1
|
Amjadi R, Werten S, Lomada SK, Baldin C, Scheffzek K, Dunzendorfer-Matt T, Wieland T. Mechanistic Insights into Substrate Recognition of Human Nucleoside Diphosphate Kinase C Based on Nucleotide-Induced Structural Changes. Int J Mol Sci 2024; 25:9768. [PMID: 39337255 PMCID: PMC11431768 DOI: 10.3390/ijms25189768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Nucleoside diphosphate kinases (NDPKs) are encoded by nme genes and exist in various isoforms. Based on interactions with other proteins, they are involved in signal transduction, development and pathological processes such as tumorigenesis, metastasis and heart failure. In this study, we report a 1.25 Å resolution structure of human homohexameric NDPK-C bound to ADP and describe the yet unknown complexes formed with GDP, UDP and cAMP, all obtained at a high resolution via X-ray crystallography. Each nucleotide represents a distinct group of mono- or diphosphate purine or pyrimidine bases. We analyzed different NDPK-C nucleotide complexes in the presence and absence of Mg2+ and explain how this ion plays an essential role in NDPKs' phosphotransferase activity. By analyzing a nucleotide-depleted NDPK-C structure, we detected conformational changes upon substrate binding and identify flexible regions in the substrate binding site. A comparison of NDPK-C with other human isoforms revealed a strong similarity in the overall composition with regard to the 3D structure, but significant differences in the charge and hydrophobicity of the isoforms' surfaces. This may play a role in isoform-specific NDPK interactions with ligands and/or important complex partners like other NDPK isoforms, as well as monomeric and heterotrimeric G proteins. Considering the recently discovered role of NDPK-C in different pathologies, these high-resolution structures thus might provide a basis for interaction studies with other proteins or small ligands, like activators or inhibitors.
Collapse
Affiliation(s)
- Rezan Amjadi
- Institute of Molecular Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (R.A.); (K.S.)
| | - Sebastiaan Werten
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria;
| | - Santosh Kumar Lomada
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13–17, 68167 Mannheim, Germany;
| | - Clara Baldin
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria;
| | - Klaus Scheffzek
- Institute of Molecular Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (R.A.); (K.S.)
| | - Theresia Dunzendorfer-Matt
- Institute of Molecular Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (R.A.); (K.S.)
| | - Thomas Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13–17, 68167 Mannheim, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| |
Collapse
|
2
|
Gannon HG, Riaz-Bradley A, Cann MJ. A Non-Functional Carbon Dioxide-Mediated Post-Translational Modification on Nucleoside Diphosphate Kinase of Arabidopsis thaliana. Int J Mol Sci 2024; 25:898. [PMID: 38255974 PMCID: PMC10815852 DOI: 10.3390/ijms25020898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The carbamate post-translational modification (PTM), formed by the nucleophilic attack of carbon dioxide by a dissociated lysine epsilon-amino group, is proposed as a widespread mechanism for sensing this biologically important bioactive gas. Here, we demonstrate the discovery and in vitro characterization of a carbamate PTM on K9 of Arabidopsis nucleoside diphosphate kinase (AtNDK1). We demonstrate that altered side chain reactivity at K9 is deleterious for AtNDK1 structure and catalytic function, but that CO2 does not impact catalysis. We show that nucleotide substrate removes CO2 from AtNDK1, and the carbamate PTM is functionless within the detection limits of our experiments. The AtNDK1 K9 PTM is the first demonstration of a functionless carbamate. In light of this finding, we speculate that non-functionality is a possible feature of the many newly identified carbamate PTMs.
Collapse
Affiliation(s)
- Harry G. Gannon
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (H.G.G.)
| | - Amber Riaz-Bradley
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (H.G.G.)
| | - Martin J. Cann
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; (H.G.G.)
