1
|
Treacy EP, Vencken S, Bosch AM, Gautschi M, Rubio‐Gozalbo E, Dawson C, Nerney D, Colhoun HO, Shakerdi L, Pastores GM, O'Flaherty R, Saldova R. Abnormal N-glycan fucosylation, galactosylation, and sialylation of IgG in adults with classical galactosemia, influence of dietary galactose intake. JIMD Rep 2021; 61:76-88. [PMID: 34485021 PMCID: PMC8411110 DOI: 10.1002/jmd2.12237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Classical galactosemia (CG) (OMIM #230400) is a rare disorder of carbohydrate metabolism, due to deficiency of galactose-1-phosphate uridyltransferase (EC 2.7.7.12). The pathophysiology of the long-term complications, mainly cognitive, neurological, and female infertility remains poorly understood. OBJECTIVES This study investigated (a) the association between specific IgG N-glycosylation biomarkers (glycan peaks and grouped traits) and CG patients (n = 95) identified from the GalNet Network, using hydrophilic interaction ultraperformance liquid chromatography and (b) a further analysis of a GALT c.563A-G/p.Gln188Arg homozygous cohort (n = 49) with correlation with glycan features with patient Full Scale Intelligence Quotient (FSIQ), and (c) with galactose intake. RESULTS A very significant decrease in galactosylation and sialylation and an increase in core fucosylation was noted in CG patients vs controls (P < .005). Bisected glycans were decreased in the severe GALT c.563A-G/p.Gln188Arg homozygous cohort (n = 49) (P < .05). Logistic regression models incorporating IgG glycan traits distinguished CG patients from controls. Incremental dietary galactose intake correlated positively with FSIQ for the p.Gln188Arg homozygous CG cohort (P < .005) for a dietary galactose intake of 500 to 1000 mg/d. Significant improvements in profiles with increased galactose intake were noted for monosialylated, monogalactosylated, and monoantennary glycans. CONCLUSION These results suggest that N-glycosylation abnormalities persist in CG patients on dietary galactose restriction which may be modifiable to a degree by dietary galactose intake.
Collapse
Affiliation(s)
- Eileen P. Treacy
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
- Department of PaediatricsTrinity College DublinDublinIreland
- UCD School of MedicineUniversity College DublinDublinIreland
| | | | - Annet M. Bosch
- Department of Pediatrics, Division of Metabolic DisordersEmma Children's Hospital, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Matthias Gautschi
- Department of Paediatrics and Institute of Clinical ChemistryInselspital, University Hospital BernBernSwitzerland
| | - Estela Rubio‐Gozalbo
- Department of Pediatrics/Laboratory of Clinical GeneticsMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Charlotte Dawson
- Department of EndocrinologyUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
| | - Darragh Nerney
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
| | - Hugh Owen Colhoun
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and TrainingDublinIreland
| | - Loai Shakerdi
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
| | - Gregory M. Pastores
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
| | - Roisin O'Flaherty
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and TrainingDublinIreland
- Department of ChemistryMaynooth UniversityKildareIreland
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and TrainingDublinIreland
- UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin (UCD)DublinIreland
| |
Collapse
|
2
|
Yuzyuk T, Balakrishnan B, Schwarz EL, De Biase I, Hobert J, Longo N, Mao R, Lai K, Pasquali M. Effect of genotype on galactose-1-phosphate in classic galactosemia patients. Mol Genet Metab 2018; 125:258-265. [PMID: 30172461 DOI: 10.1016/j.ymgme.2018.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 11/27/2022]
Abstract
Impaired activity of galactose-1-phosphate uridyltransferase (GALT) causes classic galactosemia (OMIM 230400), characterized by the accumulation of galactose-1-phosphate (GAL1P) in patients' red blood cells (RBCs). Our recent study demonstrated a correlation between RBC GAL1P and long-term outcomes in galactosemia patients. Here, we analyze biochemical and molecular results in 77 classic galactosemia patients to evaluate the association between GALT genotypes and GAL1P concentration in RBCs. Experimental data from model organisms were also included to assess the correlation between GAL1P and predicted residual activity of each genotype. Although all individuals in this study showed markedly reduced RBC GALT activity, we observed significant differences in RBC GAL1P concentrations among galactosemia genotypes. While levels of GAL1P on treatment did not correlate with RBC GALT activities (p = 0.166), there was a negative nonlinear correlation between mean GAL1P concentrations and predicted residual enzyme activity of genotype (p = 0.004). These studies suggest that GAL1P levels in RBCs on treatment likely reflect the overall functional impairment of GALT in patients with galactosemia.
