1
|
Kavyani B, Ahmadi S, Nabizadeh E, Abdi M. Anti-oxidative activity of probiotics; focused on cardiovascular disease, cancer, aging, and obesity. Microb Pathog 2024; 196:107001. [PMID: 39384024 DOI: 10.1016/j.micpath.2024.107001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
By disturbing the prooxidant-antioxidant balance in the cell, a condition called oxidative stress is created, causing severe damage to the nucleic acid, protein, and lipid of the host cell, and as a result, endangers the viability of the host cell. A relationship between oxidative stress and several different diseases such as cardiovascular diseases, cancer, and obesity has been reported. Therefore, maintaining this prooxidant-antioxidant balance is vital for the cell. Probiotics as one of the potent antioxidants have recently received attention. Many health-promoting and beneficial effects of probiotics are known, and it has been found that the consumption of certain strains of probiotics alone or in combination with food exerts antioxidant efficacy and reduces oxidative damage. Studies have reported that certain probiotic strains implement their antioxidant effects by producing metabolites and antioxidant enzymes, increasing the antioxidant capacity, and reducing host oxidant metabolites. Therefore, we aimed to review and summarize the latest anti-oxidative activity of probiotics and its efficacy in aging, cardiovascular diseases, cancer, and obesity.
Collapse
Affiliation(s)
- Batoul Kavyani
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Ahmadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Edris Nabizadeh
- Imam Khomeini Hospital of Piranshahr City, Urmia University of Medical Sciences, Piranshahr, Iran
| | - Milad Abdi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Park JM, Moon JW, Zhang BZ, An BK. Antioxidant Activity and Other Characteristics of Lactic Acid Bacteria Isolated from Korean Traditional Sweet Potato Stalk Kimchi. Foods 2024; 13:3261. [PMID: 39456323 PMCID: PMC11507834 DOI: 10.3390/foods13203261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The aim of this study was to examine the biological activity and probiotic properties of lactic acid bacteria (LAB) isolated from sweet potato stalk kimchi (SPK). Various LAB and Bacillus spp. are active in the early stages of the fermentation of kimchi made from sweet potato stalk. Four strains of LAB were identified, including SPK2 (Levilactobacillus brevis ATCC 14869), SPK3 (Latilactobacillus sakei NBRC 15893), SPK8 and SPK9 (Leuconostoc mesenteroides subsp. dextranicum NCFB 529). SPK2, SPK3, SPK8, and SPK9 showed 64.64-94.23% bile acid resistance and 78.66-82.61% pH resistance. We identified over 106 CFU/mL after heat treatment at 75 °C. Four strains showed high antimicrobial activity to Escherichia coli and Salmonella Typhimurium with a clear zone of >11 mm. SPK2 had the highest antioxidative potentials, higher than the other three bacteria, with 44.96 μg of gallic acid equivalent/mg and 63.57% DPPH scavenging activity. These results demonstrate that the four strains isolated from sweet potato kimchi stalk show potential as probiotics with excellent antibacterial effects and may be useful in developing health-promoting products.
Collapse
Affiliation(s)
- Jung-Min Park
- Department of Food Marketing and Safety, Konkuk University, Seoul 05029, Republic of Korea; (J.-M.P.); (J.-W.M.); (B.-Z.Z.)
| | - Ji-Woon Moon
- Department of Food Marketing and Safety, Konkuk University, Seoul 05029, Republic of Korea; (J.-M.P.); (J.-W.M.); (B.-Z.Z.)
| | - Bo-Zheng Zhang
- Department of Food Marketing and Safety, Konkuk University, Seoul 05029, Republic of Korea; (J.-M.P.); (J.-W.M.); (B.-Z.Z.)
| | - Byoung-Ki An
- Animal Resources Research Center, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Bahrami S, Babaei N, Esmaeili Gouvarchin Ghaleh H, Mohajeri Borazjani J, Farzanehpour M. Investigating the effects of combined treatment of mesalazine with Lactobacillus casei in the experimental model of ulcerative colitis. Front Mol Biosci 2024; 11:1456053. [PMID: 39421689 PMCID: PMC11484277 DOI: 10.3389/fmolb.2024.1456053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Ulcerative colitis (UC), a common gastrointestinal disorder in affluent nations, involves chronic intestinal mucosal inflammation. This research investigated the effects of combined probiotic treatment of Lactobacillus casei (L. casei) and mesalazine on disease activity index and inflammatory factors in the UC model. Methods 20 male BALB/c mice were utilized and divided into four groups. To induce UC, all groups received 100 μL of 4% acetic acid (AA) intra-rectally. The first group received phosphate-buffered saline (PBS) (as a control group), the second group was treated with L. casei, the third group was treated with mesalazine and, the fourth group was treated with L. casei and mesalazine. Treatment with L. Casei and mesalazine commenced after the manifestation of symptoms resulting from UC induction. Finally, the mice were euthanized and the disease activity index, myeloperoxidase activity, nitric oxide rate, cytokines level (IL-1β, IL-6, TNF-α) and, gene expression (iNOS, COX-2, and cytokines) were evaluated. Results The combined treatment of L. casei and mesalazine led to a significant decrease in the levels of NO, MPO and inflammatory cytokines. In addition, the expression of cytokines, iNOS and COX-2 genes decreased in mice treated with the combination. Discussion This study shows that combined treatment of L. casei and mesalazine improves of experimental UC, which can be attributed to the anti-inflammatory properties of L. casei and mesalazine. In conclusion, this combination therapy can be considered a suitable option for the management of UC.
Collapse
Affiliation(s)
- Shabnam Bahrami
- Department of Molecular Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Nahid Babaei
- Department of Molecular Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Hadi Esmaeili Gouvarchin Ghaleh
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jaleh Mohajeri Borazjani
- Department of Fisheries and Natural Resources, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Mahdieh Farzanehpour
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
5
|
Nazzaro F, Ombra MN, Coppola F, De Giulio B, d'Acierno A, Coppola R, Fratianni F. Antibacterial Activity and Prebiotic Properties of Six Types of Lamiaceae Honey. Antibiotics (Basel) 2024; 13:868. [PMID: 39335041 PMCID: PMC11428214 DOI: 10.3390/antibiotics13090868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Our work investigated the antimicrobial and prebiotic properties of basil, mint, oregano, rosemary, savory, and thyme honey. The potential antimicrobial action, assessed against the pathogens Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus, evidenced the capacity of the honey to influence the pathogenic hydrophobicity and hemolytic activities. Honey inhibited pathogen biofilms, acting especially on the mature biofilms, with inhibition rates of up to 81.62% (caused by the presence of mint honey on L. monocytogenes). S. aureus biofilms were the most susceptible to the presence of honey, with inhibition rates up of to 67.38% in the immature form (caused by basil honey) and up to 80.32% in the mature form (caused by mint honey). In some cases, the amount of nuclear and proteic material, evaluated by spectrophotometric readings, if also related to the honey's biofilm inhibitory activity, let us hypothesize a defective capacity of building the biofilm scaffold or bacterial membrane damage or an incapability of producing them for the biofilm scaffold. The prebiotic potentiality of the honey was assessed on Lacticaseibacillus casei Shirota, Lactobacillus gasseri, Lacticaseibacillus paracasei subsp. paracasei, and Lacticaseibacillus rhamnosus and indicated their capacity to affect the whole probiotic growth and in vitro adhesive capacity, as well as the antioxidant and cytotoxic abilities, and to inhibit, mainly in the test performed with the L. casei Shirota, L. gasseri, and L. paracasei supernatants, the immature biofilm of the pathogens mentioned above.
Collapse
Affiliation(s)
- Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy
| | - Maria Neve Ombra
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy
| | - Francesca Coppola
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy
| | | | - Antonio d'Acierno
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy
| | - Raffaele Coppola
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy
- Department of Agriculture, Environment and Food (DiAAA), University of Molise, Via de Sanctis, 86100 Campobasso, Italy
| | | |
Collapse
|
6
|
Ye Z, Ji B, Peng Y, Song J, Zhao T, Wang Z. Screening and Characterization of Probiotics Isolated from Traditional Fermented Products of Ethnic-Minorities in Northwest China and Evaluation Replacing Antibiotics Breeding Effect in Broiler. Pol J Microbiol 2024; 73:275-295. [PMID: 39213263 PMCID: PMC11398283 DOI: 10.33073/pjm-2024-025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/25/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, Lactobacillus fermentum DM7-6 (DM7-6), Lactobacillus plantarum DM9-7 (DM9-7), and Bacillus subtilis YF9-4 (YF9-4) were isolated from traditional fermented products. The survival rate of DM7-6, DM9-7, and YF9-4 in simulated intestinal gastric fluid reached 61.29%, 44.82%, and 55.26%, respectively. These strains had inhibition ability against common pathogens, and the inhibition zone diameters were more than 7 mm. Antioxidant tests showed these strains had good scavenging capacity for superoxide anion, hydroxyl radical and DPPH, and the total reduction capacity reached 65%. Then DM7-6, DM9-7 and YF9-4 were fed to broilers to study the effects on antioxidant capacity, immune response, biochemical indices, tissue morphology, and gut microbiota. 180 healthy broilers were allocated randomly into six experimental groups. SOD, GSH-Px, and T-AOC in broilers serum were detected, and the results showed probiotics significantly improve antioxidant capacity compared to CK group, while antibiotics showed the opposite result. Besides, IgA, IgM, IgG, TNF-α, and IL-2 indicated it could significantly improve immunity by adding probiotics in broilers diets. However, antibiotics reduced immunoglobulin levels and enhanced inflammation index. Biochemical indicators and tissue morphology showed probiotics had a protective effect on metabolic organs. Gut microbiota analysis proved antibiotics could significantly decrease microbial community diversity and increase the proportion of opportunistic pathogens, while probiotics could improve the diversity of gut microbiota and promote the colonization of beneficial microorganisms. In summary, probiotics DM7-6, DM9-7, and YF9-4 can improve the broiler's health by improving antioxidant capacity and immune function, regulating gut microbiota, and can be used as alternative probiotics for antibiotics-free breeding of broilers.
Collapse
Affiliation(s)
- Ze Ye
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Bin Ji
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Yinan Peng
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Jie Song
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Tingwei Zhao
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Zhiye Wang
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
- School of Life Science, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
7
|
Gong F, Xin S, Liu X, He C, Yu X, Pan L, Zhang S, Gao H, Xu J. Multiple biological characteristics and functions of intestinal biofilm extracellular polymers: friend or foe? Front Microbiol 2024; 15:1445630. [PMID: 39224216 PMCID: PMC11367570 DOI: 10.3389/fmicb.2024.1445630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The gut microbiota is vital to human health, and their biofilms significantly impact intestinal immunity and the maintenance of microbial balance. Certain pathogens, however, can employ biofilms to elude identification by the immune system and medical therapy, resulting in intestinal diseases. The biofilm is formed by extracellular polymorphic substances (EPS), which shield microbial pathogens from the host immune system and enhance its antimicrobial resistance. Therefore, investigating the impact of extracellular polysaccharides released by pathogens that form biofilms on virulence and defence mechanisms is crucial. In this review, we provide a comprehensive overview of current pathogenic biofilm research, deal with the role of extracellular polymers in the formation and maintenance of pathogenic biofilm, and elaborate different prevention and treatment strategies to provide an innovative approach to the treatment of intestinal pathogen-based diseases.