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
3
|
Agnihotri P, Shakya AK, Mishra AK, Pratap JV. Crystal structure and characterization of nucleoside diphosphate kinase from Vibrio cholerae. Biochimie 2021; 190:57-69. [PMID: 34242727 DOI: 10.1016/j.biochi.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 11/26/2022]
Abstract
Nucleoside diphosphate kinases (NDK) are ubiquitous enzymes that catalyse the transfer of the γ phosphate from nucleoside triphosphates (NTPs) to nucleoside diphosphate (NDPs), to maintain appropriate NTP levels in cells. NDKs are associated with signal transduction, cell development, proliferation, differentiation, tumor metastasis, apoptosis and motility. The critical role of NDK in bacterial virulence renders it a potential drug target. The present manuscript reports crystal structure and functional characterization of Vibrio cholerae NDK (VNDK). The 16 kDa VNDK was crystallized in a solution containing 30% PEG 4000, 100 mM Tris-HCl pH 8.5 and 200 mM sodium acetate in orthorhombic space group P212121 with unit cell parameters a = 48.37, b = 71.21, c = 89.14 Å, α = β = γ = 90° with 2 molecules in asymmetric unit. The crystal structure was solved by molecular replacement and refined to crystallographic Rfactor and Rfree values of 22.8% and 25.8% respectively. VNDK exists as both dimer and tetramer in solution as confirmed by size exclusion chromatography, glutaraldehyde crosslinking and small angle X-ray scattering while the crystal structure appears to be a dimer. The biophysical characterization states that VNDK has kinase and DNase activity with maximum stability at pH 8-9 and temperature up to 40 °C. VNDK shows elevated thermolability as compared to other NDK and shows preferential binding with GTP rationalized using computational studies.
Collapse
Affiliation(s)
- Pragati Agnihotri
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Anil Kumar Shakya
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Arjun K Mishra
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - J Venkatesh Pratap
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India.
| |
Collapse
|
4
|
Structure, Folding and Stability of Nucleoside Diphosphate Kinases. Int J Mol Sci 2020; 21:ijms21186779. [PMID: 32947863 PMCID: PMC7554756 DOI: 10.3390/ijms21186779] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/29/2022] Open
Abstract
Nucleoside diphosphate kinases (NDPK) are oligomeric proteins involved in the synthesis of nucleoside triphosphates. Their tridimensional structure has been solved by X-ray crystallography and shows that individual subunits present a conserved ferredoxin fold of about 140 residues in prokaryotes, archaea, eukaryotes and viruses. Monomers are functionally independent from each other inside NDPK complexes and the nucleoside kinase catalytic mechanism involves transient phosphorylation of the conserved catalytic histidine. To be active, monomers must assemble into conserved head to tail dimers, which further assemble into hexamers or tetramers. The interfaces between these oligomeric states are very different but, surprisingly, the assembly structure barely affects the catalytic efficiency of the enzyme. While it has been shown that assembly into hexamers induces full formation of the catalytic site and stabilizes the complex, it is unclear why assembly into tetramers is required for function. Several additional activities have been revealed for NDPK, especially in metastasis spreading, cytoskeleton dynamics, DNA binding and membrane remodeling. However, we still lack the high resolution structural data of NDPK in complex with different partners, which is necessary for deciphering the mechanism of these diverse functions. In this review we discuss advances in the structure, folding and stability of NDPKs.
Collapse
|
5
|
Saviola AJ, Negrão F, Yates JR. Proteomics of Select Neglected Tropical Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:315-336. [PMID: 32109150 DOI: 10.1146/annurev-anchem-091619-093003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Technological advances in mass spectrometry have enabled the extensive identification, characterization, and quantification of proteins in any biological system. In disease processes proteins are often altered in response to external stimuli; therefore, proteomics, the large-scale study of proteins and their functions, represents an invaluable tool for understanding the molecular basis of disease. This review highlights the use of mass spectrometry-based proteomics to study the pathogenesis, etiology, and pathology of several neglected tropical diseases (NTDs), a diverse group of disabling diseases primarily associated with poverty in tropical and subtropical regions of the world. While numerous NTDs have been the subject of proteomic studies, this review focuses on Buruli ulcer, dengue, leishmaniasis, and snakebite envenoming. The proteomic studies highlighted provide substantial information on the pathogenic mechanisms driving these diseases; they also identify molecular targets for drug discovery and development and uncover promising biomarkers that can assist in early diagnosis.
Collapse
Affiliation(s)
- Anthony J Saviola
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA;
| | - Fernanda Negrão
- Department of Biosciences and Technology of Bioactive Products, Institute of Biology, University of Campinas, São Paulo 13083-862, Brazil
| | - John R Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA;
| |
Collapse
|
6
|
Dautant A, Henri J, Wales TE, Meyer P, Engen JR, Georgescauld F. Remodeling of the Binding Site of Nucleoside Diphosphate Kinase Revealed by X-ray Structure and H/D Exchange. Biochemistry 2019; 58:1440-1449. [PMID: 30785730 DOI: 10.1021/acs.biochem.8b01308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To be fully active and participate in the metabolism of phosphorylated nucleotides, most nucleoside diphosphate kinases (NDPKs) have to assemble into stable hexamers. Here we studied the role played by six intersubunit salt bridges R80-D93 in the stability of NDPK from the pathogen Mycobacterium tuberculosis ( Mt). Mutating R80 into Ala or Asn abolished the salt bridges. Unexpectedly, compensatory stabilizing mechanisms appeared for R80A and R80N mutants and we studied them by biochemical and structural methods. The R80A mutant crystallized into space group I222 that is unusual for NDPK, and its hexameric structure revealed the occurrence at the trimer interface of a stabilizing hydrophobic patch around the mutation. Functionally relevant, a trimer of the R80A hexamer showed a remodeling of the binding site. In this conformation, the cleft of the active site is more open, and then active His117 is more accessible to substrates. H/D exchange mass spectrometry analysis of the wild type and the R80A and R80N mutants showed that the remodeled region of the protein is highly solvent accessible, indicating that equilibrium between open and closed conformations is possible. We propose that such equilibrium occurs in vivo and explains how bulky substrates access the catalytic His117.
