1
|
Viering DH, Vermeltfoort L, Bindels RJ, Deinum J, de Baaij JH. Electrolyte Disorders in Mitochondrial Cytopathies: A Systematic Review. J Am Soc Nephrol 2023; 34:1875-1888. [PMID: 37678265 PMCID: PMC10631606 DOI: 10.1681/asn.0000000000000224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
SIGNIFICANCE STATEMENT Several recent studies identified mitochondrial mutations in patients with Gitelman or Fanconi syndrome. Mitochondrial cytopathies are generally not considered in the diagnostic workup of patients with electrolyte disorders. In this systematic review, we investigated the presence of electrolyte disorders in patients with mitochondrial cytopathies to determine the relevance of mitochondrial mutation screening in this population. Our analysis demonstrates that electrolyte disorders are commonly reported in mitochondrial cytopathies, often as presenting symptoms. Consequently, more clinical attention should be raised for mitochondrial disease as cause for disturbances in electrolyte homeostasis. Further prospective cohort studies are required to determine the exact prevalence of electrolyte disorders in mitochondrial cytopathies. BACKGROUND Electrolyte reabsorption in the kidney has a high energy demand. Proximal and distal tubular epithelial cells have a high mitochondrial density for energy release. Recently, electrolyte disorders have been reported as the primary presentation of some mitochondrial cytopathies. However, the prevalence and the pathophysiology of electrolyte disturbances in mitochondrial disease are unknown. Therefore, we systematically investigated electrolyte disorders in patients with mitochondrial cytopathies. METHODS We searched PubMed, Embase, and Google Scholar for articles on genetically confirmed mitochondrial disease in patients for whom at least one electrolyte is reported. Patients with a known second genetic anomaly were excluded. We evaluated 214 case series and reports (362 patients) as well as nine observational studies. Joanna Briggs Institute criteria were used to evaluate the quality of included studies. RESULTS Of 362 reported patients, 289 had an electrolyte disorder, with it being the presenting or main symptom in 38 patients. The average number of different electrolyte abnormalities per patient ranged from 2.4 to 1.0, depending on genotype. Patients with mitochondrial DNA structural variants seemed most affected. Reported pathophysiologic mechanisms included renal tubulopathies and hormonal, gastrointestinal, and iatrogenic causes. CONCLUSIONS Mitochondrial diseases should be considered in the evaluation of unexplained electrolyte disorders. Furthermore, clinicians should be aware of electrolyte abnormalities in patients with mitochondrial disease.
Collapse
Affiliation(s)
- Daan H.H.M. Viering
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lars Vermeltfoort
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J.M. Bindels
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H.F. de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Corkery-Hayward M, Metherell LA. Adrenal Dysfunction in Mitochondrial Diseases. Int J Mol Sci 2023; 24:ijms24021126. [PMID: 36674647 PMCID: PMC9862368 DOI: 10.3390/ijms24021126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Cortisol is central to several homeostatic mechanisms including the stress and immune response. Adrenal insufficiency and impaired cortisol production leads to severe, potentially fatal disorders. Several fundamental stages of steroidogenesis occur within the mitochondria. These dynamic organelles not only contribute ATP for steroidogenesis, but also detoxify harmful by-products generated during cortisol synthesis (reactive oxygen species). Mutations in nuclear or mitochondrial DNA that impair mitochondrial function lead to debilitating multi-system diseases. Recently, genetic variants that impair mitochondrial function have been identified in people with isolated cortisol insufficiency. This review aimed to clarify the association between mitochondrial diseases and adrenal insufficiency to produce cortisol. Mitochondrial diseases are rare and mitochondrial diseases that feature adrenal insufficiency are even rarer. We identified only 14 cases of adrenal insufficiency in people with confirmed mitochondrial diseases globally. In line with previous reviews, adrenal dysfunction was most prevalent in mitochondrial deletion syndromes (particularly Pearson syndrome and Kearns-Sayre syndrome) and with point mutations that compromised oxidative phosphorylation. Although adrenal insufficiency has been reported with mitochondrial diseases, the incidence reflects that expected in the general population. Thus, it is unlikely that mitochondrial mutations alone are responsible for an insufficiency to produce cortisol. More research is needed into the pathogenesis of adrenal disease in these individuals.