Collapse
Affiliation(s)
- Tatiana Yuzyuk
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA.
| | - Bijina Balakrishnan
- Division of Medical Genetics/Pediatrics, University of Utah, Salt Lake City, UT, USA
| | | | - Irene De Biase
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA
| | - Judith Hobert
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA
| | - Nicola Longo
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA; Division of Medical Genetics/Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Rong Mao
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA
| | - Kent Lai
- Division of Medical Genetics/Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Colhoun HO, Treacy EP, MacMahon M, Rudd PM, Fitzgibbon M, O'Flaherty R, Stepien KM. Validation of an automated ultraperformance liquid chromatography IgG N-glycan analytical method applicable to classical galactosaemia. Ann Clin Biochem 2018; 55:593-603. [DOI: 10.1177/0004563218762957] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Classical galactosaemia (OMIM #230400) is a rare disorder of carbohydrate metabolism caused by deficiency of the galactose-1-phosphate uridyltransferase enzyme. The pathophysiology of the long-term complications, mainly cognitive, neurological and female fertility problems, remains poorly understood. Current clinical methods of biochemical monitoring lack precision and individualization with an identified need for improved biomarkers for this condition. Methods We report the development and detailed validation of an automated ultraperformance liquid chromatography N-glycan analytical method of high peak resolution applied to galactose incorporation into human serum IgG. Samples are prepared on 96-well plates and the workflow features rapid glycoprotein denaturation, enzymatic glycan release, glycan purification on solid-supported hydrazide, fluorescent labelling and post-labelling clean-up with solid-phase extraction. Results This method is shown to be accurate and precise with repeatability (cumulative coefficients of variation) of 2.0 and 8.5%, respectively, for G0/G1 and G0/G2 ratios. Both serum and processed N-glycan samples were found to be stable at room temperature and in freeze–thaw experiments. Conclusions This high-throughput method of IgG galactose incorporation is robust, affordable and simple. This method is validated with the potential to apply as a biomarker for treatment outcomes for galactosaemia.
Collapse
Affiliation(s)
| | - Eileen P Treacy
- Department of Paediatrics, Trinity College, Dublin, Ireland
- National Centre for Inherited Metabolic Diseases, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Marguerite MacMahon
- Department of Clinical Biochemistry and Diagnostic Endocrinology, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and Training, Mount Merrion, Blackrock, Co., Dublin, Ireland
| | - Maria Fitzgibbon
- Department of Clinical Biochemistry and Diagnostic Endocrinology, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Roisin O'Flaherty
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and Training, Mount Merrion, Blackrock, Co., Dublin, Ireland
| | - Karolina M Stepien
- National Centre for Inherited Metabolic Diseases, The Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
4
|
Yuzyuk T, Viau K, Andrews A, Pasquali M, Longo N. Biochemical changes and clinical outcomes in 34 patients with classic galactosemia. J Inherit Metab Dis 2018; 41:197-208. [PMID: 29350350 DOI: 10.1007/s10545-018-0136-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022]
Abstract
Impaired activity of galactose-1-phosphate uridyltransferase (GALT) causes galactosemia, an autosomal recessive disorder of galactose metabolism. Early initiation of a galactose-restricted diet can prevent or resolve neonatal complications. Despite therapy, patients often experience long-term complications including speech impairment, learning disabilities, and premature ovarian insufficiency in females. This study evaluates clinical outcomes in 34 galactosemia patients with markedly reduced GALT activity and compares outcomes between patients with different levels of mean galactose-1-phosphate in red blood cells (GAL1P) using logistic regression: group 1 (n = 13) GAL1P ≤1.7 mg/dL vs. group 2 (n = 21) GAL1P ≥ 2 mg/dL. Acute symptoms at birth were comparable between groups (p = 0.30) with approximately 50% of patients presenting with jaundice, liver failure, and failure-to-thrive. However, group 2 patients had significantly higher prevalence of negative long-term outcomes compared to group 1 patients (p = 0.01). Only one of 11 patients >3 yo in group 1 developed neurological and severe behavioral problems of unclear etiology. In contrast, 17 of 20 patients >3 yo in group 2 presented with one or more long-term complications associated with galactosemia. The majority of females ≥15 yo in this group also had impaired ovarian function with markedly reduced levels of anti-Müllerian hormone. These findings suggest that galactosemia patients with higher GAL1P levels are more likely to have negative long-term outcome. Therefore, evaluation of GAL1P levels on a galactose-restricted diet might be helpful in providing a prognosis for galactosemia patients with rare or novel genotypes whose clinical presentations are not well known.