Collapse
Affiliation(s)
- Alain Dautant
- Université de Bordeaux , CNRS, Institut de Biochimie et Génétique Cellulaires, UMR5095 , 146 rue Léo Saignat , 33077 Bordeaux , France
| | - Julien Henri
- Sorbonne Universités , UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Philippe Meyer
- Sorbonne Universités , UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - John R Engen
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Florian Georgescauld
- Sorbonne Universités , UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie , 75005 Paris , France
| |
Collapse
|
7
|
NDPKA is not just a metastasis suppressor - be aware of its metastasis-promoting role in neuroblastoma. J Transl Med 2018; 98:219-227. [PMID: 28991262 DOI: 10.1038/labinvest.2017.105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
NDPK-A, encoded by nm23-H1 (also known as NME1) was the first metastasis suppressor discovered. Much of the attention has been focused on the metastasis-suppressing role of NDPK-A in human tumors, including breast carcinoma and melanoma. However, compelling evidence points to a metastasis-promoting role of NDPK-A in certain tumors such as neuroblastoma and lymphoma. To balance attention on this contrariety of NDPK-A in different cancer types, this review addresses the metastasis-promoting role of NDPK-A in neuroblastoma. Neuroblastoma is an embryonic tumor, arising from neural crest cells that fail to differentiate into the sympathetic nervous system. We summarize and discuss nm23-H1 genetics and the prognosis of neuroblastoma, structural and functional changes associated with the S120G mutation of NDPK-A, as well as the evidence supporting the role of NDPK-A as a metastasis promoter. Also discussed are the NDPK-A relevant molecular determinants of neuroblastoma metastasis, and metastasis-relevant neural crest development. Because of NDPK-A's dichotomous role in tumor metastasis as both a suppressor and a promoter, tumor genome/exome profiles are necessary to identify the molecular drivers of metastasis in the NDPK-A network for developing tumor-specific therapies.
Collapse
|
8
|
Abu-Taha IH, Vettel C, Wieland T. Targeting altered Nme heterooligomerization in disease? Oncotarget 2017; 9:1492-1493. [PMID: 29416708 PMCID: PMC5788576 DOI: 10.18632/oncotarget.22716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/25/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Issam H Abu-Taha
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Germany
| | - Christiane Vettel
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Germany
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Germany
| |
Collapse
|
9
|
Proteomic approaches for drug discovery against tegumentary leishmaniasis. Biomed Pharmacother 2017; 95:577-582. [DOI: 10.1016/j.biopha.2017.08.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/14/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022] Open
|
10
|
Dautant A, Meyer P, Georgescauld F. Hydrogen/Deuterium Exchange Mass Spectrometry Reveals Mechanistic Details of Activation of Nucleoside Diphosphate Kinases by Oligomerization. Biochemistry 2017; 56:2886-2896. [DOI: 10.1021/acs.biochem.7b00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alain Dautant
- Université
de Bordeaux, CNRS, Institut de Biochimie et Génétique
Cellulaires, UMR 5095, Bordeaux, France
| | - Philippe Meyer
- Sorbonne Universités,
UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire
et Cellulaire des Eucaryotes, UMR 8226, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Florian Georgescauld
- Sorbonne Universités,
UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire
et Cellulaire des Eucaryotes, UMR 8226, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
11
|
Nucleoside-Diphosphate-Kinase of P. gingivalis is Secreted from Epithelial Cells In the Absence of a Leader Sequence Through a Pannexin-1 Interactome. Sci Rep 2016; 6:37643. [PMID: 27883084 PMCID: PMC5121656 DOI: 10.1038/srep37643] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/28/2016] [Indexed: 01/22/2023] Open
Abstract