Collapse
Affiliation(s)
| | - Louise A. Metherell
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
- Correspondence:
| |
Collapse
|
3
|
Preston G, Kirdar F, Kozicz T. The role of suboptimal mitochondrial function in vulnerability to post-traumatic stress disorder. J Inherit Metab Dis 2018; 41:585-596. [PMID: 29594645 DOI: 10.1007/s10545-018-0168-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
Post-traumatic stress disorder remains the most significant psychiatric condition associated with exposure to a traumatic event, though rates of traumatic event exposure far outstrip incidence of PTSD. Mitochondrial dysfunction and suboptimal mitochondrial function have been increasingly implicated in several psychopathologies, and recent genetic studies have similarly suggested a pathogenic role of mitochondria in PTSD. Mitochondria play a central role in several physiologic processes underlying PTSD symptomatology, including abnormal fear learning, brain network activation, synaptic plasticity, steroidogenesis, and inflammation. Here we outline several potential mechanisms by which inherited (genetic) or acquired (environmental) mitochondrial dysfunction or suboptimal mitochondrial function, may contribute to PTSD symptomatology and increase susceptibility to PTSD. The proposed pathogenic role of mitochondria in the pathophysiology of PTSD has important implications for prevention and therapy, as antidepressants commonly prescribed for patients with PTSD have been shown to inhibit mitochondrial function, while alternative therapies shown to improve mitochondrial function may prove more efficacious.
Collapse
Affiliation(s)
- Graeme Preston
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Faisal Kirdar
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tamas Kozicz
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Anatomy, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
4
|
Abstract
OBJECTIVE Inherited metabolic diseases (IMDs) can affect many organ systems, including the endocrine system. There are limited data regarding endocrine dysfunctions related to IMDs in adults, however, no data exist in pediatric patients with IMDs. The aim of this study was to investigate endocrine dysfunctions in patients with IMDs by assessing their demographic, clinical, and laboratory data. METHODS Data were obtained retrospectively from the medical reports of patients with IMDs who were followed by the division of pediatric metabolism and nutrition between June 2011 and November 2013. RESULTS In total, 260 patients [139 males (53%) and 121 females (47%)] with an IMD diagnosis were included in the study. The mean age of the patients was 5.94 (range; 0.08 to 49) years and 95.8% (249 of 260 patients) were in the pediatric age group. Growth status was evaluated in 258 patients and of them, 27 (10.5%) had growth failure, all cases of which were attributed to non-endocrine reasons. There was a significant correlation between growth failure and serum albumin levels below 3.5 g/dL (p=0.002). Only three of 260 (1.1%) patients had endocrine dysfunction. Of these, one with lecithin-cholesterol acyltransferase deficiency and another with Kearns-Sayre syndrome had diabetes, and one with glycerol kinase deficiency had glucocorticoid deficiency. CONCLUSION Endocrine dysfunction in patients with IMDs is relatively rare. For this reason, there is no need to conduct routine endocrine evaluations in most patients with IMDs unless a careful and detailed history and a physical examination point to an endocrine dysfunction.