Collapse
Affiliation(s)
- Tatiana Yuzyuk
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
- ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT, 84108, USA.
| | - Krista Viau
- Division of Medical Genetics/Pediatrics, University of Utah, Salt Lake City, UT, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Ashley Andrews
- Division of Medical Genetics/Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT, 84108, USA
| | - Nicola Longo
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT, 84108, USA
- Division of Medical Genetics/Pediatrics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Kyei S, Koffuor GA, Ramkissoon P, Abu EK, Sarpong JF. Anti-Cataract Potential ofHeliotropium indicumLinn on Galactose-Induced Cataract in Sprague-Dawley Rats. Curr Eye Res 2016; 42:394-401. [DOI: 10.1080/02713683.2016.1198486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Samuel Kyei
- Discipline of Optometry, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Optometry, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape-Coast, Cape-Coast, Ghana
| | - George A. Koffuor
- Discipline of Optometry, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Paul Ramkissoon
- Discipline of Optometry, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Emmanuel K. Abu
- Department of Optometry, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape-Coast, Cape-Coast, Ghana
| | - Josephine F. Sarpong
- Department of Optometry, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape-Coast, Cape-Coast, Ghana
| |
Collapse
|
6
|
Classical galactosaemia: novel insights in IgG N-glycosylation and N-glycan biosynthesis. Eur J Hum Genet 2016; 24:976-84. [PMID: 26733289 DOI: 10.1038/ejhg.2015.254] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 01/05/2023] Open
Abstract
Classical galactosaemia (OMIM #230400), a rare disorder of carbohydrate metabolism, is caused by a deficient activity of galactose-1-phosphate uridyltransferase (EC 2.7.7.12). The pathophysiology of the long-term complications, mainly cognitive, neurological and female fertility problems remains poorly understood. The lack of validated biomarkers to determine prognosis, monitor disease progression and responses to new therapies, pose a huge challenge. We report the detailed analysis of an automated robotic hydrophilic interaction ultra-performance liquid chromatography N-glycan analytical method of high glycan peak resolution applied to serum IgG. This has revealed specific N-glycan processing defects observed in 40 adult galactosaemia patients (adults and adolescents), in comparison with 81 matched healthy controls. We have identified a significant increase in core fucosylated neutral glycans (P<0.0001) and a significant decrease in core fucosylated (P<0.001), non-fucosylated (P<0.0001) bisected glycans and, of specific note, decreased N-linked mannose-5 glycans (P<0.0001), in galactosaemia patients. We also report the abnormal expression of a number of related relevant N-glycan biosynthesis genes in peripheral blood mononuclear cells from 32 adult galactosaemia patients. We have noted significant dysregulation of two key N-glycan biosynthesis genes: ALG9 upregulated (P<0.001) and MGAT1 downregulated (P<0.01) in galactosaemia patients, which may contribute to its ongoing pathophysiology. Our data suggest that the use of IgG N-glycosylation analysis with matched N-glycan biosynthesis gene profiles may provide useful biomarkers for monitoring response to therapy and interventions. They also indicate potential gene modifying steps in this N-glycan biosynthesis pathway, of relevance to galactosaemia and related N-glycan biosynthesis disorders.
Collapse
|
7
|
IgG N-Glycosylation Galactose Incorporation Ratios for the Monitoring of Classical Galactosaemia. JIMD Rep 2015; 27:47-53. [PMID: 26419375 DOI: 10.1007/8904_2015_490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 06/25/2015] [Accepted: 07/29/2015] [Indexed: 12/22/2022] Open
Abstract
Classical galactosaemia (OMIM #230400) is a rare disorder of carbohydrate metabolism caused by deficiency of the galactose-1-phosphate uridyltransferase enzyme (EC 2.7.7.12). The cause of the long-term complications, including neurological, cognitive and fertility problems in females, remains poorly understood. The relatively small number of patients with galactosaemia and the lack of validated biomarkers pose a substantial challenge for determining prognosis and monitoring disease progression and responses to new therapies. We report an improved method of automated robotic hydrophilic interaction ultra-performance liquid chromatography N-glycan analysis for the measurement of IgG N-glycan galactose incorporation ratios applied to the monitoring of adult patients with classical galactosaemia. We analysed 40 affected adult patients and 81 matched healthy controls. Significant differences were noted between the G0/G1 and G0/G2 incorporation ratios between galactosaemia patients and controls (p < 0.001 and <0.01, respectively). Our data indicate that the use of IgG N-glycosylation galactose incorporation analysis may be now applicable for monitoring patient dietary compliance, determining prognosis and the evaluation of potential new therapies.