Nucleoside-diphosphate-kinases (NDKs) are leaderless, multifunctional enzymes. The mode(s) of NDK secretion is currently undefined, while extracellular translocation of bacterial NDKs is critical for avoidance of host pathogen clearance by opportunistic pathogens such as Porphyromonas gingivalis. P. gingivalis-NDK during infection inhibits extracellular-ATP (eATP)/P2X7-receptor mediated cell death in gingival epithelial cells (GECs) via eATP hydrolysis. Furthermore, depletion of pannexin-1-hemichannel (PNX1) coupled with P2X7-receptor blocks the infection-induced eATP release in GECs, and P. gingivalis-NDK impacts this pathway. Ultrastructural and confocal microscopy of P. gingivalis-co-cultured GECs or green-fluorescent-protein (GFP)-P. gingivalis-NDK transfected GECs revealed a perinuclear/cytoplasmic localization of NDK. eATP stimulation induced NDK recruitment to the cell periphery. Depletion of PNX1 by siRNA or inhibition by probenecid resulted in significant blocking of extracellular NDK activity and secretion using ATPase and ELISA assays. Co-immunoprecipitation-coupled Mass-spectrometry method revealed association of P. gingivalis-NDK to the myosin-9 motor molecule. Interestingly, inhibition of myosin-9, actin, and lipid-rafts, shown to be involved in PNX1-hemichannel function, resulted in marked intracellular accumulation of NDK and decreased NDK secretion from infected GECs. These results elucidate for the first time PNX1-hemichannels as potentially main extracellular translocation pathway for NDKs from an intracellular pathogen, suggesting that PNX1-hemichannels may represent a therapeutic target for chronic opportunistic infections.
Collapse
|
12
|
Petrukhin OV, Orlova TG, Nezvetsky AR, Orlov NY. The decrement in light sensitivity of the isolated frog retinal rod in the presence of a phosphorylation-resistant GDP analogue of guanosine-5′-O-(2-thiodiphosphate) as a confirmation of the hypothesis about transducin activation via the transphosphorylation mechanism. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Lopez-Zavala AA, Sotelo-Mundo RR, Hernandez-Flores JM, Lugo-Sanchez ME, Sugich-Miranda R, Garcia-Orozco KD. Arginine kinase shows nucleoside diphosphate kinase-like activity toward deoxythymidine diphosphate. J Bioenerg Biomembr 2016; 48:301-8. [PMID: 27072556 DOI: 10.1007/s10863-016-9660-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/01/2016] [Indexed: 12/13/2022]
Abstract
Arginine kinase (AK) (ATP: L-arginine phosphotransferase, E.C. 2.7.3.3) catalyzes the reversible transfer of ATP γ-phosphate group to L-arginine to synthetize phospho-arginine as a high-energy storage. Previous studies suggest additional roles for AK in cellular processes. Since AK is found only in invertebrates and it is homologous to creatine kinase from vertebrates, the objective of this work was to demonstrate nucleoside diphosphate kinase-like activity for shrimp AK. For this, AK from marine shrimp Litopenaeus vannamei (LvAK) was purified and its activity was assayed for phosphorylation of TDP using ATP as phosphate donor. Moreover, by using high-pressure liquid chromatography (HPLC) the phosphate transfer reaction was followed. Also, LvAK tryptophan fluorescence emission changes were detected by dTDP titration, suggesting that the hydrophobic environment of Trp 221, which is located in the top of the active site, is perturbed upon dTDP binding. The kinetic constants for both substrates Arg and dTDP were calculated by isothermal titration calorimetry (ITC). Besides, docking calculations suggested that dTDP could bind LvAK in the same cavity where ATP bind, and LvAK basic residues (Arg124, 126 and 309) stabilize the dTDP phosphate groups and the pyrimidine base interact with His284 and Ser122. These results suggest that LvAK bind and phosphorylate dTDP being ATP the phosphate donor, thus describing a novel alternate nucleoside diphosphate kinase-like activity for this enzyme.
Collapse
Affiliation(s)
- Alonso A Lopez-Zavala
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Calle Rosales y Blvd. Luis Encinas s/n, Col. Centro, Hermosillo, Sonora, 83000, México
| | - Rogerio R Sotelo-Mundo
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México
| | - Jose M Hernandez-Flores
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México
| | - Maria E Lugo-Sanchez
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México
| | - Rocio Sugich-Miranda
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Calle Rosales y Blvd. Luis Encinas s/n, Col. Centro, Hermosillo, Sonora, 83000, México
| | - Karina D Garcia-Orozco
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México.