Collapse
Affiliation(s)
- Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Liu Y, Wang J, Zheng H, Xin J, Zhong Z, Liu H, Fu H, Zhou Z, Qiu X, Peng G. Multi-functional properties of lactic acid bacteria strains derived from canine feces. Front Vet Sci 2024; 11:1404580. [PMID: 39161461 PMCID: PMC11330878 DOI: 10.3389/fvets.2024.1404580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/10/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction Probiotics, especially Lactic Acid Bacteria (LAB), can promote the health of host animals in a variety of ways, such as regulating intestinal flora and stimulating the host's immune system. Methods In this study, 206 LAB strains were isolated from 48 canine fecal samples. Eleven LAB strains were selected based on growth performance, acid and bile salt resistance. The 11 candidates underwent comprehensive evaluation for probiotic properties, including antipathogenic activity, adhesion, safety, antioxidant capacity, and metabolites. Results The results of the antipathogenic activity tests showed that 11 LAB strains exhibited strong inhibitory effect and co-aggregation ability against four target pathogens (E. coli, Staphylococcus aureus, Salmonella braenderup, and Pseudomonas aeruginosa). The results of the adhesion test showed that the 11 LAB strains had high cell surface hydrophobicity, self-aggregation ability, biofilm-forming ability and adhesion ability to the Caco-2 cells. Among them, Lactobacillus acidophilus (L177) showed strong activity in various adhesion experiments. Safety tests showed that 11 LAB strains are sensitive to most antibiotics, with L102, L171, and L177 having the highest sensitivity rate at 85.71%, and no hemolysis occurred in all strains. Antioxidant test results showed that all strains showed good H2O2 tolerance, high scavenging capacity for 1, 1-diphenyl-2-trinitrophenylhydrazine (DPPH) and hydroxyl (OH-). In addition, 11 LAB strains can produce high levels of metabolites including exopolysaccharide (EPS), γ-aminobutyric acid (GABA), and bile salt hydrolase (BSH). Discussion This study provides a thorough characterization of canine-derived LAB strains, highlighting their multifunctional potential as probiotics. The diverse capabilities of the strains make them promising candidates for canine dietary supplements, offering a holistic approach to canine health. Further research should validate their efficacy in vivo to ensure their practical application.
Collapse
Affiliation(s)
- Yunjiang Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jiali Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohong Zheng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jialiang Xin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xianmeng Qiu
- New Ruipeng Pet Healthcare Group Co., Ltd., Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Ashique S, Faruk A, Ahmad FJ, Khan T, Mishra N. It Is All about Probiotics to Control Cervical Cancer. Probiotics Antimicrob Proteins 2024; 16:979-992. [PMID: 37880560 DOI: 10.1007/s12602-023-10183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Cervical cancer (CC) is the fourth most common malignancy in female patients. "Human papillomavirus" (HPV) contamination is a leading cause of all forms of cervical cancer, accounting for an expected 570,000 reported incidents in 2018. Two HPV strains (16 and 18) are responsible for 70% of CC and pre-cancerous cervical abnormalities. CC is one of the foremost reasons for the malignancy death rate in India among women ranging from 30 to 69 years of age in India, responsible for 17% of all cancer deaths. Currently approved cervical cancer treatments are associated with adverse reactions that might harm the lives of women affected by this disease. Consequently, probiotics can play a vital role in the treatment of CC. It is reflected from various studies regarding the role of probiotics in the diagnosis, prevention or treatment of cancer. In this review article, we have discussed the rationale of probiotics for treatment of CC, the role of probiotics as effective adjuvants in anti-cancer therapy and the combined effect of the anti-cancer drug along with probiotics to minimize the side effects due to chemotherapy.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, School of Pharmacy, Pandaveswar, West Bengal, 713346, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Tasneem Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University, Gwalior, 474005, Madhya Pradesh, India
| |
Collapse
|
10
|
Gu X, Wang H, Wang L, Zhang K, Tian Y, Wang X, Xu G, Guo Z, Ahmad S, Egide H, Liu J, Li J, Savelkoul HFJ, Zhang J, Wang X. The antioxidant activity and metabolomic analysis of the supernatant of Streptococcus alactolyticus strain FGM. Sci Rep 2024; 14:8413. [PMID: 38600137 PMCID: PMC11006861 DOI: 10.1038/s41598-024-58933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Strain-specific probiotics can present antioxidant activity and reduce damage caused by oxidation. Streptococcus alactolyticus strain FGM (S. alactolyticus strain FGM) isolated from the chicken cecum shows potential probiotic properties which have been previously demonstrated. However, the antioxidant properties of S. alactolyticus strain FGM remain unknown. In this view, cell-free supernatant (CFS), intact cells (IC) and intracellular extracts (CFE) of strain FGM and 3 strains of Lactobacillus (LAB) were prepared, and their scavenging capacities against DPPH, hydroxyl radicals and linoleic acid peroxidation inhibitory were compared in this study. The effects of strain FGM cell-free supernatant (FCFS) on NO production, activity of SOD and GSH-Px in RAW264.7 cells and LPS-induced RAW264.7 cells were analyzed. The metabolites in the supernatant were quantitated by N300 Quantitative Metabolome. It was shown that the physicochemical characteristics of CFS to scavenge DPPH, hydroxyl radicals, and linoleic acid peroxidation inhibitory were significantly stronger than that of IC and CFE in the strain FGM (P < 0.05), respectively 87.12% ± 1.62, 45.03% ± 1.27, 15.63% ± 1.34. FCFS had a promotional effect on RAW264.7 cells, and significantly elevated SOD and GSH-Px activities in RAW264.7 cells. 25 μL FCFS significantly promoted the proliferation of RAW264.7 cells induced by LPS, increased the activities of SOD and GSH-PX, and decreased the release of NO. Furthermore, among the differential metabolites of FCFS quantified by N300, 12 metabolites were significantly up-regulated, including lactic acid, indole lactic acid, linoleic acid, pyruvic acid etc., many of which are known with antioxidant properties. In conclusion, FCFS had good antioxidant properties and activity, which can be attributed to metabolites produced from strain FGM fermentation. It was further confirmed that S. alactolyticus strain FGM and its postbiotic have potential probiotic properties and bright application prospects in livestock and poultry breeding.
Collapse
Affiliation(s)
- Xueyan Gu
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Heng Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Lei Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Kang Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Yuhu Tian
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xiaoya Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Guowei Xu
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Zhiting Guo
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Saad Ahmad
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Hanyurwumutima Egide
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jiahui Liu
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jianxi Li
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Jingyan Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Xuezhi Wang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, China.
| |
Collapse
|
11
|
Lou Z, Dong J, Tao H, Tan Y, Wang H. Regulation and mechanism of organic selenium on quorum sensing, biofilm, and antioxidant effects of Lactobacillus paracasei. Cell Biochem Funct 2024; 42:e3975. [PMID: 38475877 DOI: 10.1002/cbf.3975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024]
Abstract
Different organic compounds can have varying degrees of impact on the activity of Lactobacillus paracasei. The study focused on the impact and action mechanism of different organic selenium products on the bioactivity of two strains of L. paracasei. The growth, antioxidant activity, extracellular polysaccharide secretion, quorum sensing (QS), and biofilm formation of the strains before and after the addition of organic selenium crude products and three organic selenium standard were evaluated. The results showed that the addition of crude organic selenium promoted the various activities of the strain. l-selenocysteine had the strongest regulatory effect, with maximum GIM1.80 biofilm formation when it reached a critical concentration of 0.4 μg/mL; l-selenomethionine resulted in the highest activity of the signal molecule Auto inducer-2 of GDMCC1.155, when it reached a critical concentration of 0.4 μg/mL. The results of scanning electron microscopy demonstrated that the addition of organic selenium effectively improved the morphological structure of the two bacterial cells. Molecular docking revealed that the mechanism by which organic selenium regulates QS in Lactobacillus was achieved by binding two crucial receptor proteins (histidine protein kinase HKP and periplasmic binding protein LuxP) from specific sites. Furthermore, organic selenium products have a beneficial regulatory effect on the biological activity of L. paracasei. Overall, these findings provide a new alternative (organic selenium) for regulating the viability and beneficial activity of L. paracasei.
Collapse
Affiliation(s)
- Zaixiang Lou
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiale Dong
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongwei Tao
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yeexuan Tan
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongxin Wang
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Cang W, Li X, Tang J, Wang Y, Mu D, Wu C, Shi H, Shi L, Wu J, Wu R. Therapeutic Potential of Bacteroides fragilis SNBF-1 as a Next-Generation Probiotic: In Vitro Efficacy in Lipid and Carbohydrate Metabolism and Antioxidant Activity. Foods 2024; 13:735. [PMID: 38472847 DOI: 10.3390/foods13050735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/11/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
This study explores the potential of aerotolerant Bacteroides fragilis (B. fragilis) strains as next-generation probiotics (NGPs), focusing on their adaptability in the gastrointestinal environment, safety profile, and probiotic functions. From 23 healthy infant fecal samples, we successfully isolated 56 beneficial B. fragilis strains. Notably, the SNBF-1 strain demonstrated superior cholesterol removal efficiency in HepG2 cells, outshining all other strains by achieving a remarkable reduction in cholesterol by 55.38 ± 2.26%. Comprehensive genotype and phenotype analyses were conducted, including sugar utilization and antibiotic sensitivity tests, leading to the development of an optimized growth medium for SNBF-1. SNBF-1 also demonstrated robust and consistent antioxidant activity, particularly in cell-free extracts, as evidenced by an average oxygen radical absorbance capacity value of 1.061 and a 2,2-diphenyl-1-picrylhydrazyl scavenging ability of 94.53 ± 7.31%. The regulation of carbohydrate metabolism by SNBF-1 was assessed in the insulin-resistant HepG2 cell line. In enzyme inhibition assays, SNBF-1 showed significant α-amylase and α-glucosidase inhibition, with rates of 87.04 ± 2.03% and 37.82 ± 1.36%, respectively. Furthermore, the cell-free supernatant (CFS) of SNBF-1 enhanced glucose consumption and glycogen synthesis in insulin-resistant HepG2 cells, indicating improved cellular energy metabolism. This was consistent with the observation that the CFS of SNBF-1 increased the proliferation of HepG2 cells by 123.77 ± 0.82% compared to that of the control. Overall, this research significantly enhances our understanding of NGPs and their potential therapeutic applications in modulating the gut microbiome.
Collapse
Affiliation(s)
- Weihe Cang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Xuan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiayi Tang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Ying Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Delun Mu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Chunting Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Lin Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| |
Collapse
|
13
|
Zhang K, Ji J, Li N, Yin Z, Fan G. Integrated Metabolomics and Gut Microbiome Analysis Reveals the Efficacy of a Phytochemical Constituent in the Management of Ulcerative Colitis. Mol Nutr Food Res 2024; 68:e2200578. [PMID: 38012477 DOI: 10.1002/mnfr.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 07/09/2023] [Indexed: 11/29/2023]
Abstract
SCOPE Cinnamaldehyde (CAH), a phytochemical constituent isolated from cinnamon, is gaining attention due to its nutritional and medicinal benefits. This study aimed to investigate the potential role of CAH in the treatment of ulcerative colitis (UC). METHODS AND RESULTS Integrated metabolomics and gut microbiome analysis are performed for 2,4,6-trinitrobenzenesulfonic acid (TNBS) induced UC rats. The effect of CAH on colonic inflammation, lipid peroxidation, metabolic profiles, and gut microbiota is systematically explored. It finds that CAH improves the colitis-related symptoms, decreases disease activity index, increases the colon length and body weight, and alleviates histologic inflammation of UC rats. These therapeutic effects of CAH are due to suppression of inflammation and lipid peroxidation. Moreover, multi-omics analysis reveals that CAH treatment cause changes in plasma metabolome and gut microbiome in UC rats. CAH regulates lipid metabolic processes, especially phosphatidylcholines, lysophosphatidylcholines, and polyunsaturated fatty acids. Meanwhile, CAH modulates the gut microbial structure by restraining pathogenic bacteria (such as Helicobacter) and increasing probiotic bacteria (such as Bifidobacterium and Lactobacillus). CONCLUSIONS These results indicate that CAH exerts a beneficial role in UC by synergistic modulating the balance in gut microbiota and the associated metabolites, and highlights the nutritional and medicinal value of CAH in UC management.