Collapse
|
8
|
Van Calcar SC, Bernstein LE, Rohr FJ, Scaman CH, Yannicelli S, Berry GT. A re-evaluation of life-long severe galactose restriction for the nutrition management of classic galactosemia. Mol Genet Metab 2014; 112:191-7. [PMID: 24857409 DOI: 10.1016/j.ymgme.2014.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 11/20/2022]
Abstract
The galactose-restricted diet is life-saving for infants with classic galactosemia. However, the benefit and extent of dietary galactose restriction required after infancy remain unclear and variation exists in practice. There is a need for evidence-based recommendations to better standardize treatment for this disorder. This paper reviews the association between diet treatment and outcomes in classic galactosemia and evaluates the contribution of food sources of free galactose in the diet. Recommendations include allowing all fruits, vegetables, legumes, soy products that are not fermented, various aged cheeses and foods containing caseinates. Further research directions are discussed.
Collapse
Affiliation(s)
- Sandra C Van Calcar
- .Division of Genetics and Metabolism, Department of Pediatrics, School of Medicine and Public Health, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | - Laurie E Bernstein
- Section of Clinical Genetics and Metabolism, Inherited Metabolic Disease Nutrition Department, University of Colorado-Denver School of Medicine, The Children's Hospital Colorado, Aurora, Colorado, USA
| | - Frances J Rohr
- Division of Genetics and Genomics, Metabolism Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine H Scaman
- Food Nutrition and Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven Yannicelli
- Medical and Scientific Affairs, Nutricia North America, Gaithersburg, Maryland, USA
| | - Gerard T Berry
- Division of Genetics and Genomics, Metabolism Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
9
|
Abstract
Classic galactosemia is an inherited metabolic disease for which, at present, no therapy is available apart from galactose-restricted diet. However, the efficacy of the diet is questionable, since it is not able to prevent the insurgence of chronic complications later in life. In addition, it is possible that dietary restriction itself could induce negative side effects. Therefore, there is a need for an alternative therapeutic approach that can avert the manifestation of chronic complications in the patients. In this review, the authors describe the development of a novel class of pharmaceutical agents that target the production of a toxic metabolite, galactose-1-phosphate, considered as the main culprit for the cause of the complications, in the patients.
Collapse
|
10
|
Coss KP, Hawkes CP, Adamczyk B, Stöckmann H, Crushell E, Saldova R, Knerr I, Rubio-Gozalbo ME, Monavari AA, Rudd PM, Treacy EP. N-Glycan Abnormalities in Children with Galactosemia. J Proteome Res 2013; 13:385-94. [DOI: 10.1021/pr4008305] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Karen P. Coss
- University College Dublin (UCD), Clinical Research
Centre, Mater Misericordiae University Hospital, Eccles Street, Dublin, Ireland
| | - Colin P. Hawkes
- National
Centre for Inherited Metabolic Disorders (NCIMD), Children’s University Hospital, Temple Street, Dublin, Ireland
| | - Barbara Adamczyk
- National Institute for Bioprocessing Research and Training (NIBRT), GlycoScience Group, Mount
Merrion, Blackrock, Dublin, Ireland
| | - Henning Stöckmann
- National Institute for Bioprocessing Research and Training (NIBRT), GlycoScience Group, Mount
Merrion, Blackrock, Dublin, Ireland
| | - Ellen Crushell
- National
Centre for Inherited Metabolic Disorders (NCIMD), Children’s University Hospital, Temple Street, Dublin, Ireland
| | - Radka Saldova
- National Institute for Bioprocessing Research and Training (NIBRT), GlycoScience Group, Mount
Merrion, Blackrock, Dublin, Ireland
| | - Ina Knerr
- National
Centre for Inherited Metabolic Disorders (NCIMD), Children’s University Hospital, Temple Street, Dublin, Ireland
| | | | - Ardeshir A. Monavari
- National
Centre for Inherited Metabolic Disorders (NCIMD), Children’s University Hospital, Temple Street, Dublin, Ireland
| | - Pauline M. Rudd
- National Institute for Bioprocessing Research and Training (NIBRT), GlycoScience Group, Mount
Merrion, Blackrock, Dublin, Ireland
| | - Eileen P. Treacy
- National
Centre for Inherited Metabolic Disorders (NCIMD), Children’s University Hospital, Temple Street, Dublin, Ireland
- Trinity College, College Green, Dublin, Ireland
| |
Collapse
|
11
|
Rubio-Agusti I, Carecchio M, Bhatia KP, Kojovic M, Parees I, Chandrashekar HS, Footitt EJ, Burke D, Edwards MJ, Lachmann RH, Murphy E. Movement Disorders in Adult Patients With Classical Galactosemia. Mov Disord 2013; 28:804-10. [DOI: 10.1002/mds.25348] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/27/2012] [Accepted: 12/09/2012] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ignacio Rubio-Agusti
- Charles Dent Metabolic Unit; National Hospital for Neurology and Neurosurgery; London United Kingdom
- Sobell Department for Movement Disorders and Clinical Neuroscience; Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
- Movement Disorders Unit; Department of Neurology; Hospital Universtiari La Fe; Valencia Spain