| |
Collapse
|
14
|
Singh D, Schaaper RM, Hochkoeppler A. A continuous spectrophotometric enzyme-coupled assay for deoxynucleoside triphosphate triphosphohydrolases. Anal Biochem 2015; 496:43-9. [PMID: 26723493 DOI: 10.1016/j.ab.2015.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 02/03/2023]
Abstract
We describe a continuous, spectrophotometric, enzyme-coupled assay useful to monitor reactions catalyzed by nucleoside triphosphohydrolases. In particular, using Escherichia coli deoxynucleoside triphosphohydrolase (Dgt), which hydrolyzes dGTP to deoxyguanosine and tripolyphosphate (PPPi) as the enzyme to be tested, we devised a procedure relying on purine nucleoside phosphorylase (PNPase) and xanthine oxidase (XOD) as the auxiliary enzymes. The deoxyguanosine released by Dgt can indeed be conveniently subjected to phosphorolysis by PNPase, yielding deoxyribose-1-phosphate and guanine, which in turn can be oxidized to 8-oxoguanine by XOD. By this means, it was possible to continuously detect Dgt activity at 297 nm, at which wavelength the difference between the molar extinction coefficients of 8-oxoguanine (8000 M(-1) cm(-1)) and guanine (1090 M(-1) cm(-1)) is maximal. The initial velocities of Dgt-catalyzed reactions were then determined in parallel with the enzyme-coupled assay and with a discontinuous high-performance liquid chromatography (HPLC) method able to selectively detect deoxyguanosine. Under appropriate conditions of excess auxiliary enzymes, the activities determined with our continuous enzyme-coupled assay were quantitatively comparable to those observed with the HPLC method. Moreover, the enzyme-coupled assay proved to be more sensitive than the chromatographic procedure, permitting reliable detection of Dgt activity at low dGTP substrate concentrations.
Collapse
Affiliation(s)
- Deepa Singh
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, 40136 Bologna, Italy; CSGI, University of Firenze, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
15
|
Vieira PS, de Giuseppe PO, Murakami MT, de Oliveira AHC. Crystal structure and biophysical characterization of the nucleoside diphosphate kinase from Leishmania braziliensis. BMC STRUCTURAL BIOLOGY 2015; 15:2. [PMID: 25643978 PMCID: PMC4322457 DOI: 10.1186/s12900-015-0030-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/15/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Nucleoside diphosphate kinase (NDK) is a housekeeping enzyme that plays key roles in nucleotide recycling and homeostasis in trypanosomatids. It is also secreted by the intracellular parasite Leishmania to modulate the host response. These functions make NDK an attractive target for drug design and for studies aiming at a better understanding of the mechanisms mediating host-pathogen interactions. RESULTS We report the crystal structure and biophysical characterization of the NDK from Leishmania braziliensis (LbNDK). The subunit consists of six α-helices along with a core of four β-strands arranged in a β2β3β1β4 antiparallel topology order. In contrast to the NDK from L. major, the LbNDK C-terminal extension is partially unfolded. SAXS data showed that LbNDK forms hexamers in solution in the pH range from 7.0 to 4.0, a hydrodynamic behavior conserved in most eukaryotic NDKs. However, DSF assays show that acidification and alkalization decrease the hexamer stability. CONCLUSIONS Our results support that LbNDK remains hexameric in pH conditions akin to that faced by this enzyme when secreted by Leishmania amastigotes in the parasitophorous vacuoles (pH 4.7 to 5.3). The unusual unfolded conformation of LbNDK C-terminus decreases the surface buried in the trimer interface exposing new regions that might be explored for the development of compounds designed to disturb enzyme oligomerization, which may impair the important nucleotide salvage pathway in these parasites.
Collapse
Affiliation(s)
- Plínio Salmazo Vieira
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil.
| | - Priscila Oliveira de Giuseppe
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil.
| | - Mario Tyago Murakami
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil.
- Rua Giuseppe Máximo Scolfaro, 10000, Pólo II de Alta Tecnologia de Campinas, Post office box 6192, Zip code: 13083-970, Campinas, SP, Brazil.