Collapse
Affiliation(s)
- Kai Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Jianbin Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Nana Li
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, People's Republic of China
| | - Zhaorui Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| |
Collapse
|
14
|
Debnath N, Yadav P, Yadav AK. Assessment of Probiotic and Antioxidant Potential of Indigenous Lactobacillus Strains Isolated from Human Faecal Samples. Indian J Microbiol 2023; 63:677-692. [PMID: 38031600 PMCID: PMC10681969 DOI: 10.1007/s12088-023-01129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
This study aimed to isolate and characterize probiotic Lactobacilli from human faecal samples of Jammu region of India and evaluation of their antioxidative properties. A total of 29 Lactobacillus strains were isolated and tested for their ability to withstand different pH levels, high concentrations of bile salt and lysozyme along with their adhesion ability to different hydrocarbons and auto-aggregation. Selected probiotic Lactobacillus isolates were further examined for their antioxidant potential using ABTS, DPPH methods, and the ability to scavenge superoxide and hydroxyl radicals. The results showed that Lactobacillus LpJ1 (7.93 ± 0.23) and LpJ5 (7.93 ± 0.59) had the highest cell viability at a pH of 2.5, while Lactobacillus LpJ16 (7.91 ± 0.48) had the highest resistance to bile salts. Many of the isolates also demonstrated good tolerance to lysozyme. The adhesion abilities of these isolates were characterized by cell surface hydrophobicity and auto aggregation which ranged between 50.32% to 77.8% and 51.02% to 78.95% respectively. In addition, Lactobacillus LpJ5 and LpJ8 showed excellent antioxidant activity. Based on these findings, the selected probiotic strains could be potential candidates for use in functional food to reduce oxidative stress. Graphical abstract
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Rahya-Suchani (Bagla) Samba, Jammu & Kashmir 181143 India
| | - Pooja Yadav
- Centre for Molecular Biology, Central University of Jammu, Rahya-Suchani (Bagla) Samba, Jammu & Kashmir 181143 India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Rahya-Suchani (Bagla) Samba, Jammu & Kashmir 181143 India
| |
Collapse
|
15
|
Chen S, Zhang Y. Mechanism and application of Lactobacillus in type 2 diabetes-associated periodontitis. Front Public Health 2023; 11:1248518. [PMID: 38098816 PMCID: PMC10720667 DOI: 10.3389/fpubh.2023.1248518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) accelerates the progression of periodontitis through diverse pathways. Abnormal immune responses, excessive activation of inflammation, increased levels of advanced glycation end products, and oxidative stress have defined roles in the pathophysiological process of T2DM-associated periodontitis. Furthermore, in the periodontium of diabetic individuals, there are high levels of advanced glycation end-products and glucose. Meanwhile, progress in microbiomics has revealed that dysbacteriosis caused by T2DM also contributes to the progression of periodontitis. Lactobacillus, owing to its fine-tuning function in the local microbiota, has sparked tremendous interest in this field. Accumulating research on Lactobacillus has detailed its beneficial role in both diabetes and oral diseases. In this study, we summarize the newly discovered mechanisms underlying Lactobacillus-mediated improvement of T2DM-associated periodontitis and propose the application of Lactobacillus in the clinic.
Collapse
Affiliation(s)
- Sisi Chen
- Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Medical University, Chongqing, China
| | - Yuhan Zhang
- Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Fratianni F, De Giulio B, d’Acierno A, Amato G, De Feo V, Coppola R, Nazzaro F. In Vitro Prebiotic Effects and Antibacterial Activity of Five Leguminous Honeys. Foods 2023; 12:3338. [PMID: 37761047 PMCID: PMC10529961 DOI: 10.3390/foods12183338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Honey is a natural remedy for various health conditions. It exhibits a prebiotic effect on the gut microbiome, including lactobacilli, essential for maintaining gut health and regulating the im-mune system. In addition, monofloral honey can show peculiar therapeutic properties. We in-vestigated some legumes honey's prebiotic properties and potential antimicrobial action against different pathogens. We assessed the prebiotic potentiality of honey by evaluating the antioxidant activity, the growth, and the in vitro adhesion of Lacticaseibacillus casei, Lactobacillus gasseri, Lacticaseibacillus paracasei subsp. paracasei, Lactiplantibacillus plantarum, and Lacticaseibacillus rhamnosus intact cells. We also tested the honey's capacity to inhibit or limit the biofilm produced by five pathogenic strains. Finally, we assessed the anti-biofilm activity of the growth medium of probiotics cultured with honey as an energy source. Most probiotics increased their growth or the in vitro adhesion ability to 84.13% and 48.67%, respectively. Overall, alfalfa honey best influenced the probiotic strains' growth and in vitro adhesion properties. Their radical-scavenging activity arrived at 83.7%. All types of honey increased the antioxidant activity of the probiotic cells, except for the less sensitive L. plantarum. Except for a few cases, we observed a bio-film-inhibitory action of all legumes' honey, with percentages up to 81.71%. Carob honey was the most effective in inhibiting the biofilm of Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus; it retained almost entirely the ability to act against the bio-film of E. coli, L. monocytogenes, and S. aureus also when added to the bacterial growth medium instead of glucose. On the other hand, alfalfa and astragalus honey exhibited greater efficacy in acting against the biofilm of Acinetobacter baumannii. Indigo honey, whose biofilm-inhibitory action was fragile per se, was very effective when we added it to the culture broth of L. casei, whose supernatant exhibited an anti-biofilm activity against all the pathogenic strains tested. Conclusions: the five kinds of honey in different ways can improve some prebiotic properties and have an inhibitory biofilm effect when consumed.
Collapse
Affiliation(s)
- Florinda Fratianni
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (B.D.G.); (A.d.); (V.D.F.); (R.C.)
| | - Beatrice De Giulio
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (B.D.G.); (A.d.); (V.D.F.); (R.C.)
| | - Antonio d’Acierno
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (B.D.G.); (A.d.); (V.D.F.); (R.C.)
| | - Giuseppe Amato
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (B.D.G.); (A.d.); (V.D.F.); (R.C.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Vincenzo De Feo
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (B.D.G.); (A.d.); (V.D.F.); (R.C.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Raffaele Coppola
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (B.D.G.); (A.d.); (V.D.F.); (R.C.)
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via de Sanctis, 86100 Campobasso, Italy
| | - Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (B.D.G.); (A.d.); (V.D.F.); (R.C.)
| |
Collapse
|
17
|
Zhu L, Qiao L, Dou X, Song X, Chang J, Zeng X, Xu C. Lactobacillus casei ATCC 393 combined with vasoactive intestinal peptide alleviates dextran sodium sulfate-induced ulcerative colitis in C57BL/6 mice via NF-κB and Nrf2 signaling pathways. Biomed Pharmacother 2023; 165:115033. [PMID: 37379640 DOI: 10.1016/j.biopha.2023.115033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) which is related to an immunological imbalance of the intestinal mucosa. Many clinical evidences indicate probiotics supplementation appears to be effective and safe in patients with UC. Vasoactive intestinal peptide (VIP) is an endogenous neuropeptide with multiple physiological and pathological effects. In this study, we investigated the protective effect of the combination of Lactobacillus casei ATCC 393 (L. casei ATCC 393) with VIP on dextran sodium sulfate (DSS)-induced UC in mice and the potential mechanism. The results showed that, compared with the control group, DSS treatment significantly shortened the colon length, caused inflammation and oxidative stress, and further resulted in the intestinal barrier dysfunction and gut microbiota dysbiosis. In addition, intervention with L. casei ATCC 393, VIP or L. casei ATCC 393 combined with VIP significantly reduced UC disease activity index. However, compared with L. casei ATCC 393 or VIP, L. casei ATCC 393 combined with VIP effectively relieved symptoms of UC by regulating immune response, enhancing antioxidant capacity, and regulating nuclear factor kappa-B (NF-κB) and nuclear factor erythroid-derived-2-like 2 (Nrf2) signaling pathways. In conclusion, this study suggests that L. casei ATCC 393 combined with VIP can effectively relieve DSS-induced UC, which is a promising treatment strategy for UC.
Collapse
Affiliation(s)
- Lixu Zhu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaonan Zeng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
18
|
Zhang D, Shin H, Wang T, Zhao Y, Lee S, Lim C, Zhang S. Whole Genome Sequence of Lactiplantibacillus plantarum HOM3204 and Its Antioxidant Effect on D-Galactose-Induced Aging in Mice. J Microbiol Biotechnol 2023; 33:1030-1038. [PMID: 37311704 PMCID: PMC10468677 DOI: 10.4014/jmb.2209.09021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/03/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023]
Abstract
Lactiplantibacillus plantarum, previously named Lactobacillus plantarum, is a facultative, homofermentative lactic acid bacterium widely distributed in nature. Several Lpb. plantarum strains have been demonstrated to possess good probiotic properties, and Lpb. plantarum HOM3204 is a potential probiotic strain isolated from homemade pickled cabbage plants. In this study, whole-genome sequencing was performed to acquire genetic information and predict the function of HOM3204, which has a circular chromosome of 3,232,697 bp and two plasmids of 48,573 and 17,060 bp, respectively. Moreover, various oxidative stress-related genes were identified in the strain, and its antioxidant activity was evaluated in vitro and in vivo. Compared to reference strains, the intracellular cell-free extracts of Lpb. plantarum HOM3204 at a dose of 1010 colony-forming units (CFU)/ml in vitro exhibited stronger antioxidant properties, such as total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl radical scavenging rate, superoxide dismutase activity, and glutathione (GSH) content. Daily administration of 109 CFU Lpb. plantarum HOM3204 for 45 days significantly improved the antioxidant function by increasing the glutathione peroxidase activity in the whole blood and GSH concentration in the livers of D-galactose-induced aging mice. These results suggest that Lpb. plantarum HOM3204 can potentially be used as a food ingredient with good antioxidant properties.