| | - Miryam Carecchio
- Sobell Department for Movement Disorders and Clinical Neuroscience; Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
- Department of Neurology; Amedeo Avogadro University; Novara Italy
| | - Kailash P. Bhatia
- Sobell Department for Movement Disorders and Clinical Neuroscience; Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - Maja Kojovic
- Sobell Department for Movement Disorders and Clinical Neuroscience; Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
- Department of Neurology; University of Ljubljana; Ljubljana Slovenia
| | - Isabel Parees
- Sobell Department for Movement Disorders and Clinical Neuroscience; Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - Hoskote S. Chandrashekar
- Lysholm Department of Neuroradiology; National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - Emma J. Footitt
- Clinical and Molecular Genetics Unit; UCL Institute of Child Health, Great Ormond Street Hospital; London United Kingdom
| | - Derek Burke
- Clinical and Molecular Genetics Unit; UCL Institute of Child Health, Great Ormond Street Hospital; London United Kingdom
| | - Mark J. Edwards
- Sobell Department for Movement Disorders and Clinical Neuroscience; Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - Robin H.L. Lachmann
- Charles Dent Metabolic Unit; National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - Elaine Murphy
- Charles Dent Metabolic Unit; National Hospital for Neurology and Neurosurgery; London United Kingdom
| |
Collapse
|
12
|
Coss KP, Byrne JC, Coman DJ, Adamczyk B, Abrahams JL, Saldova R, Brown AY, Walsh O, Hendroff U, Carolan C, Rudd PM, Treacy EP. IgG N-glycans as potential biomarkers for determining galactose tolerance in Classical Galactosaemia. Mol Genet Metab 2012; 105:212-20. [PMID: 22133299 DOI: 10.1016/j.ymgme.2011.10.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 10/28/2011] [Indexed: 11/26/2022]
Abstract
N-glycan processing and assembly defects have been demonstrated in untreated and partially treated patients with Classical Galactosaemia. These defects may contribute to the ongoing pathophysiology of this disease. The aim of this study was to develop an informative method of studying differential galactose tolerance levels and diet control in individuals with Galactosaemia, compared to the standard biochemical markers. Ten Galactosaemia adults with normal intellectual outcomes were analyzed in the study. Five subjects followed galactose liberalization, increments of 300 mg to 4000 mg/day over 16 weeks, and were compared to five adult Galactosaemia controls on a galactose restricted diet. All study subjects underwent clinical and biochemical monitoring of red blood cell galactose-1-phosphate (RBC Gal-1-P) and urinary galactitol levels. Serum N-glycans were isolated and analyzed by normal phase high-performance liquid chromatography (NP-HPLC) with galactosylation of IgG used as a specific biomarker of galactose tolerance. IgG N-glycan profiles showed consistent individual alterations in response to diet liberalization. The individual profiles were improved for all, but one study subject, at a galactose intake of 1000 mg/day, with decreases in agalactosylated (G0) and increases in digalactosylated (G2) N-glycans. We conclude that IgG N-glycan profiling is an improved method of monitoring variable galactosylation and determining individual galactose tolerance in Galactosaemia compared to the standard methods.
Collapse
Affiliation(s)
- K P Coss
- University College Dublin, Clinical Research Centre, Mater Misericordiae University Hospital, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cangemi G, Barco S, Barbagallo L, Di Rocco M, Paci S, Giovannini M, Biasucci G, Lia R, Melioli G. Erythrocyte Galactose-1-phosphate measurement by GC-MS in the monitoring of classical galactosemia. Scand J Clin Lab Invest 2011; 72:29-33. [PMID: 22017166 DOI: 10.3109/00365513.2011.622409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Classical galactosemia is a rare but very severe disease characterized by a deficiency of the galactose-1-phosphate uridyltransferase enzyme. The confirmed galactosemic patients are treated with a galactose-restricted diet. Nevertheless, metabolites such as galactose-1-phosphate can accumulate in red blood cells of treated patients and its measurement is a standard practice for their monitoring. At present, no commercial methods for measuring galactose-1-phosphate in erythrocytes are available. METHODS In this study, we will describe the optimization and laboratory validation of a previously published quantitative gas chromatographic-mass spectrometric method and its clinical validation on normal donors and galactosemic patients both at the diagnosis and during the follow-up. RESULTS The method was technically optimized and validated for its clinical use on normal donors and galactosemic newborns, children and adults. The method was suitable for the monitoring of dietary compliance. Galactose-1-phosphate levels were found to be well correlated with the clinical signs in the galactosemic patients at the follow-up. CONCLUSIONS This paper provides information on the measurement of Galactose-1-phosphate levels that can be very useful for the management of classical galactosemia.