| | - Arthur Henrique Cavalcante de Oliveira
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
- Avenida Bandeirantes, 3900, Monte Alegre, Zip Code 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
16
|
Purification, characterization and structure of nucleoside diphosphate kinase from Drosophila melanogaster. Protein Expr Purif 2014; 103:48-55. [PMID: 25195176 DOI: 10.1016/j.pep.2014.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 12/13/2022]
Abstract
Nucleoside diphosphate kinase (NDPK) is a ubiquitous enzyme found in all organisms and cell types, which catalyzes the transfer of the phosphoryl group from a nucleoside triphosphate to a nucleoside diphosphate. The gene encoding for NDPK from Drosophila melanogaster was amplified from the genomic DNA. The recombinant NDPK (rNDPK) was overexpressed in Escherichia coli and purified to homogeneity by Ni-NTA agarose affinity chromatography, HiTrap SP HP cation exchange chromatography and HiLoad 16/60 Superdex 200 gel filtration chromatography. The gel filtration chromatography and analytical ultracentrifugation showed that rNDPK was a trimer in solution. The binding affinity of NDPs with rNDPK, measured by isothermal titration calorimetry, indicated that the purines nucleotides show higher binding affinity compared with pyrimidines. The rNDPK had a definite nuclease activity in vitro, which could cleave supercoiled plasmid DNA, but had no effect on dsDNA and ssDNA. Furthermore, the structure for NDPK was determined by using the sitting drop vapor diffusion method. In the final model, the asymmetric unit is made of three molecules, each of which consists of a four-stranded anti-parallel β-sheets and seven α-helices. Sequence alignment and structure comparison illustrated that the simulated nucleotide-binding active site are conserved.
Collapse
|
17
|
López-Zavala AA, Quintero-Reyes IE, Carrasco-Miranda JS, Stojanoff V, Weichsel A, Rudiño-Piñera E, Sotelo-Mundo RR. Structure of nucleoside diphosphate kinase from pacific shrimp (Litopenaeus vannamei) in binary complexes with purine and pyrimidine nucleoside diphosphates. Acta Crystallogr F Struct Biol Commun 2014; 70:1150-4. [PMID: 25195883 PMCID: PMC4157410 DOI: 10.1107/s2053230x1401557x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/03/2014] [Indexed: 12/21/2022] Open
Abstract
Nucleoside diphosphate kinase (NDK; EC 2.7.4.6) is an enzyme that catalyzes the third phosphorylation of nucleoside diphosphates, leading to nucleoside triphosphates for DNA replication. Expression of the NDK from Litopenaeus vannamei (LvNDK) is known to be regulated under viral infection. Also, as determined by isothermal titration calorimetry, LvNDK binds both purine and pyrimidine deoxynucleoside diphosphates with high binding affinity for dGDP and dADP and with no heat of binding interaction for dCDP [Quintero-Reyes et al. (2012), J. Bioenerg. Biomembr. 44, 325-331]. In order to investigate the differences in selectivity, LvNDK was crystallized as binary complexes with both acceptor (dADP and dCDP) and donor (ADP) phosphate-group nucleoside diphosphate substrates and their structures were determined. The three structures with purine or pyrimidine nucleotide ligands are all hexameric. Also, the binding of deoxy or ribonucleotides is similar, as in the former a water molecule replaces the hydrogen bond made by Lys11 to the 2'-hydroxyl group of the ribose moiety. This allows Lys11 to maintain a catalytically favourable conformation independently of the kind of sugar found in the nucleotide. Because of this, shrimp NDK may phosphorylate nucleotide analogues to inhibit the viral infections that attack this organism.
Collapse
Affiliation(s)
- Alonso A. López-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, 83304 Sonora, Mexico
| | - Idania E. Quintero-Reyes
- Universidad de Sonora, Blvd Bordo Nuevo s/n, Ejido Providencia, 85039 Cd Obregón, Sonora, Mexico
| | - Jesús S. Carrasco-Miranda
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, 83304 Sonora, Mexico
| | - Vivian Stojanoff
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Andrzej Weichsel
- Macromolecular Crystallography Core, The University of Arizona, Biological Sciences West, 1041 East Lowell Street, Tucson, AZ 85721, USA
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, 62210 Morelos, Mexico
| | - Rogerio R. Sotelo-Mundo
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, 83304 Sonora, Mexico
| |
Collapse
|
18
|
Pereira CA, Reigada C, Sayé M, Digirolamo FA, Miranda MR. Cytosolic Trypanosoma cruzi nucleoside diphosphate kinase generates large granules that depend on its quaternary structure. Exp Parasitol 2014; 142:43-50. [PMID: 24768953 DOI: 10.1016/j.exppara.2014.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/28/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
Nucleoside diphosphate kinase (NDPK) is a key enzyme in the control of cellular concentrations of nucleoside triphosphates, and has been shown to play important roles in many cellular processes. In this work we investigated the subcellular localization of the canonical NDPK1 from Trypanosoma cruzi (TcNDPK1), the etiological agent Chagas's Disease, and evaluated the effect of adding an additional weak protein-protein interaction domain from the green fluorescent protein (GFP). Immunofluorescence microscopy revealed that the enzyme from wild-type and TcNDPK1 overexpressing parasites has a cytosolic distribution, being the signal more intense around the nucleus. However, when TcNDPK1 was fused with dimeric GFP it relocalizes in non-membrane bounded granules also located adjacent to the nucleus. In addition, these granular structures were dependent on the quaternary structure of TcNDPK1 and GFP since mutations in residues involved in their oligomerization dramatically decrease the amount of granules. This phenomenon seems to be specific for TcNDPK1 since other cytosolic hexameric enzyme from T. cruzi, such as the NADP(+)-linked glutamate dehydrogenase, was not affected by the fusion with GFP. In addition, in parasites without GFP fusions granules could be observed in a subpopulation of epimastigotes under metacyclogenesis and metacyclic trypomastigotes. Organization into higher protein arrangements appears to be a singular feature of canonical NDPKs; however the physiological function of such structures requires further investigation.