Collapse
Affiliation(s)
- Di Zhang
- Coree Beijing Co., Ltd., No. A-7 Tianzhu West Rd., Tianzhu Airport Industrial Zone A, Shunyi District, Beijing 101312, P.R. China
| | | | - Tingting Wang
- Coree Beijing Co., Ltd., No. A-7 Tianzhu West Rd., Tianzhu Airport Industrial Zone A, Shunyi District, Beijing 101312, P.R. China
| | - Yaxin Zhao
- Health Food Function Testing Center, College of Applied Arts and Science, Beijing Union University, Beijing 100101, P.R. China
| | - Suwon Lee
- Coree Beijing Co., Ltd., No. A-7 Tianzhu West Rd., Tianzhu Airport Industrial Zone A, Shunyi District, Beijing 101312, P.R. China
- Dx&Vx Co., Ltd., Seoul 13201, Republic of Korea
| | - Chongyoon Lim
- Coree Beijing Co., Ltd., No. A-7 Tianzhu West Rd., Tianzhu Airport Industrial Zone A, Shunyi District, Beijing 101312, P.R. China
- Dx&Vx Co., Ltd., Seoul 13201, Republic of Korea
| | - Shiqi Zhang
- Coree Beijing Co., Ltd., No. A-7 Tianzhu West Rd., Tianzhu Airport Industrial Zone A, Shunyi District, Beijing 101312, P.R. China
| |
Collapse
|
19
|
Qadi WSM, Mediani A, Kasim ZM, Misnan NM, Sani NA, Jamar NH. Biological Characterization and Metabolic Variations among Cell-Free Supernatants Produced by Selected Plant-Based Lactic Acid Bacteria. Metabolites 2023; 13:849. [PMID: 37512555 PMCID: PMC10385473 DOI: 10.3390/metabo13070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this research was to assess the antibacterial and antioxidant properties as well as the variation in metabolites of the cell-free supernatant (CFS) produced by lactic acid bacteria (LAB) from local plants: Lactiplantibacillus plantarum ngue16, L. plantarum ng10, Enterococcus durans w3, and Levilactobacillus brevis w6. The tested strains exhibited inhibitory effects against pathogens, including Bacillus cereus, B. subtilis, Cronobacter sakazakii, Escherichia coli, Salmonella Typhimurium, and Staphylococcus aureus using the agar spot assay and well diffusion method. The CFS from all four strains displayed antibacterial activity against these pathogens with minimum inhibitory concentration (MIC) values ranging from 3.12 to 12.5 mg/mL and minimal bactericidal concentration (MBC) values ranging from 6.25 to 25.0 mg/mL. Moreover, the CFS demonstrated resilience within specific pH (3-8) and temperature (60-100 °C) ranges and lost its activity when treated with enzymes, such as Proteinase K and pepsin. Furthermore, the CFS exhibited antioxidant properties as evidenced by their ability to inhibit the formation of two radicals (1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) compared to the negative control, De Man, Rogosa, and Sharpe (MRS) broth. The use of proton-based nuclear magnetic resonance (1H-NMR) spectroscopy revealed the presence and quantification of 48 metabolites in both the CFS and MRS broths. Principal Component Analysis (PCA) effectively differentiated between CFS and MRS broth by identifying the specific metabolites responsible for the observed differences. The partial least squares (PLS) model demonstrated a significant correlation between the metabolites in the LAB supernatant and the tested antibacterial and antioxidant activities. Notably, anserine, GABA, acetic acid, lactic acid, uracil, uridine, propylene glycol, isopropanol, serine, histidine, and indol-3-lactate were identified as the compounds contributing the most to the highest antibacterial and antioxidant activities in the supernatant. These findings suggest that the LAB strains investigated have the potential to be utilized in the production of functional foods and the development of pharmaceutical products.
Collapse
Affiliation(s)
- Wasim S M Qadi
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia
| | - Zalifah Mohd Kasim
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia
| | - Norazlan Mohmad Misnan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Shah Alam 40170, Malaysia
| | - Norrakiah Abdullah Sani
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia
| | - Nur Hidayah Jamar
- Department of Biology and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia
| |
Collapse
|
20
|
Di Gianvincenzo F, Andersen CK, Filtenborg T, Mackie M, Ernst M, Ramos Madrigal J, Olsen JV, Wadum J, Cappellini E. Proteomic identification of beer brewing products in the ground layer of Danish Golden Age paintings. SCIENCE ADVANCES 2023; 9:eade7686. [PMID: 37224244 DOI: 10.1126/sciadv.ade7686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
The application of mass spectrometry-based proteomics to artworks provides accurate and detailed characterization of protein-based materials used in their production. This is highly valuable to plan conservation strategies and reconstruct the artwork's history. In this work, the proteomic analysis of canvas paintings from the Danish Golden Age led to the confident identification of cereal and yeast proteins in the ground layer. This proteomic profile points to a (by-)product of beer brewing, in agreement with local artists' manuals. The use of this unconventional binder can be connected to the workshops within the Royal Danish Academy of Fine Arts. The mass spectrometric dataset generated from proteomics was also processed with a metabolomics workflow. The spectral matches observed supported the proteomic conclusions, and, in at least one sample, suggested the use of drying oils. These results highlight the value of untargeted proteomics in heritage science, correlating unconventional artistic materials with local culture and practices.
Collapse
Affiliation(s)
- Fabiana Di Gianvincenzo
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Veˇna Pot 113, 1000 Ljubljana, Slovenia
| | - Cecil Krarup Andersen
- Royal Danish Academy, Conservation, Philip De Langes Allé 10, 3.15, 1435 Copenhagen, Denmark
| | - Troels Filtenborg
- National Gallery of Denmark, Sølvgade 48-50, 1307 Copenhagen, Denmark
| | - Meaghan Mackie
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Madeleine Ernst
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Jazmín Ramos Madrigal
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jørgen Wadum
- Centre for Art Technological Studies and Conservation, National Gallery of Denmark, Sølvgade 48-50, 1307 Copenhagen, Denmark
- Wadum Art Technological Studies, Åløkkevej 24, 2720 Vanløse, Denmark
- Nivaagaard Collection, Gammel Strandvej 2, 2990 Nivå, Denmark
| | - Enrico Cappellini
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| |
Collapse
|
21
|
Hu Y, Zhao Y, Jia X, Liu D, Huang X, Wang C, Zhu Y, Yue C, Deng S, Lyu Y. Lactic acid bacteria with a strong antioxidant function isolated from "Jiangshui," pickles, and feces. Front Microbiol 2023; 14:1163662. [PMID: 37293224 PMCID: PMC10246737 DOI: 10.3389/fmicb.2023.1163662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/26/2023] [Indexed: 06/10/2023] Open
Abstract
Excessive free radicals and iron death lead to oxidative damage, which is one of the main causes of aging and diseases. In this field of antioxidation, developing new, safe, and efficient antioxidants is the main research focus. Lactic acid bacteria (LAB) are natural antioxidants with good antioxidant activity and can regulate gastrointestinal microecological balance and immunity. In this study, 15 LAB strains from fermented foods ("Jiangshui" and pickles) or feces were evaluated in terms of their antioxidant attributes. Strains with strong antioxidant capacity were preliminarily screened by the following tests: 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical, superoxide anion radical scavenging capacity; ferrous ion chelating assay; hydrogen peroxide tolerance capacity. Then, the adhesion of the screened strains to the intestinal tract was examined using hydrophobic and auto-aggregation tests. The safety of the strains was analyzed based on their minimum inhibitory concentration and hemolysis, and 16S rRNA was used for molecular biological identification. Antimicrobial activity tests showed them probiotic function. The cell-free supernatant of selected strains were used to explore the protective effect against oxidative damage cells. The scavenging rate of DPPH, hydroxyl radicals, and ferrous ion-chelating of 15 strains ranged from 28.81-82.75%, 6.54-68.52%, and 9.46-17.92%, respectively, the scavenging superoxide anion scavenging activity all exceeded 10%. According to all the antioxidant-related tests, strains possessing high antioxidant activities J2-4, J2-5, J2-9, YP-1, and W-4 were screened, these five strains demonstrated tolerance to 2 mM hydrogen peroxide. J2-4, J2-5, and J2-9 were Lactobacillus fermentans and γ-hemolytic (non-hemolytic). YP-1 and W-4 were Lactobacillus paracasei and α-hemolytic (grass-green hemolytic). Although L. paracasei has been proven as a safe probiotic without hemolytic characteristics, the hemolytic characteristics of YP-1 and W-4 should be further studied. Due to the weak hydrophobicity and antimicrobial activity of J2-4, finally, we selected J2-5, J2-9 for cell experiment, J2-5 and J2-9 showed an excellent ability that resistant to oxidative damage by increasing SOD, CAT, T-AOC activity of 293T cells. Therefore, J2-5, and J2-9 strains from fermented foods "Jiangshui" could be used as potential antioxidants for functional food, health care, and skincare.
Collapse
Affiliation(s)
- Yue Hu
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'an, Shaanxi, China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yan Zhao
- Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Dan Liu
- Department of TCM, Sichuan Province People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, China
| | - Xinhe Huang
- Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Cheng Wang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yanhua Zhu
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Changwu Yue
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'an, Shaanxi, China
| | - Shanshan Deng
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yuhong Lyu
- Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan'an University, Yan'an, Shaanxi, China
| |
Collapse
|
22
|
Yang T, Fan X, Li D, Zhao T, Wu D, Liu Z, Long D, Li B, Huang X. High Antioxidant Capacity of Lacticaseibacillus paracasei TDM-2 and Pediococcus pentosaceus TCM-3 from Qinghai Tibetan Plateau and Their Function towards Gut Modulation. Foods 2023; 12:foods12091814. [PMID: 37174356 PMCID: PMC10178559 DOI: 10.3390/foods12091814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Probiotic supplementation is a key therapeutic strategy for promoting gut health and maintaining gut homeostasis by modulating functional microbiota. In this study, we isolated two lactic acid bacteria (LAB) strains, Pediococcus pentosaceus TCM-3 and Lacticaseibacillus paracasei TDM-2, from Qinghai-Tibetan plateau, and evaluated their probiotic properties and antioxidant bioactivity. In which, TDM-2 had higher T-AOC activity than either TCM-3 or LGG (4.10 μmol/mL vs. 3.68 and 3.53 μmol/mL, respectively, p < 0.05). These strains have shown high antioxidant activity compared to the LAB strains and were found to be acid and bile salt tolerant, confronting the safety issues of antibiotic resistance and the capability of surviving in simulated gastric and intestinal juices. In vitro fermentation experiments with human gut microbiota revealed significant differences in microbial community composition between samples supplemented with TCM-3 and TDM-2 and those without. The addition of these two strains resulted in an enrichment of beneficial taxa, such as the Pediococcus, Lactobacillus, and Clostridium_sensu_strictos at the genus level, and Firmicutes and Proteobacteria at the phylum level. Notably, the TCM-3 group exhibited higher short-chain fatty acid production than the TDM-2 group and untreated controls (acetic acid at 12 h: 4.54 mmol L-1 vs. 4.06 mmol L-1 and 4.00 mmol L-1; acetic acid at 24 h: 4.99 mmol L-1 vs. 4.90 mmol L-1 and 4.82 mmol L-1, p < 0.05). These findings demonstrate that LAB supplementation with high antioxidant capacity and probiotic properties can promote gut health by modulating functional microbiota and is enriching for beneficial taxa. Our study provides guidance for therapeutic strategies that use novel LAB strains to maintain gut homeostasis and functional microbiota modulation.
Collapse
Affiliation(s)
- Tingyu Yang
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Xueni Fan
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Diantong Li
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Tingting Zhao
- School of Public Health, Lanzhou University, Lanzhou 730033, China
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Dan Wu
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou 730033, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou 730033, China
| |
Collapse
|
23
|
Chakaroun RM, Olsson LM, Bäckhed F. The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease. Nat Rev Cardiol 2023; 20:217-235. [PMID: 36241728 DOI: 10.1038/s41569-022-00771-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 12/12/2022]
Abstract
Despite milestones in preventive measures and treatment, cardiovascular disease (CVD) remains associated with a high burden of morbidity and mortality. The protracted nature of the development and progression of CVD motivates the identification of early and complementary targets that might explain and alleviate any residual risk in treated patients. The gut microbiota has emerged as a sentinel between our inner milieu and outer environment and relays a modified risk associated with these factors to the host. Accordingly, numerous mechanistic studies in animal models support a causal role of the gut microbiome in CVD via specific microbial or shared microbiota-host metabolites and have identified converging mammalian targets for these signals. Similarly, large-scale cohort studies have repeatedly reported perturbations of the gut microbial community in CVD, supporting the translational potential of targeting this ecological niche, but the move from bench to bedside has not been smooth. In this Review, we provide an overview of the current evidence on the interconnectedness of the gut microbiome and CVD against the noisy backdrop of highly prevalent confounders in advanced CVD, such as increased metabolic burden and polypharmacy. We further aim to conceptualize the molecular mechanisms at the centre of these associations and identify actionable gut microbiome-based targets, while contextualizing the current knowledge within the clinical scenario and emphasizing the limitations of the field that need to be overcome.