Collapse
Affiliation(s)
- Giuliana Cangemi
- U.O. Laboratorio Centrale di Analisi, Istituto G. Gaslini, Largo Gaslini 5, Genoa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Krabbi K, Uudelepp ML, Joost K, Zordania R, Õunap K. Long-term complications in Estonian galactosemia patients with a less strict lactose-free diet and metabolic control. Mol Genet Metab 2011; 103:249-53. [PMID: 21501963 DOI: 10.1016/j.ymgme.2011.03.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 11/29/2022]
Abstract
The main aim of our study was to retrospectively evaluate long-term complications and measure urinary galactose and galactitol excretion in classical galactosemia patients in Estonia who have been treated with a less restricted lactose-free diet and metabolic control. Our study group consisted of five classical galactosemia patients aged 7-14 years and diagnosed since 1996 in Estonia. Their diet eliminates lactose present in dairy foods, but we did not restrict the consumption of mature cheeses, fruits and vegetables. All patients had normal growth, except for one patient who was overweight at the last evaluation. In three patients mental and speech development was normal. One patient, number 1, who was diagnosed latest (at 6 weeks of age), had moderate mental retardation, verbal dyspraxia, extrapyramidal signs and bilateral cataracts. In both patients with developmental problems, a brain MRI showed bilateral subcortical changes in the cerebral white matter. Of four females, only patient 4 (p.Q188R homozygote) has premature ovarian insufficiency. Urinary galactose and galactitol content were retrospectively measured using high-performance liquid chromatography and refractive-index detection from urinary samples that were preserved during the years 1996-2009. Galactose ranged from 60 to 600 mmol/mol creatinine (normal=4-6), and galactitol ranged from 70 to 1200 mmol/mol creatinine (normal=2-4), which was 10-100 and 17-300 times higher than the respective reference ranges for galactose and galactitol. We conclude that a less strict lactose-free diet and metabolic control performed in Estonian classical galactosemia patients does not change long-term outcome compared to previously published studies.
Collapse
Affiliation(s)
- K Krabbi
- Institute of Chemistry, Faculty of Sciences, Tallinn University of Technology, Tallinn, Estonia.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Classical galactosaemia (McKusick 230400) is an: autosomal recessive disorder of galactose metabolism, caused by a deficiency of the enzyme galactose-1-phosphate uridyltransferase (GALT; EC 2.7.712). Most patients present in the neonatal period, after ingestion of galactose, with jaundice, hepatosplenomegaly, hepatocellular insufficiency, food intolerance, hypoglycaemia, renal tubular dysfunction, muscle hypotonia, sepsis and cataract. The gold standard for diagnosis of classical galactosaemia is measurement of GALT activity in erythrocytes. Gas-chromatographic determination of urinary sugars and sugar alcohols demonstrates elevated concentrations of galactose and galactitol. The only therapy for patients with classical galactosaemia is a galactose-restricted diet, and initially all galactose must be removed from the diet as soon as the diagnosis is suspected. After the neonatal period, a lactose-free diet is advised in most countries, without restriction of galactose-containing fruit and vegetables. In spite of the strict diet, long-term complications such as retarded mental development, verbal dyspraxia, motor abnormalities and hypergonadotrophic hypogonadism are frequently seen in patients with classical galactosaemia. It has been suggested that these complications may result from endogenous galactose synthesis or from abnormal galactosylation. Novel therapeutic strategies, aiming at the prevention of galactose 1-phosphate production, should be developed. In the meantime, the follow-up protocol for patients with GALT deficiency should focus on early detection, evaluation and, if possible, early intervention in problems of motor, speech and cognitive development.