Collapse
Affiliation(s)
- Şahin Erdöl
- Uludağ University Faculty of Medicine, Department of Pediatrics, Division of Metabolism, Bursa, Turkey
| | - Halil Sağlam
- Uludağ University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism and Endocrinology, Bursa, Turkey, E-mail:
| |
Collapse
|
5
|
Calderwood L, Holm IA, Teot LA, Anselm I. Adrenal Insufficiency in Mitochondrial Disease: A Rare Case of GFER-Related Mitochondrial Encephalomyopathy and Review of the Literature. J Child Neurol 2016; 31:190-4. [PMID: 26018198 DOI: 10.1177/0883073815587327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 04/24/2015] [Indexed: 11/15/2022]
Abstract
GFER-related mitochondrial encephalomyopathy has been previously described only in 3 siblings of a consanguineous Moroccan family. Their phenotype included congenital cataracts, hypotonia, developmental delay, and sensorineural hearing loss. Multiple mitochondrial respiratory chain complex deficiencies were identified on muscle biopsy. We describe a now-19-year-old woman with adrenal insufficiency, lactic acidosis, congenital cataracts, and respiratory insufficiency secondary to mitochondrial disorder, who was reported by North et al (1996) as a toddler. Compound heterozygous GFER mutations c.373C>T (Q125X) and c.581G>A (R194 H) were recently discovered in this patient. The purpose of this report is (1) to expand the phenotype this ultra-rare disorder and (2) to provide a review of the literature describing the unique finding of adrenal insufficiency in patients with molecularly confirmed disorders of mitochondrial metabolism.
Collapse
Affiliation(s)
- Laurel Calderwood
- Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, MA, USA
| | - Ingrid A Holm
- Division of Genetics and Genomics, Division of Endocrinology, Department of Medicine, Manton Center for Orphan Diseases Research, Boston Children's Hospital, Boston, MA, USA Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Lisa A Teot
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Irina Anselm
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
O'Grady MJ, Monavari AA, Cotter M, Murphy NP. Sideroblastic anaemia and primary adrenal insufficiency due to a mitochondrial respiratory chain disorder in the absence of mtDNA deletion. BMJ Case Rep 2015; 2015:bcr-2014-208514. [PMID: 25721834 DOI: 10.1136/bcr-2014-208514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A fatigued 8-year-old boy was found to have sideroblastic anaemia (haemoglobin 7.8 g/dL) which over time became transfusion dependent. Subtle neurological dysfunction, initially manifesting as mild spastic diplegia, was slowly progressive and ultimately led to wheelchair dependence. Elevated plasma lactate and urinary 3-methylglutaconate led to a muscle biopsy which confirmed partial complex IV deficiency. PCR in leucocytes and muscle was negative for mitochondrial DNA (mtDNA) deletions. Faltering growth prompted an insulin tolerance test which confirmed growth hormone sufficiency and adrenal insufficiency. Plasma renin was elevated and adrenal androgens were low, suggesting primary adrenal insufficiency. Glucocorticoid and mineralocorticoid replacement therapy was initiated. A renal tubular Fanconi syndrome and diabetes mellitus developed subsequently. Sideroblastic anaemia and primary adrenal insufficiency, both individually and collectively, are associated with mtDNA deletion; however, absence of the same does not exclude the possibility that sideroblastic anaemia and primary adrenal insufficiency are of mitochondrial origin.