Collapse
Affiliation(s)
- Rima Mohsen Chakaroun
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Lisa M Olsson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
24
|
Abbasi E, Basiri S, Shekarforoush SS, Gholamhosseini A. The efficacy of tragacanth gel incorporated with cell-free supernatants of Lactobacillus sakei and Lactobacillus curvatus for preserving Pacific white shrimp. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
25
|
Xu X, Qiao Y, Peng Q, Shi B. Probiotic Properties of Loigolactobacillus coryniformis NA-3 and In Vitro Comparative Evaluation of Live and Heat-Killed Cells for Antioxidant, Anticancer and Immunoregulatory Activities. Foods 2023; 12:foods12051118. [PMID: 36900635 PMCID: PMC10001366 DOI: 10.3390/foods12051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Some Latiactobacilli are often used as probiotics due to their functional activities, including antioxidant, anticancer and immunoregulation effect. Loigolactobacillus coryniformis NA-3 obtained from our laboratory is a promising probiotic according to the previous study. Coculture, the Oxford cup test and disk-diffusion methods were used to evaluate the probiotic properties and antibiotic resistance of L. coryniformis NA-3. The antioxidant activities of live and heat-killed L. coryniformis NA-3 were assessed via radicals' scavenging ability. The potential anticancer and immunoregulatory capacity was determined in vitro using cell lines. The results indicate that L. coryniformis NA-3 has antibacterial activity and cholesterol removal ability and is sensitive to most antibiotics. Dead L. coryniformis NA-3 can scavenge free radicals as well as live strains. Live L. coryniformis NA-3 can significantly inhibit the proliferation of colon cancer cells; however, dead cells cannot. After RAW 264.7 macrophages were treated with live and heat-killed L. coryniformis NA-3, the production of NO, IL-6, TNF-α and reactive oxygen species (ROS) was induced. The increased expression of inducible nitric oxide synthase (iNOS) in treated macrophages mediates the production of NO. In conclusion, L. coryniformis NA-3 showed potential probiotic properties, and the heat-killed strain also exhibited activities similar to those of live bacteria, suggesting the possible value of its further application in the food processing and pharmaceutical industries.
Collapse
|
26
|
Xu X, Qiao Y, Peng Q, Dia VP, Shi B. Probiotic activity of ropy Lactiplantibacillus plantarum NA isolated from Chinese northeast sauerkraut and comparative evaluation of its live and heat-killed cells on antioxidant activity and RAW 264.7 macrophage stimulation. Food Funct 2023; 14:2481-2495. [PMID: 36804706 DOI: 10.1039/d2fo03761k] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Lactic acid bacteria are known to have a positive impact on health and considered as functional supplements and additives. This study aimed to evaluate the probiotic properties of ropy Latilactobacillus isolated from Chinese northeast sauerkraut and to determine the antioxidant and immunoregulatory activities of its heat-killed cells compared to its live strains to assess its functional activity. After the analysis of the 16r DNA and phylogenetic tree, it was identified as a Lactiplantibacillus plantarum and named L. plantarum NA. L. plantarum NA was resistant to simulated gastrointestinal conditions in vitro. In addition, L. plantarum NA exhibited cholesterol degradation, antibiotic susceptibility, and antibacterial activity. Heat-killed L. plantarum NA exhibited antioxidant and immune-stimulating activities similar to live cells, which may be associated with the undamaged overall structure after heating. The results of antioxidant activity analysis suggested that both live and heat-killed L. plantarum NA possessed capacity for scavenging free radicals, including 2,2-diphenyl-1-picryl-hydrazyl (DPPH), 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), hydroxyl radicals and superoxide radicals. The ABTS scavenging activity of heat-killed cells (38%) was significantly higher than that of viable (19%) L. plantarum NA. Furthermore, RAW 264.7 macrophages treated with L. plantarum NA induced the production of nitric oxide, cytokines (IL-6 and TNF-α), and reactive oxygen species (ROS). The NO/iNOS signaling pathway could be activated by L. plantarum NA and promoted NO production. Both live and heat-killed cells had a potential impact on the immunomodulatory activity, with different dosages. These results suggest that the novel L. plantarum NA isolated from Chinese northeast sauerkraut could be useful as a probiotic strain and applied to functional food processing and pharmaceutical fields as a potential immunomodulator.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yu Qiao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Qing Peng
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Vermont Punongba Dia
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Bo Shi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
27
|
Kang MJ, Jeong H, Kim S, Shin J, Song Y, Lee BH, Park HG, Lee TH, Jiang HH, Han YS, Lee BG, Lee HJ, Park MJ, Park YS. Structural analysis and prebiotic activity of exopolysaccharide produced by probiotic strain Bifidobacterium bifidum EPS DA-LAIM. Food Sci Biotechnol 2023; 32:517-529. [PMID: 36911335 PMCID: PMC9992680 DOI: 10.1007/s10068-022-01213-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/03/2022] Open
Abstract
Exopolysaccharide (EPS)-producing Bifidobacterium bifidum EPS DA-LAIM was isolated from healthy human feces, the structure of purified EPS from the strain was analyzed, and its prebiotic activity was evaluated. The EPS from B. bifidum EPS DA-LAIM is a glucomannan-type heteropolysaccharide with a molecular weight of 407-1007 kDa, and its structure comprises 2-mannosyl, 6-mannosyl, and 2,6-mannosyl residues. The purified EPS promoted the growth of representative lactic acid bacteria and bifidobacterial strains. Bifidobacterium bifidum EPS DA-LAIM increased nitric oxide production in RAW 264.7 macrophage cells, indicating its immunostimulatory activity. Bifidobacterium bifidum EPS DA-LAIM also exhibited high gastrointestinal tract tolerance, gut adhesion ability, and antioxidant activity. These results suggest that EPS from B. bifidum EPS DA-LAIM is a potentially useful prebiotic material, and B. bifidum EPS DA-LAIM could be applied as a probiotic candidate. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01213-w.
Collapse
Affiliation(s)
- Min Joo Kang
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Huijin Jeong
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Suin Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Jaein Shin
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Youngbo Song
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Hyoung-Geun Park
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin, 17073 Republic of Korea
| | - Tae-Ho Lee
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin, 17073 Republic of Korea
| | - Hai-Hua Jiang
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin, 17073 Republic of Korea
| | - Young-Sun Han
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin, 17073 Republic of Korea
| | - Bong-Gyeong Lee
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin, 17073 Republic of Korea
| | - Ho-Jin Lee
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin, 17073 Republic of Korea
| | - Min-Ju Park
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin, 17073 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
28
|
Zhang X, Cao Z, Yang H, Wang Y, Wang W, Li S. Analysis of serum antioxidant capacity and gut microbiota in calves at different growth stages in Tibet. Front Microbiol 2023; 13:1089488. [PMID: 36798869 PMCID: PMC9927023 DOI: 10.3389/fmicb.2022.1089488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023] Open
Abstract
Introduction The hypoxic environment at high altitudes poses a major physiological challenge to animals, especially young animals, as it disturbs the redox state and induces intestinal dysbiosis. Information about its effects on Holstein calves is limited. Methods Here, serum biochemical indices and next-generation sequencing were used to explore serum antioxidant capacity, fecal fermentation performance, and fecal microbiota in Holstein calves aged 1, 2, 3, 4, 5, and 6 months in Tibet. Results and Discussion Serum antioxidant capacity changed with age, with the catalase and malondialdehyde levels significantly decreasing (p < 0.05), and superoxide dismutase levels significantly increasing (p < 0.05) with age. No significant differences (p > 0.05) in total volatile fatty acid levels were noted between the groups. In all groups, Firmicutes, Bacteroidetes, and Actinobacteria were the three most dominant phyla in the gut. Gut microbial alpha diversity significantly increased (p < 0.05) with age. Principal coordinate analysis plot based on Bray-Curtis dissimilarity revealed significant differences (p = 0.001) among the groups. Furthermore, the relative abundance of various genera changed dynamically with age, and the serum antioxidant capacity was associated with certain gut bacteria. The study provides novel insights for feeding Holstein calves in high-altitude regions.
Collapse
|
29
|
Mendonça AA, Pinto-Neto WDP, da Paixão GA, Santos DDS, De Morais MA, De Souza RB. Journey of the Probiotic Bacteria: Survival of the Fittest. Microorganisms 2022; 11:95. [PMID: 36677387 PMCID: PMC9861974 DOI: 10.3390/microorganisms11010095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
This review aims to bring a more general view of the technological and biological challenges regarding production and use of probiotic bacteria in promoting human health. After a brief description of the current concepts, the challenges for the production at an industrial level are presented from the physiology of the central metabolism to the ability to face the main forms of stress in the industrial process. Once produced, these cells are processed to be commercialized in suspension or dried forms or added to food matrices. At this stage, the maintenance of cell viability and vitality is of paramount for the quality of the product. Powder products requires the development of strategies that ensure the integrity of components and cellular functions that allow complete recovery of cells at the time of consumption. Finally, once consumed, probiotic cells must face a very powerful set of physicochemical mechanisms within the body, which include enzymes, antibacterial molecules and sudden changes in pH. Understanding the action of these agents and the induction of cellular tolerance mechanisms is fundamental for the selection of increasingly efficient strains in order to survive from production to colonization of the intestinal tract and to promote the desired health benefits.