Collapse
Affiliation(s)
- Annet M Bosch
- Department of Pediatrics, Division of Metabolic Disorders, Academic Medical Centre (G8 205), University Hospital of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Yager C, Wehrli S, Segal S. Urinary galactitol and galactonate quantified by isotope-dilution gas chromatography-mass spectrometry. Clin Chim Acta 2006; 366:216-24. [PMID: 16336956 DOI: 10.1016/j.cca.2005.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 10/11/2005] [Accepted: 10/11/2005] [Indexed: 11/20/2022]
Abstract
BACKGROUND Measurements of urine galactitol have been used to monitor the adequacy of diet therapy in the treatment of galactosemia. We have devised a gas chromatographic mass spectrometry (GC/MS) isotope-dilution method for the simultaneous quantification of urine galactitol and another alternate pathway product, galactonate. METHODS We prepared trimethylsilyl (TMS) derivatives and used D-[UL-13C]galactitol and D-[UL-13C]galactonate as the internal standard for GC/MS. Results obtained with this method were compared with those determined by the established GC method for galactitol and the NMR method for galactonate. Thirty-three normal urine specimens were analyzed by the isotope dilution technique for galactitol and galactonate. Results of galactitol in 6 of these urine specimens along with 18 from classic galactosemics and 19 variant galactosemics were compared with the established GC method. Results for galactonate in 15 urine specimens from galactosemics were compared to the established NMR technique. RESULTS The method was linear up to 200 nmol with lower limits of detection of 1.1 nmol (1.75 mmol/mol creatinine) (Cr) and 0.8 nmol (1.28 mmol/mol Cr) for galactitol and galactonate, respectively. Intra- and Interassay imprecision ranged from 2.1-6.7% for galactitol and 3.5-8.0% for galactonate. The excretion of both metabolites was age dependent in both normal and galactosemics. In 12 normal urines from subjects under 1 year, values for galactitol ranged from 8-107 mmol/mol Cr, and in 7 over age 6, ranged from 2-5 mmol/mol Cr. Under 1 year, the range for galactonate was non-detectable to 231 and in the over 6 years group non-detectable to 25 mmol/mol Cr. In galactosemics under 1 year, the value for galactitol ranged from 397-743 and for galactonate 92-132 mmol/mol Cr while in nine patients over age 6 the range was 125-274 mmol/mol Cr for galactitol and 17-46 mmol/mol Cr for galactonate. CONCLUSIONS The GC/MS method enables the simultaneous determination of urine galactitol and galactonate and is precise and useful over the wide range of concentrations needed to assess the galactose burden in patients with galactosemia.
Collapse
Affiliation(s)
- Claire Yager
- Metabolic Research Laboratory, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
17
|
Lebea PJ, Pretorius PJ. The molecular relationship between deficient UDP-galactose uridyl transferase (GALT) and ceramide galactosyltransferase (CGT) enzyme function: A possible cause for poor long-term prognosis in classic galactosemia. Med Hypotheses 2005; 65:1051-7. [PMID: 16125333 DOI: 10.1016/j.mehy.2005.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 06/09/2005] [Accepted: 06/10/2005] [Indexed: 11/18/2022]
Abstract
Classic galactosemia is an autosomal recessive disorder that is caused by activity deficiency of the UDP-galactose uridyl transferase (GALT). The clinical spectrum of classic galactosemia differs according to the type and number of mutations in the GALT gene. Short-term clinical symptoms such as jaundice, hepatomegaly, splenomegaly and E. coli sepsis are typically associated with classic galactosemia. These symptoms are often severe but quickly ameliorate with dietary restriction of galactose. However, long-term symptoms such as mental retardation and primary ovarian failure do not resolve irrespective of dietary intervention or the period of initial dietary intervention. There seem to be an association between deficient galactosylation of cerebrosides and classic galactosemia. Galactocerebrosides and glucocerebrosides are the primary products of the enzyme UDP-galactose:cerebroside galactosyl transferase (CGT). There has been an observation of deficient galactosylation coupled with over glucosylation in the brain tissue specimens sampled from deceased classic galactosemia patients. The plausible mechanism with which the association between GALT and CGT had not been explained before. Yet, UDP-galactose serves as the product of GALT as well as a substrate for CGT. In classic galactosemia, there is a consistent deficiency in cerebroside galactosylation. We postulate that the molecular link between defective GALT enzyme, which result in classic galactosemia; and the cerebroside galactosyl transferase, which is responsible for galactosylation of cerebrosides is dependent on the cellular concentrations of UDP-galactose. We further hypothesize that a threshold concentration of UDP-galactose exist below which the integrity of cerebroside galactosylation suffers.