Collapse
Affiliation(s)
- Michael J O'Grady
- Department of Paediatrics, Midland Regional Hospital, Mullingar, Ireland
| | - Ahmad A Monavari
- National Centre for Inherited Metabolic Disorders, Children's University Hospital, Dublin, Ireland
| | - Melanie Cotter
- Department of Paediatric Haematology, Children's University Hospital, Dublin, Ireland
| | - Nuala P Murphy
- Department of Paediatric Endocrinology, Children's University Hospital, Dublin, Ireland
| |
Collapse
|
7
|
Pitceathly R, Rahman S, Hanna M. Single deletions in mitochondrial DNA – Molecular mechanisms and disease phenotypes in clinical practice. Neuromuscul Disord 2012; 22:577-86. [DOI: 10.1016/j.nmd.2012.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/26/2012] [Accepted: 03/21/2012] [Indexed: 12/20/2022]
|
8
|
Williams TB, Daniels M, Puthenveetil G, Chang R, Wang RY, Abdenur JE. Pearson syndrome: unique endocrine manifestations including neonatal diabetes and adrenal insufficiency. Mol Genet Metab 2012; 106:104-7. [PMID: 22424738 DOI: 10.1016/j.ymgme.2012.01.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
Abstract
PURPOSE Pearson syndrome is a very rare metabolic disorder that is usually present in infancy with transfusion dependent macrocytic anemia and multiorgan involvement including exocrine pancreas, liver and renal tubular defects. The disease is secondary to a mitochondrial DNA deletion that is variable in size and location. Endocrine abnormalities can develop, but are usually not part of the initial presentation. We report two patients who presented with unusual endocrine manifestations, neonatal diabetes and adrenal insufficiency, who were both later diagnosed with Pearson syndrome. METHODS Medical records were reviewed. Confirmatory testing included: mitochondrial DNA deletion testing and sequencing of the breakpoints, muscle biopsy, and bone marrow studies. RESULTS Case 1 presented with hyperglycemia requiring insulin at birth. She had several episodes of ketoacidosis triggered by stress and labile blood glucose control. Workup for genetic causes of neonatal diabetes was negative. She had transfusion dependent anemia and died at 24 months due to multisystem organ failure. Case 2 presented with adrenal insufficiency and anemia during inturcurrent illness, requiring steroid replacement since 37 months of age. He is currently 4 years old and has mild anemia. Mitochondrial DNA studies confirmed a 4.9 kb deletion in patient 1 and a 5.1 kb deletion in patient 2. CONCLUSION The patients reported highlight the importance of considering mitochondrial DNA disorders in patients with early onset endocrine dysfunction, and expand the knowledge about this rare mitochondrial disease.
Collapse
Affiliation(s)
- T B Williams
- Division of Metabolic Disorders, CHOC Children's, Orange, CA 92868, USA
| | | | | | | | | | | |
Collapse
|
9
|
Vantyghem MC, Dobbelaere D, Mention K, Wemeau JL, Saudubray JM, Douillard C. Endocrine manifestations related to inherited metabolic diseases in adults. Orphanet J Rare Dis 2012; 7:11. [PMID: 22284844 PMCID: PMC3349544 DOI: 10.1186/1750-1172-7-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 01/28/2012] [Indexed: 02/07/2023] Open
Abstract
Most inborn errors of metabolism (IEM) are recessive, genetically transmitted diseases and are classified into 3 main groups according to their mechanisms: cellular intoxication, energy deficiency, and defects of complex molecules. They can be associated with endocrine manifestations, which may be complications from a previously diagnosed IEM of childhood onset. More rarely, endocrinopathies can signal an IEM in adulthood, which should be suspected when an endocrine disorder is associated with multisystemic involvement (neurological, muscular, hepatic features, etc.). IEM can affect all glands, but diabetes mellitus, thyroid dysfunction and hypogonadism are the most frequent disorders. A single IEM can present with multiple endocrine dysfunctions, especially those involving energy deficiency (respiratory chain defects), and metal (hemochromatosis) and storage disorders (cystinosis). Non-autoimmune diabetes mellitus, thyroid dysfunction and/or goiter and sometimes hypoparathyroidism should steer the diagnosis towards a respiratory chain defect. Hypogonadotropic hypogonadism is frequent in haemochromatosis (often associated with diabetes), whereas primary hypogonadism is reported in Alström disease and cystinosis (both associated with diabetes, the latter also with thyroid dysfunction) and galactosemia. Hypogonadism is also frequent in X-linked adrenoleukodystrophy (with adrenal failure), congenital disorders of glycosylation, and Fabry and glycogen storage diseases (along with thyroid dysfunction in the first 3 and diabetes in the last). This is a new and growing field and is not yet very well recognized in adulthood despite its consequences on growth, bone metabolism and fertility. For this reason, physicians managing adult patients should be aware of these diagnoses.