Collapse
Affiliation(s)
- Allyson Andrade Mendonça
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Walter de Paula Pinto-Neto
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Giselle Alves da Paixão
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| | - Dayane da Silva Santos
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Marcos Antonio De Morais
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Rafael Barros De Souza
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| |
Collapse
|
30
|
Zhou Y, Gong W, Xu C, Zhu Z, Peng Y, Xie C. Probiotic assessment and antioxidant characterization of Lactobacillus plantarum GXL94 isolated from fermented chili. Front Microbiol 2022; 13:997940. [PMID: 36466645 PMCID: PMC9712218 DOI: 10.3389/fmicb.2022.997940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/25/2022] [Indexed: 10/03/2023] Open
Abstract
Oxidative stress is caused by an imbalance between prooxidants and antioxidants, which is the cause of various chronic human diseases. Lactic acid bacteria (LAB) have been considered as an effective antioxidant to alleviate oxidative stress in the host. To obtain bacterium resources with good antioxidant properties, in the present study, 113 LAB strains were isolated from 24 spontaneously fermented chili samples and screened by tolerance to hydrogen peroxide (H2O2). Among them, Lactobacillus plantarum GXL94 showed the best antioxidant characteristics and the in vitro antioxidant activities of this strain was evaluated extensively. The results showed that L. plantarum GXL94 can tolerate hydrogen peroxide up to 22 mM, and it could normally grow in MRS with 5 mM H2O2. Its fermentate (fermented supernatant, intact cell and cell-free extract) also had strong reducing capacities and various free radical scavenging capacities. Meanwhile, eight antioxidant-related genes were found to up-regulate with varying degrees under H2O2 challenge. Furthermore, we evaluated the probiotic properties by using in vitro assessment. It was showed that GXL94 could maintain a high survival rate at pH 2.5% or 2% bile salt or 8.0% NaCl, live through simulated gastrointestinal tract (GIT) to colonizing the GIT of host, and also show higher abilities of auto-aggregation and hydrophobicity. Additionally, the usual antibiotic susceptible profile and non-hemolytic activity indicated the safety of the strain. In conclusion, this study demonstrated that L. plantarum GXL94 could be a potential probiotic candidate for producing functional foods with antioxidant properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
31
|
Blazheva D, Mihaylova D, Averina OV, Slavchev A, Brazkova M, Poluektova EU, Danilenko VN, Krastanov A. Antioxidant Potential of Probiotics and Postbiotics: A Biotechnological Approach to Improving Their Stability. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422090058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Dicks LMT, Vermeulen W. Do Bacteria Provide an Alternative to Cancer Treatment and What Role Does Lactic Acid Bacteria Play? Microorganisms 2022; 10:microorganisms10091733. [PMID: 36144335 PMCID: PMC9501580 DOI: 10.3390/microorganisms10091733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide. According to 2022 statistics from the World Health Organization (WHO), close to 10 million deaths have been reported in 2020 and it is estimated that the number of cancer cases world-wide could increase to 21.6 million by 2030. Breast, lung, thyroid, pancreatic, liver, prostate, bladder, kidney, pelvis, colon, and rectum cancers are the most prevalent. Each year, approximately 400,000 children develop cancer. Treatment between countries vary, but usually includes either surgery, radiotherapy, or chemotherapy. Modern treatments such as hormone-, immuno- and antibody-based therapies are becoming increasingly popular. Several recent reports have been published on toxins, antibiotics, bacteriocins, non-ribosomal peptides, polyketides, phenylpropanoids, phenylflavonoids, purine nucleosides, short chain fatty acids (SCFAs) and enzymes with anticancer properties. Most of these molecules target cancer cells in a selective manner, either directly or indirectly through specific pathways. This review discusses the role of bacteria, including lactic acid bacteria, and their metabolites in the treatment of cancer.
Collapse
|
33
|
Biswas S, Ray Banerjee E. Probiotic treatment of inflammatory bowel disease: Its extent and intensity. World J Immunol 2022; 12:15-24. [DOI: 10.5411/wji.v12.i2.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/09/2022] [Accepted: 08/17/2022] [Indexed: 02/05/2023] Open
Abstract
Free radicals (reactive oxygen species, superoxides and hydroxyl radicals) lead to the development of oxidative stress because of imbalance in the amount of antioxidants. Continued development of oxidative stress leads to chronic diseases in humans. The instability in the antioxidant activities and accumulation of oxidative stress due to free radicals may occur in diseases like inflammatory bowel disease (IBD). Antioxidants are substances that inhibit or delay the mechanism of oxidation of molecules mediated by free radicals and also transform into lesser-active derivatives. Probiotics are defined as live microorganisms that show beneficial effects on inflamed intestine and balance the inflammatory immune responses in the gut. Probiotic strains have been reported to scavenge hydroxyl radicals and superoxide anions that are abundantly produced during oxidative stress. The most widely studied probiotic strains are Streptococcus, Bifidobacterium and Lactobacillus. Probiotics cultured in broth have shown some amount of antioxidant activities. Fermented milk and soy milk, which possess starter microorganisms (probiotics), tends to increase the antioxidant activities many-fold. This review aims to discuss the in vivo and in vitro antioxidant activities of specific probiotics with various assays with respect to IBD.
Collapse
Affiliation(s)
- Saheli Biswas
- Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Ena Ray Banerjee
- Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| |
Collapse
|
34
|
Bourebaba Y, Marycz K, Mularczyk M, Bourebaba L. Postbiotics as potential new therapeutic agents for metabolic disorders management. Biomed Pharmacother 2022; 153:113138. [PMID: 35717780 DOI: 10.1016/j.biopha.2022.113138] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
The prevalence of obesity, diabetes, non-alcoholic fatty liver disease, and related metabolic disorders has been steadily increasing in the past few decades. Apart from the establishment of caloric restrictions in combination with improved physical activity, there are no effective pharmacological treatments for most metabolic disorders. Many scientific-studies have described various beneficial effects of probiotics in regulating metabolism but others questioned their effectiveness and safety. Postbiotics are defined as preparation of inanimate microorganisms, and/or their components, which determine their safety of use and confers a health benefit to the host. Additionally, unlike probiotics postbiotics do not require stringent production/storage conditions. Recently, many lines of evidence demonstrated that postbiotics may be beneficial in metabolic disorders management via several potential effects including anti-inflammatory, antibacterial, immunomodulatory, anti-carcinogenic, antioxidant, antihypertensive, anti-proliferative, and hypocholesterolaemia properties that enhance both the immune system and intestinal barrier functions by acting directly on specific tissues of the intestinal epithelium, but also on various organs or tissues. In view of the many reports that demonstrated the high biological activity and safety of postbiotics, we summarized in the present review the current findings reporting the beneficial effects of various probiotics derivatives for the management of metabolic disorders and related alterations.
Collapse
Affiliation(s)
- Yasmina Bourebaba
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; Department of Medicine and Epidemiology, UC Davis School of Veterinary Medicine, Davis, CA 95516, USA
| | - Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland.
| |
Collapse
|
35
|
Kahraman M, Karahan AG, Terzioğlu ME. Characterization of Some Microorganisms from Human Stool Samples and Determination of Their Effects on CT26 Colorectal Carcinoma Cell Line. Curr Microbiol 2022; 79:225. [PMID: 35704105 DOI: 10.1007/s00284-022-02915-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
Abstract
The present study aimed to isolate and identify the potential probiotic, pathobiont, and pathogenic microorganisms in the stool samples of 12 healthy individuals and evaluate their in vitro effects on cancer formation. A total of 83 strains were isolated from the stool samples and identified using MALDI-Biotyper. Fourteen of the isolates were identified as Candida spp., three isolates were identified as Cryptococcus neoformans, 55 isolates were identified as lactic acid bacteria, and the remaining isolates belonged to different 11 bacterial genera. Important microbial properties for cancer prevention and some probiotic properties were examined. All strains maintained their viability under acidic conditions and in media containing bile salts. Of the bacterial strains, 62.5% were resistant to ampicillin, chloramphenicol, gentamicin, erythromycin, kanamycin, penicillin, streptomycin, tetracycline, and vancomycin. All yeast strains were resistant to ketoconazole and susceptible to nystatin. The susceptibility of the strains to fluconazole, voriconazole, amphotericin B, and itraconazole varied. Fifty-nine percent of the strains produced EPS and 21.7% showed proteolytic activity (PA). Of the strains, 15.7% both produced exopolysaccharides (EPS) and had PA. The antioxidant activity (AOA) varied depending on the strains. The pathobiont and pathogenic microorganisms promoted tumor formation, while potential probiotic microorganisms had a suppressive effect on tumor formation (P > 0.01). One yeast (Candida kefyr MK17) and three lactic acid bacteria strains (Lacticaseibacillus paracasei MK73, Lactiplantibacillus plantarum MK55, Limosilactobacillus mucosae MK45) have superior potential thanks to their anticarcinogenic properties as well as tolerance to gastrointestinal tract conditions. Stool samples of each individual contain various potential probiotic, pathobiont, and pathogenic microorganisms.
Collapse
Affiliation(s)
- Münevver Kahraman
- Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey
| | - Aynur Gül Karahan
- Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey.
| | | |
Collapse
|
36
|
Yang J, Dong C, Ren F, Xie Y, Liu H, Zhang H, Jin J. Lactobacillus paracasei M11-4 isolated from fermented rice demonstrates good antioxidant properties in vitro and in vivo. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3107-3118. [PMID: 34786708 DOI: 10.1002/jsfa.11652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/17/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Probiotics are defined as microorganisms that can exert health benefits for the host. Among the recognized probiotics, Lactobacillus paracasei are one of the most frequently used probiotics in humans. The L. paracasei strain M11-4, isolated from fermented rice (which could ferment soymilk within a short curd time) and fermented soymilk presented high viability, acceptable flavor, and antioxidant activity, which revealed that the strain maybe have a potential antioxidant value. Therefore, it is necessary to further explore the antioxidant activity of L. paracasei strain M11-4. RESULTS The radical scavenging activities, lipid peroxidation inhibition, and reducing power of L. paracasei M11-4 were the highest in the fermentation culture without cells, whereas the activities of other antioxidant enzymes of L. paracasei M11-4 were high in the cell-free extract and bacterial suspension. Moreover, L. paracasei M11-4 exerted its antioxidant effect by upregulating the gene expression of its antioxidant enzymes - the thioredoxin and glutathione systems - when hydrogen peroxide existed. Supplementation of rats with L. paracasei M11-4 effectively alleviated d-galactose-induced oxidative damage in the liver and serum and prevented d-galactose-induced changes to intestinal microbiota. Supplementation with L. paracasei M11-4 also reduced the elevated expression of thioredoxin and glutathione system genes induced by d-galactose. CONCLUSION L. paracasei M11-4 has good antioxidant properties both in vitro and in vivo, and its antioxidant mechanism was studied at the molecular level. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianjun Yang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Chenyang Dong
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yuanhong Xie
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Hui Liu
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Hongxing Zhang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Junhua Jin
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| |
Collapse
|
37
|
Paul P, Kaul R, Abdellatif B, Arabi M, Upadhyay R, Saliba R, Sebah M, Chaari A. The Promising Role of Microbiome Therapy on Biomarkers of Inflammation and Oxidative Stress in Type 2 Diabetes: A Systematic and Narrative Review. Front Nutr 2022; 9:906243. [PMID: 35711547 PMCID: PMC9197462 DOI: 10.3389/fnut.2022.906243] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background One in 10 adults suffer from type 2 diabetes (T2D). The role of the gut microbiome, its homeostasis, and dysbiosis has been investigated with success in the pathogenesis as well as treatment of T2D. There is an increasing volume of literature reporting interventions of pro-, pre-, and synbiotics on T2D patients. Methods Studies investigating the effect of pro-, pre-, and synbiotics on biomarkers of inflammation and oxidative stress in T2D populations were extracted from databases such as PubMed, Scopus, Web of Science, Embase, and Cochrane from inception to January 2022. Results From an initial screening of 5,984 hits, 47 clinical studies were included. Both statistically significant and non-significant results have been compiled, analyzed, and discussed. We have found various promising pro-, pre-, and synbiotic formulations. Of these, multistrain/multispecies probiotics are found to be more effective than monostrain interventions. Additionally, our findings show resistant dextrin to be the most promising prebiotic, followed closely by inulin and oligosaccharides. Finally, we report that synbiotics have shown excellent effect on markers of oxidative stress and antioxidant enzymes. We further discuss the role of metabolites in the resulting effects in biomarkers and ultimately pathogenesis of T2D, bring attention toward the ability of such nutraceuticals to have significant role in COVID-19 therapy, and finally discuss few ongoing clinical trials and prospects. Conclusion Current literature of pro-, pre- and synbiotic administration for T2D therapy is promising and shows many significant results with respect to most markers of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Pradipta Paul
- Division of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ridhima Kaul
- Division of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Basma Abdellatif
- Division of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Maryam Arabi
- Division of Premedical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Rohit Upadhyay
- Department of Medicine—Nephrology and Hypertension, Tulane University, School of Medicine, New Orleans, LA, United States
| | - Reya Saliba
- Distributed eLibrary, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Majda Sebah
- Division of Premedical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali Chaari
- Division of Premedical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
38
|
Cai J, Bai J, Luo B, Ni Y, Tian F, Yan W. In vitro evaluation of probiotic properties and antioxidant activities of Bifidobacterium strains from infant feces in the Uyghur population of northwestern China. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01670-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Purpose
Bifidobacterium is an important probiotic used in food and medicine production. The probiotic properties of bifidobacteria are strain specific, so it is necessary to evaluate the probiotic properties of bifidobacteria isolated from specific populations, especially when developing products suitable for specific populations. The objective of this study was to evaluate the probiotic potential and safety of bifidobacteria isolated from healthy Uyghur infants from northwestern China.