Collapse
Affiliation(s)
- Claudio A Pereira
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Chantal Reigada
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Melisa Sayé
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Fabio A Digirolamo
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Mariana R Miranda
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina.
| |
Collapse
|
19
|
El-Shesheny I, Hajeri S, El-Hawary I, Gowda S, Killiny N. Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality. PLoS One 2013; 8:e65392. [PMID: 23734251 PMCID: PMC3667074 DOI: 10.1371/journal.pone.0065392] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/29/2013] [Indexed: 12/16/2022] Open
Abstract
Huanglongbing (HLB) causes considerable economic losses to citrus industries worldwide. Its management depends on controlling of the Asian citrus Psyllid (ACP), the vector of the bacterium, Candidatus Liberibacter asiaticus (CLas), the causal agent of HLB. Silencing genes by RNA interference (RNAi) is a promising tool to explore gene functions as well as control pests. In the current study, abnormal wing disc (awd) gene associated with wing development in insects is used to interfere with the flight of psyllids. Our study showed that transcription of awd is development-dependent and the highest level was found in the last instar (5(th)) of the nymphal stage. Micro-application (topical application) of dsRNA to 5(th) instar of nymphs caused significant nymphal mortality and adult wing-malformation. These adverse effects in ACP were positively correlated with the amounts of dsRNA used. A qRT-PCR analysis confirmed the dsRNA-mediated transcriptional down-regulation of the awd gene. Significant down-regulation was required to induce a wing-malformed phenotype. No effect was found when dsRNA-gfp was used, indicating the specific effect of dsRNA-awd. Our findings suggest a role for awd in ACP wing development and metamorphosis. awd could serve as a potential target for insect management either via direct application of dsRNA or by producing transgenic plants expressing dsRNA-awd. These strategies will help to mitigate HLB by controlling ACP.
Collapse
Affiliation(s)
- Ibrahim El-Shesheny
- Department of Entomology and Nematology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America
- Department of Plant Protection, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Subhas Hajeri
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Ibrahim El-Hawary
- Department of Plant Protection, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Siddarame Gowda
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Nabil Killiny
- Department of Entomology and Nematology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
20
|
Wu JR, Yu LJ, Zhan XB, Zheng ZY, Lu J, Lin CC. NtrC-dependent regulatory network for curdlan biosynthesis in response to nitrogen limitation in Agrobacterium sp. ATCC 31749. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Arakawa T, Tokunaga H, Ishibashi M, Tokunaga M. Halophilic Properties and their Manipulation and Application. Extremophiles 2012. [DOI: 10.1002/9781118394144.ch4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Quintero-Reyes IE, Garcia-Orozco KD, Sugich-Miranda R, Arvizu-Flores AA, Velazquez-Contreras EF, Castillo-Yañez FJ, Sotelo-Mundo RR. Shrimp oncoprotein nm23 is a functional nucleoside diphosphate kinase. J Bioenerg Biomembr 2012; 44:325-31. [PMID: 22528393 DOI: 10.1007/s10863-012-9436-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/19/2012] [Indexed: 11/27/2022]
Abstract
Biosynthesis of nucleoside triphosphates is critical for bioenergetics and nucleic acid replication, and this is achieved by nucleoside diphosphate kinase (NDK). As an emerging biological model and the global importance of shrimp culture, we have addressed the study of the Pacific whiteleg shrimp (Litopenaeus vannamei) NDK. We demonstrated its activity and affinity towards deoxynucleoside diphosphates. Also, the quaternary structure obtained by gel filtration chromatography showed that shrimp NDK is a trimer. Affinity was in the micro-molar range for dADP, dGDP, dTDP and except for dCDP, which presented no detectable interaction by isothermal titration calorimetry, as described previously for Plasmodium falciparum NDK. This information is particularly important, as this enzyme could be used to test nucleotide analogs that can block white spot syndrome virus (WSSV) viral replication and to study its bioenergetics role during hypoxia and fasting.