Collapse
Affiliation(s)
- Marie-Christine Vantyghem
- Service d'Endocrinologie et Maladies Métaboliques, 1, Rue Polonovski, Hôpital C Huriez, Centre Hospitalier Régional et Universitaire de Lille, 59037 Lille cedex, France.
| | | | | | | | | | | |
Collapse
|
10
|
Vantyghem MC, Mention C, Dobbelaere D, Douillard C. Hypoglycémies et manifestations endocriniennes des maladies héréditaires du métabolisme chez l’adulte. ANNALES D'ENDOCRINOLOGIE 2009; 70:25-42. [DOI: 10.1016/j.ando.2008.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 12/17/2008] [Indexed: 12/20/2022]
|
11
|
Bruno C, Gandullia P, Santorelli FM, Biedi C, Carbone I, Bado M, Gatti R, Minetti C. Tubulopathy, endocrinopathies and encephalomyopathy in a child with a novel large-scale mitochondrial DNA deletion. Clin Genet 2002; 61:465-7. [PMID: 12121356 DOI: 10.1034/j.1399-0004.2002.610612.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Wong LJ. Recognition of mitochondrial DNA deletion syndrome with non-neuromuscular multisystemic manifestation. Genet Med 2001; 3:399-404. [PMID: 11715003 DOI: 10.1097/00125817-200111000-00004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To correlate the molecular characteristics of the mtDNA deletions with clinical phenotypes. METHODS Southern analysis and polymerase chain reaction (PCR)/DNA sequencing were used to determine the size and location of deletions in 16 patients with mtDNA deletion syndrome. An additional 48 reported cases from the literature were also included in the statistical analysis. RESULTS The common 5-kb deletion is found in eight of nine patients with Kearns-Sayre syndrome (KSS), mitochondrial myopathies (MM), or progressive external ophthalmoplegia (PEO). The rare/novel deletions were found in six of seven patients with extra-neuromuscular multisystemic manifestations and infantile/early childhood onset. CONCLUSIONS Patients with mtDNA deletion syndrome who manifest non-neuromuscular multisystemic disorders at a very young age usually harbor mutant mtDNA with novel or rare deletions in every tissue analyzed. For this group of patients, it is possible to use the less invasive blood specimens instead of muscle biopsies for molecular diagnosis. Overwhelmingly, the common 5-kb deletion is mostly seen in the muscle specimens of patients with KSS and age of onset after the second decade of life.
Collapse
Affiliation(s)
- L J Wong
- Institute for Molecular and Human Genetics, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
13
|
Campos Y, Martín MA, Caballero C, Rubio JC, de la Cruz F, Tuñón T, Arenas J. Single large-scale mitochondrial DNA deletion in a patient with encephalopathy, cardiomyopathy, and prominent intestinal pseudo-obstruction. Neuromuscul Disord 2000; 10:56-8. [PMID: 10677865 DOI: 10.1016/s0960-8966(99)00072-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We studied a 62 year-old woman with a clinical phenotype characterized by encephalopathy, restrictive cardiomyopathy, and prominent intestinal pseudo-obstruction. Muscle morphology showed ragged red fibres with ultrastructurally abnormal mitochondrial whereas muscle respiratory chain was normal. Molecular genetics revealed the 'common deletion' in mtDNA, which represented 40% of total mtDNA. These data expand and confirm the wide clinical spectrum of mitochondrial disorders associated with single large-scale mtDNA deletions.
Collapse
Affiliation(s)
- Y Campos
- Centro de Investigación, Hospital 12 de Octubre, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
It is nearly a decade since the discovery of the first mutations in mitochondrial DNA associated with mitochondrial encephalomyopathy, and the pace of discovery of new mitochondrial DNA mutations continues unabated. Nuclear gene defects in these disorders have been more difficult to identify; only one is known, but others have been mapped by linkage analysis. The rules governing transmission and segregation of mitochondrial DNA sequence variants are beginning to be unravelled and progress has been made in understanding genotype-phenotype relationships and elucidating mechanisms of pathogenesis.
Collapse
|