Methods
In this study, antimicrobial activity, antibiotic sensitivity, hemolytic, acid and bile tolerance, hydrophobicity, co-aggregation, auto-aggregation, and antioxidant activity were evaluated.
Results
Based on antagonistic activity spectrum against seven intestinal pathogenic bacteria, 14 excellent strains were initially selected. Among 14 strains, four bifidobacteria strains (BF17-4, BF52-1, BF87-3, and BF88-5) were superior to strain Lactobacillus rhamnosus GG in cell surface hydrophobicity and auto-aggregation percentages and close to strain GG in co-aggregation with Escherichia coli EPEC O127: K63 (CICC 10411). The antioxidant activities of each of the 14 bifidobacteria strains varied with the cell components. Most of the strains were sensitive to all the antimicrobials tested, except kanamycin and amikacin.
Conclusion
BF17-4 and BF52-1 are good candidates for further in vivo studies and further used in functional foods.
Collapse
|
39
|
Efficacy of postbiotics against free radicals and UV radiation. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Wang J, Pu Y, Zeng Y, Chen Y, Zhao W, Niu L, Chen B, Yang Z, Wu L, Pan K, Jing B, Zeng D, Ni X. Multi-functional Potential of Five Lactic Acid Bacteria Strains Derived from Giant Panda (Ailuropoda melanoleuca). Probiotics Antimicrob Proteins 2022; 15:668-681. [PMID: 35000110 DOI: 10.1007/s12602-021-09881-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
The multi-functional properties of lactic acid bacteria (LAB) on host health have been a popular research topic. The aim of present study was to assess the multi-functional potential of five LAB strains isolated from giant panda. In this study, we analyzed five giant panda LAB strains (Weissella confuse WJ202003 (W3), WJ202009 (W9), WJ202021 (W21), BSP201703 (X3); Lactiplantibacillus plantarum BSGP201683 (G83)) and found that they exhibited rapid growth as well as strong acid production capacity. The five LAB strains possessed high cell surface hydrophobicity to the four tested solvents (xylene, hexadecane, chloroform, ethyl acetate; except strain W9), auto-aggregation ability, co-aggregation ability with three pathogens (Escherichia coli, Enterotoxigenic Escherichia coli, Salmonella), adhesion ability to Caco-2 cell line, and strongly biofilm formation ability, suggesting an adhesion property. As investigated for their antioxidative potential, all the strains showed good tolerance to H2O2, high scavenging ability against 1, 1-diphenyl-2-picrylhydrazyl (DPPH), and hydroxyl (OH-), and reduction ability. Furthermore, the five LAB strains could produce multiple probiotic substances, including exopolysaccharide (EPS), gamma-aminobutyric acid (GABA), bile salt hydrolase (BSH), cellulase (only strain G83), and protease (except strain X3), which was the first to report the production of EPS, GABA, BSH, cellulase, and protease in giant panda-derived LAB strain. These results demonstrated that strains W3, W9, W21, X3, and G83 had multi-functional potential and could be utilized as potential probiotics for giant panda.
Collapse
Affiliation(s)
- Jie Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Pu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, Sichuan, China
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yingyi Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lili Niu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, Sichuan, China
| | - Benhao Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zihan Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liqian Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
41
|
Peng S, Wang X, Wang Y, Lv T, Zhao H, Wang Y, Zhu S, Qiu H, Zeng J, Dai Q, Lin Q. Effects of Dietary Bacillus and Non-starch Polysaccharase on the Intestinal Microbiota and the Associated Changes on the Growth Performance, Intestinal Morphology, and Serum Antioxidant Profiles in Ducks. Front Microbiol 2021; 12:786121. [PMID: 34956153 PMCID: PMC8692731 DOI: 10.3389/fmicb.2021.786121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Given the desirable results of using probiotics and enzyme preparations as feed supplements in poultry health, here, the effects of Bacillus and Non-starch Polysaccharase (NSPase) on the growth performance, serum antioxidant profiles, and gut microbial communities of early stage ducks is investigated. A total of 400 Zhijiang ducks (of similar body weight and 1 day age) was selected and randomly divided into four groups. The feeding period was 28 days. Each group contained 10 replicates of 10 birds. Control group (I) was fed with basal diet, while treatment groups II to IV were fed, respectively, with 150 mg/kg NSPases, 25 mg/kg Bacillus probiotics, and 150 mg/kg NSPases + 25 mg/kg Bacillus probiotics in their basal diet. The results demonstrated that dietary Bacillus (25 mg/kg) increased average final weight, average daily gain (ADG), and decreased the malonaldehyde (MDA) in birds (P < 0.05). Dietary Bacillus (25 mg/kg) and NSPases + Bacillus (150 mg/kg + 25 mg/kg) presented much higher glutathione (GSH) and activities of superoxide dismutase (SOD) in birds (P < 0.05). Additionally, as revealed by β-diversity indices and analysis of similarities, dietary NSPases + Bacillus could affect the ileum microbial abundances and diversities at the genera level (P < 0.05), but it had no effect on the caecal microbiota. Also, 16S rRNA sequencing revealed that dietary Bacillus and NSPases + Bacillus increased the populations of Ruminococcaceae genera in the cecum (P < 0.05), and S24-7_group and Lactobacillus genera in the ileum (P < 0.05). However, dietary NSPases and Bacillus alone and in combination could significantly decrease the content of Bacteroides in the ileum (P < 0.05). According to Spearman correlation analysis, 7 ilea bacterial microbiomes (S24-7 group, Lactobacillus, Subgroup 2, Subgroup 1, Kitasatospora, Candidatus Solibacter, and Akkermansia) were positively correlated with SOD (P < 0.05). In conclusion, Bacillus (25 mg/kg) and NSPases (150 mg/kg) included in the diet could efficiently enhance the growth performance by altered gut microbiota composition at the genera level and antioxidant indices of ducks.
Collapse
Affiliation(s)
- Simin Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Xin Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yuyu Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Tuo Lv
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Siyuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Huajiao Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jianguo Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qiuzhong Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
42
|
Jang WJ, Kim CE, Jeon MH, Lee SJ, Lee JM, Lee EW, Hasan MT. Characterization of Pediococcus acidilactici FS2 isolated from Korean traditional fermented seafood and its blood cholesterol reduction effect in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
43
|
Physicochemical and Functional Characterization of Newly Designed Biopolymeric-Based Encapsulates with Probiotic Culture and Charantin. Foods 2021; 10:foods10112677. [PMID: 34828958 PMCID: PMC8620448 DOI: 10.3390/foods10112677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/02/2023] Open
Abstract
The identification of novel sources of synbiotic agents with desirable functionality is an emerging concept. In the present study, novel encapsulates containing probiotic L. acidophilus LA-05® (LA) and Charantin (CT) were produced by freeze-drying technique using pure Whey Protein Isolate (WPI), pure Maltodextrin (MD), and their combination (WPI + MD) in 1:1 core ratio, respectively. The obtained microparticles, namely WPI + LA + CT, MD + LA + CT, and WPI + MD + LA + CT were tested for their physicochemical properties. Among all formulations, combined carriers (WPI + MD) exhibited the highest encapsulation yields for LA (98%) and CT (75%). Microparticles showed a mean d (4, 3) ranging from 50.393 ± 1.26 to 68.412 ± 3.22 μm. The Scanning Electron Microscopy revealed uniformly amorphous and glass-like structures, with a noticeably reduced porosity when materials were combined. In addition, Fourier Transform Infrared spectroscopy highlighted the formation of strong hydrogen bonds supporting the interactions between the carrier materials (WPI and MD) and CT. In addition, the thermal stability of the combined WPI + MD was superior to that of pure WPI and pure MD, as depicted by the Thermogravimetric and Differential Scanning Calorimetry analysis. More interestingly, co-encapsulation with CT enhanced LA viability (8.91 ± 0.3 log CFU/g) and Cells Surface Hydrophobicity (82%) in vitro, in a prebiotic-like manner. Correspondingly, CT content was heightened when co-encapsulated with LA. Besides, WPI + MD + LA + CT microparticles exhibited higher antioxidant activity (79%), α-amylase inhibitory activity (83%), and lipase inhibitory activity (68%) than single carrier ones. Furthermore, LA viable count (7.95 ± 0.1 log CFU/g) and CT content (78%) were the highest in the blended carrier materials after 30 days of storage at 4 °C. Synbiotic microparticle WPI + MD + LA + CT represents an effective and promising approach for the co-delivery of probiotic culture and bioactive compounds in the digestive tract, with enhanced functionality and storage properties.
Collapse
|
44
|
Wang Y, Shen C, Huo K, Cai D, Zhao G. Antioxidant activity of yeast mannans and their growth-promoting effect on Lactobacillus strains. Food Funct 2021; 12:10423-10431. [PMID: 34596192 DOI: 10.1039/d1fo01470f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Yeast mannans from Saccharomyces cerevisiae (123.2 kDa, 40.5 kDa and 21.3 kDa) were prepared. The scavenging abilities of Fe2+, OH˙, and O2˙- and protective capacities against lipid peroxidation and oxidative DNA damage increased with the reduction of the molecular weights of yeast mannans. The highest scavenging abilities of Fe2+, OH˙ and O2˙- (25.32%, 70.8%, and 61.5%) were observed with YM-90, and it showed an anti-lipid peroxidation capacity of 65.82%, which was much stronger than that of vitamin C (VC), with a thiobarbituric acid-reactive substance (TBARS) inhibition rate of 80.41%. However, the highest DPPH scavenging rate (88.7%) was exhibited by YM-30. In addition, the growth-promoting effect of yeast mannans on Lactobacillus strains was further confirmed, and a 54.2% increment of Lactobacillus plantarum ZWR5 cell viability was achieved by YM-90. The results indicated the potential industrial applications of this yeast mannan technology in therapeutic and nutraceutical production.
Collapse
Affiliation(s)
- Yong Wang
- Fermentation Technology Innovation Center of Hebei Province, College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China.
| | - Chongyu Shen
- Fermentation Technology Innovation Center of Hebei Province, College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China.
| | - Kai Huo
- Fermentation Technology Innovation Center of Hebei Province, College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China.
