalamus, thalamus, pretectum, posterior tuberculum, mesencephalic tectum and tegmentum, cerebellum, and rhombencephalon. However, no cIIGAP-ir fibers were detected in the hypophysis. These results corroborate the overlapping of sGAP- and sbGAP-expressing cells in the forebrain of the sea bass, and provide, for the first time, unambiguous information on the distribution of projections of the three different GnRH forms expressed in the brain of a single species.
Collapse
Affiliation(s)
- David González-Martínez
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rodríguez-Gómez FJ, Rendón-Unceta C, Sarasquete C, Muñoz-Cueto JA. Distribution of neuropeptide Y-like immunoreactivity in the brain of the Senegalese sole (Solea senegalensis). THE ANATOMICAL RECORD 2001; 262:227-37. [PMID: 11241192 DOI: 10.1002/1097-0185(20010301)262:3<227::aid-ar1027>3.0.co;2-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present the results of an immunohistochemical study aimed at localizing the neuropeptide Y (NPY) in the brain of the Senegalese sole, Solea senegalensis, using an antiserum raised against porcine NPY and the streptavidin-biotin-peroxidase method. In this species, we have identified immunoreactive cells in the ventral and dorsal telencephalon, caudal preoptic area, ventrocaudal hypothalamus, optic tectum, torus longitudinalis, synencephalon and isthmic region. NPY-immunoreactive fibers were profusely distributed throughout the brain, also reaching the adenohypophysis. The extensive distribution of NPY suggests an important role for this neuropeptide in a variety of physiological processes, including the neuroendocrine control of adenohypophyseal functions. Our results are compared with those obtained in other teleosts and discussed in relation to putative functions of NPY in the control of metabolism and reproduction in the Senegalese sole.
Collapse
Affiliation(s)
- F J Rodríguez-Gómez
- Department of Animal Biology, Plant Biology and Ecology, Faculty of Marine Sciences, University of Cádiz, Polígono Río San Pedro, Puerto Real, Cádiz, Spain
| | | | | | | |
Collapse
|