Collapse
Affiliation(s)
- Phiyani Justice Lebea
- Biotechnology Section, Department of Health Sciences, Vaal University of Technology, Block F110, Andries Potgieter Boulevard, Vanderbijlpark 1900, South Africa.
| | | |
Collapse
|
18
|
Ross KL, Davis CN, Fridovich-Keil JL. Differential roles of the Leloir pathway enzymes and metabolites in defining galactose sensitivity in yeast. Mol Genet Metab 2004; 83:103-16. [PMID: 15464425 DOI: 10.1016/j.ymgme.2004.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 07/04/2004] [Accepted: 07/07/2004] [Indexed: 11/25/2022]
Abstract
The metabolism of galactose via enzymes of the Leloir pathway: galactokinase, galactose-1-P uridylyltransferase, and UDP galactose-4'-epimerase, is a process that has been conserved from Escherichia coli through humans. Impairment of this pathway in patients results in the disease galactosemia. Despite decades of study, the underlying pathophysiology in galactosemia remains unknown. Here we have defined the functional and metabolic implications of impaired galactose metabolism in yeast, by asking two questions: (1) What is the impact of loss of each of the three Leloir enzymes on the ability of cells to metabolize galactose, and on their sensitivity to galactose, and (2) what is the relationship between gal-1P and galactose-sensitivity in yeast? Our results demonstrate that only transferase-null cells are able to deplete their medium of galactose; deletion of kinase or epimerase halts this process. In contrast, only kinase-null cultures grow well in glycerol/ethanol medium despite the addition of galactose; both transferase and epimerase-null yeast arrest growth under these conditions. Indeed, epimerase-null yeast arrest growth at galactose concentrations 10-fold lower than do their transferase-null counterparts. Secondary deletion of kinase relieves growth arrest in both strains. Finally, rather than a continuous relationship between gal-1P and growth arrest, we observed a threshold level of gal-1P (approximately 10 nmol/mg cell DM) above which both transferase-null and epimerase-null cultures could not grow. These results both confirm and significantly extend prior knowledge of galactose metabolism in yeast, and set the stage for future studies into the mediators and mechanism of Leloir-impaired galactose sensitivity in eukaryotes.
Collapse
Affiliation(s)
- Kerry L Ross
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
19
|
Schadewaldt P, Killius S, Kamalanathan L, Hammen HW, Strassburger K, Wendel U. Renal excretion of galactose and galactitol in patients with classical galactosaemia, obligate heterozygous parents and healthy subjects. J Inherit Metab Dis 2003; 26:459-79. [PMID: 14518827 DOI: 10.1023/a:1025173311030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The age dependence of galactose and galactitol excretion was assessed in overnight-fasted galactose-1-phosphate uridyltransferase-deficient patients under dietary treatment (ages 4-34 years; n = 51), obligate heterozygous parents (ages 25-71 years; n = 49) and healthy subjects (ages 3-58 years; n = 215). Urine concentrations were analysed by stable-isotope dilution gas chromatography mass spectrometry. There was considerable interindividual variability. The intraindividual variation, however, was not age-dependent and was rather low. Excretion estimates were calculated from the creatinine-related concentrations using weight-, age- and sex-related creatinine excretion rates. Experimental evidence is presented underscoring the problems inherent in random sampling and substantiating the primary endogenous origin of galactose and galactitol in postabsorptive urine samples. Age-dependent excretion estimates were best fitted to a simple growth-related model assuming an exponential decrease with age until adulthood. According to the model, mean postabsorptive galactose and galactitol excretion in healthy subjects was similar and decreased exponentially from about 1.2 micromol/kg body weight per day in infants to about 0.2 micromol/kg body weight per day in adults. Excretion in heterozygotes was normal. In galactosaemic patients, galactose excretion was in the normal range. Galactitol excretion, however, was enhanced over 50-fold and decreased from a mean estimate of about 64 micromol/kg body weight per day in infants to about 23 micromol/kg body weight per day in adults. The results are discussed with respect to the significance of galactose and galactitol excretion for whole-body galactose removal and with respect to the applicability of urinary galactitol analysis for metabolic monitoring in galactosaemia.
Collapse
Affiliation(s)
- P Schadewaldt
- Klinik für Allgemeine Pädiatrie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Cohen A, Doveh E, Umansky T. How to assess the relative range of two consecutive laboratory measurements to monitor patients. J Biopharm Stat 2002; 11:177-91. [PMID: 11725930 DOI: 10.1081/bip-100107656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An integral part of routine health checkups involves laboratory measurements on various analytes in the blood. It is then common to compare the value of two consecutive measurements sampled at different times from the same patient. A "significant" change requires an action (additional sample and/or clinical action). The current rule is to check whether the relative range of measurement is larger than a certain critical threshold. This rule should guarantee a specified confidence level (e.g., 95%), but its derivation was based on an approximation. We derive the exact distribution and show that it is related to the doubly noncentral F distribution. The currently used threshold values are compared with the exact ones, and some limited power calculations are presented to detect changes in the patient condition.
Collapse
Affiliation(s)
- A Cohen
- Statistics Laboratory, Faculty of Industrial Engineering and Management, Technion, Haifa, Israel.
| | | | | |
Collapse
|