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Guoqun Zhao
- Fermentation Technology Innovation Center of Hebei Province, College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China.
| |
Collapse
|
45
|
Fuenzalida C, Dufeu MS, Poniachik J, Roblero JP, Valenzuela-Pérez L, Beltrán CJ. Probiotics-Based Treatment as an Integral Approach for Alcohol Use Disorder in Alcoholic Liver Disease. Front Pharmacol 2021; 12:729950. [PMID: 34630107 PMCID: PMC8497569 DOI: 10.3389/fphar.2021.729950] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) is one of the leading causes of morbidity among adults with alcohol use disorder (AUD) worldwide. Its clinical course ranges from steatosis to alcoholic hepatitis, progressing to more severe forms of liver damage, such as cirrhosis and hepatocellular carcinoma. The pathogenesis of ALD is complex and diverse elements are involved in its development, including environmental factors, genetic predisposition, the immune response, and the gut-liver axis interaction. Chronic alcohol consumption induces changes in gut microbiota that are associated with a loss of intestinal barrier function and inflammatory responses which reinforce a liver damage progression triggered by alcohol. Alcohol metabolites such as acetaldehyde, lipid peroxidation-derived aldehyde malondialdehyde (MDA), and protein-adducts act as liver-damaging hepatotoxins and potentiate systemic inflammation. Additionally, ethanol causes direct damage to the central nervous system (CNS) by crossing the blood-brain barrier (BBB), provoking oxidative stress contributing to neuroinflammation. Overall, these processes have been associated with susceptibility to depression, anxiety, and alcohol craving in ALD. Recent evidence has shown that probiotics can reverse alcohol-induced changes of the microbiota and prevent ALD progression by restoring gut microbial composition. However, the impact of probiotics on alcohol consumption behavior has been less explored. Probiotics have been used to treat various conditions by restoring microbiota and decreasing systemic and CNS inflammation. The results of some studies suggest that probiotics might improve mental function in Alzheimer’s, autism spectrum disorder, and attenuated morphine analgesic tolerance. In this sense, it has been observed that gut microbiota composition alterations, as well as its modulation using probiotics, elicit changes in neurotransmitter signals in the brain, especially in the dopamine reward circuit. Consequently, it is not difficult to imagine that a probiotics-based complementary treatment to ALD might reduce disease progression mediated by lower alcohol consumption. This review aims to present an update of the pathophysiologic mechanism underlying the microbiota-gut-liver-brain axis in ALD, as well as to provide evidence supporting probiotic use as a complementary therapy to address alcohol consumption disorder and its consequences on liver damage.
Collapse
Affiliation(s)
- Catalina Fuenzalida
- Laboratory of Inmunogastroenterology, Gastroenterology Unit, Medicine Department, Hospital Clínico Universidad de Chile, Santiago, Chile.,Medicine Faculty, Universidad de Chile, Santiago, Chile
| | - María Soledad Dufeu
- Laboratory of Inmunogastroenterology, Gastroenterology Unit, Medicine Department, Hospital Clínico Universidad de Chile, Santiago, Chile.,Medicine Faculty, Universidad de Chile, Santiago, Chile
| | - Jaime Poniachik
- Gastroenterology Unit, Medicine Department, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Juan Pablo Roblero
- Gastroenterology Unit, Medicine Department, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Lucía Valenzuela-Pérez
- Laboratory of Inmunogastroenterology, Gastroenterology Unit, Medicine Department, Hospital Clínico Universidad de Chile, Santiago, Chile.,Medicine Faculty, Universidad de Chile, Santiago, Chile.,School of Veterinary Medicine, Science Faculty, Universidad Mayor, Santiago, Chile
| | - Caroll Jenny Beltrán
- Laboratory of Inmunogastroenterology, Gastroenterology Unit, Medicine Department, Hospital Clínico Universidad de Chile, Santiago, Chile.,Medicine Faculty, Universidad de Chile, Santiago, Chile
| |
Collapse
|
46
|
Ray M, Hor P, Singh SN, Mondal KC. Multipotent antioxidant and antitoxicant potentiality of an indigenous probiotic Bifidobacterium sp. MKK4. Journal of Food Science and Technology 2021; 58:4795-4804. [PMID: 34629544 DOI: 10.1007/s13197-021-04975-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 01/16/2023]
Abstract
Probiotic bacteria are now becoming an effective natural medicine for alleviating many non-communicable lifestyle-related diseases. The present study was conducted to evaluate the antioxidant and antitoxicant properties of a foodborne probiotic Bifidobacterium sp. MKK4 and its rice fermented beverage. The extracts of culture broth, whole cells, fermented beverage, and it's heat-inactivated counterparts subjected to in vitro antioxidant/antiradical assays by DPPH, ABTS, and FRAP analysis. Except for heat-inactivated states, all samples exhibited strong antioxidant activity. In the experimental rat model, both Bifidobacterium sp. MKK4 and its rice fermented beverage significantly prevented arsenic toxicity by inducing a higher level of superoxide dismutase (SOD), catalase (CAT), reduced glutathione and preventing lipid peroxidation (LPO) and DNA fragmentation, and transmembrane mitochondrial potential. Besides, the organism supported systematic protection by improving the level of serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, alkaline phosphatase, lactate dehydrogenase, C-reactive protein, urea, creatinine, and uric acid. The inherent antioxidant nature of the isolate can be exploited as an ingredient in functional food and an effective antidote against arsenic toxicity.
Collapse
Affiliation(s)
- Mousumi Ray
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102 India
| | - Papan Hor
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102 India
| | - Som Nath Singh
- Defence Institute of Physiology & Allied Sciences, DRDO, New Delhi, Delhi India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102 India
| |
Collapse
|
47
|
Vitheejongjaroen P, Kanthawang P, Loison F, Jaisin Y, Pachekrepapol U, Taweechotipatr M. Antioxidant activity of Bifidobacterium animalis MSMC83 and its application in set-style probiotic yoghurt. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Averina OV, Poluektova EU, Marsova MV, Danilenko VN. Biomarkers and Utility of the Antioxidant Potential of Probiotic Lactobacilli and Bifidobacteria as Representatives of the Human Gut Microbiota. Biomedicines 2021; 9:1340. [PMID: 34680457 PMCID: PMC8533434 DOI: 10.3390/biomedicines9101340] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Lactobacilli and bifidobacteria are an important part of human gut microbiota. Among numerous benefits, their antioxidant properties are attracting more and more attention. Multiple in vivo and in vitro studies have demonstrated that lactobacilli and bifidobacteria, along with their cellular components, possess excellent antioxidant capacity, which provides a certain degree of protection to the human body against diseases associated with oxidative stress. Recently, lactobacilli and bifidobacteria have begun to be considered as a new source of natural antioxidants. This review summarizes the current state of research on various antioxidant properties of lactobacilli and bifidobacteria. Special emphasis is given to the mechanisms of antioxidant activity of these bacteria in the human gut microbiota, which involve bacterial cell components and metabolites. This review is also dedicated to the genes involved in the antioxidant properties of lactobacilli and bifidobacteria strains as indicators of their antioxidant potential in human gut microbiota. Identification of the antioxidant biomarkers of the gut microbiota is of great importance both for creating diagnostic systems for assessing oxidative stress and for choosing strategies aimed at restoring the normal functioning of the microbiota and, through it, restoring human health. In this review, the practical application of probiotic strains with proven antioxidant properties to prevent oxidative stress is also considered.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
| | - Mariya V. Marsova
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
- Institute of Ecology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
49
|
Wu LJ, Long L, Sun JY, Bu LL, Cao JL, Luo Y, Liu HJ, Wu Y, Meng X. Exploring the antioxidant effect of Lactobacillus plantarum SCS2 on mice with type 2 diabetes. J Food Biochem 2021; 45:e13781. [PMID: 34278586 DOI: 10.1111/jfbc.13781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/17/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to evaluate the antioxidant effect of Lactobacillus plantarum SCS2 (L. plantarum SCS2). After 1 week of acclimation, 120 male KM mice were divided into normal group (NG), model group (MG), solvent control group (KG), and different test groups (TG1, TG2, TG3) (n = 20/group) randomly. In the second week, except NG mice, other mice were given 0.2 ml 50 mg/kg (body weight) streptozocin (STZ) through intraperitoneal injection for 5 days. After successful modeling, NG and MG mice were fed normally, KG mice was given 0.5 ml 0.1 mol/L phosphate buffer saline (PBS) per day, TG1, TG2, and TG3 mice were given 0.5 ml suspension, intracellular content and heat-killed intracellular content of L. plantarum SCS2 per day for 9 weeks. Body weight and blood glucose were observed and recorded during intragastric administration. Glucose tolerance levels were measured at the twelfth week, then mice were sacrificed and the serum was collected to measure insulin (INS), glycosylated hemoglobin (HbA1c), malondialdehyde (MDA), reactive oxygen species (ROS) and antioxidant enzymes. The results showed that the reduction of weight loss in TG1 and TG2 mice was observed, which was consistent with the blood glucose. At the same time, the INS level of TG1, TG2, and TG3 mice were increased and the HbA1c levels were decreased. Otherwise, the MDA and ROS content in the serum of TG1, TG2, and TG3 mice were decreased and the level of antioxidant enzymes was increased. Interestingly, the activity and content of antioxidant enzymes in TG2 group was the highest in the three test groups. PRACTICAL APPLICATIONS: The results of this study showed that L. plantarum SCS2 could effectively reduce blood glucose, relieve weight loss, improve INS deficiency, and also improve oxidative stress by increasing the activity of antioxidant enzymes. The findings suggest that L. plantarum SCS2 could improve diabetes-related symptoms by alleviating oxidative stress. In the future, people could promote the application of lactic acid bacteria (LAB) which is found in traditional foods with the ability of improving oxidative damage in food nutrition and related fields, so as to guide residents to form good dietary habits, and effectively prevent type 2 diabetes. Meanwhile, it also can enhance the edible value of traditional foods.
Collapse
Affiliation(s)
- Li-Juan Wu
- Department of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Long
- Department of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Yi Sun
- Innovative institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin-Li Bu
- Department of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Lin Cao
- Department of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Luo
- Department of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Jing Liu
- Department of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Wu
- Department of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Meng
- Department of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
50
|
Won G, Choi SI, Park N, Kim JE, Kang CH, Kim GH. In Vitro Antidiabetic, Antioxidant Activity, and Probiotic Activities of Lactiplantibacillus plantarum and Lacticaseibacillus paracasei Strains. Curr Microbiol 2021; 78:3181-3191. [PMID: 34213618 PMCID: PMC8289794 DOI: 10.1007/s00284-021-02588-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 06/22/2021] [Indexed: 12/22/2022]
Abstract
Diabetes, a chronic metabolic disorder, is characterized by persistent hyperglycemia. This study aimed to evaluate the hypoglycemic and antioxidant activities of lactic acid bacteria strains isolated from humans and food products and investigate the probiotic properties of the selected four strains. The hypoglycemic activity of the isolated strains was examined by evaluating the α-glucosidase and α-amylase inhibitory activities. The antioxidant activity was measured using the DPPH, ABTS, and FRAP assays. Four strains (Lactiplantibacillus plantarum MG4229, MG4296, MG5025, and Lacticaseibacillus paracasei MG5012) exhibited potent α-glucosidase inhibitory (>75%) and α-amylase inhibitory (>85%) activities, which were comparable to those of acarbose (>50%; 1000 μg/mL). Similarly, the radical scavenging and antioxidant activities of the four strains were comparable to those of ascorbic acid (50 μg/mL). Additionally, the probiotic properties of the four selected strains were examined based on acid and bile salt tolerance, auto-aggregation ability, and antibiotic resistance. The four strains were resistant to pH 2 (>50% of survivability) and 0.5% bile salt (>80% of survivability). Therefore, we suggest that the selected strains with hypoglycemic, antioxidant, probiotic properties can potentially prevent diabetes.
Collapse
Affiliation(s)
- GaYeong Won
- Department of Health Functional New Materials, Duksung Women's University, Seoul, 01369, Korea
| | - Soo-Im Choi
- Department of Health Functional New Materials, Duksung Women's University, Seoul, 01369, Korea
| | - NaYeong Park
- Department of Health Functional New Materials, Duksung Women's University, Seoul, 01369, Korea
| | - Ji-Eun Kim
- MEDIOGEN, Co., Ltd., Jecheon, 27159, Korea
| | | | - Gun-Hee Kim
- Department of Food and Nutrition, Duksung Women's University, Seoul, 01369, Korea.
| |
Collapse
|