Collapse
Affiliation(s)
- Idania E Quintero-Reyes
- Aquatic Molecular Biology Lab, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a Ejido la Victoria Km 0.6, Hermosillo, Sonora 83304, Mexico
| | | | | | | | | | | | | |
Collapse
|
23
|
Arai S, Yonezawa Y, Okazaki N, Matsumoto F, Tamada T, Tokunaga H, Ishibashi M, Blaber M, Tokunaga M, Kuroki R. A structural mechanism for dimeric to tetrameric oligomer conversion in Halomonas sp. nucleoside diphosphate kinase. Protein Sci 2012; 21:498-510. [PMID: 22275000 DOI: 10.1002/pro.2032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/19/2012] [Indexed: 11/11/2022]
Abstract
Nucleoside diphosphate kinase (NDK) is known to form homotetramers or homohexamers. To clarify the oligomer state of NDK from moderately halophilic Halomonas sp. 593 (HaNDK), the oligomeric state of HaNDK was characterized by light scattering followed by X-ray crystallography. The molecular weight of HaNDK is 33,660, and the X-ray crystal structure determination to 2.3 and 2.7 Å resolution showed a dimer form which was confirmed in the different space groups of R3 and C2 with an independent packing arrangement. This is the first structural evidence that HaNDK forms a dimeric assembly. Moreover, the inferred molecular mass of a mutant HaNDK (E134A) indicated 62.1-65.3 kDa, and the oligomerization state was investigated by X-ray crystallography to 2.3 and 2.5 Å resolution with space groups of P2(1) and C2. The assembly form of the E134A mutant HaNDK was identified as a Type I tetramer as found in Myxococcus NDK. The structural comparison between the wild-type and E134A mutant HaNDKs suggests that the change from dimer to tetramer is due to the removal of negative charge repulsion caused by the E134 in the wild-type HaNDK. The higher ordered association of proteins usually contributes to an increase in thermal stability and substrate affinity. The change in the assembly form by a minimum mutation may be an effective way for NDK to acquire molecular characteristics suited to various circumstances.
Collapse
Affiliation(s)
- Shigeki Arai
- Molecular Structural Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Srivastava SK, Rajasree K, Gopal B. Conformational basis for substrate recognition and regulation of catalytic activity in Staphylococcus aureus nucleoside di-phosphate kinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1349-57. [PMID: 21745603 DOI: 10.1016/j.bbapap.2011.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/05/2011] [Accepted: 06/14/2011] [Indexed: 11/29/2022]
Abstract
Nucleoside diphosphate kinases (NDK) are characterized by high catalytic turnover rates and diverse substrate specificity. These features make this enzyme an effective activator of a pro-drug-an application that has been actively pursued for a variety of therapeutic strategies. The catalytic mechanism of this enzyme is governed by a conserved histidine that coordinates a magnesium ion at the active site. Despite substantial structural and biochemical information on NDK, the mechanistic feature of the phospho-transfer that leads to auto-phosphorylation remains unclear. While the role of the histidine residue is well documented, the other active site residues, in particular the conserved serine remains poorly characterized. Studies on some homologues suggest no role for the serine residue at the active site, while others suggest a crucial role for this serine in the regulation and quaternary association of this enzyme in some species. Here we report the biochemical features of the Staphylococcus aureus NDK and the mutant enzymes. We also describe the crystal structures of the apo-NDK, as a transition state mimic with vanadate and in complex with different nucleotide substrates. These structures formed the basis for molecular dynamics simulations to understand the broad substrate specificity of this enzyme and the role of active site residues in the phospho-transfer mechanism and oligomerization. Put together, these data suggest that concerted changes in the conformation of specific residues facilitate the stabilization of nucleotide complexes thereby enabling the steps involved in the ping-pong reaction mechanism without large changes to the overall structure of this enzyme.
Collapse
|
25
|
Desvignes T, Pontarotti P, Bobe J. Nme gene family evolutionary history reveals pre-metazoan origins and high conservation between humans and the sea anemone, Nematostella vectensis. PLoS One 2010; 5:e15506. [PMID: 21085602 PMCID: PMC2978717 DOI: 10.1371/journal.pone.0015506] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/05/2010] [Indexed: 11/19/2022] Open
Abstract
Background The Nme gene family is involved in multiple physiological and pathological processes such as cellular differentiation, development, metastatic dissemination, and cilia functions. Despite the known importance of Nme genes and their use as clinical markers of tumor aggressiveness, the associated cellular mechanisms remain poorly understood. Over the last 20 years, several non-vertebrate model species have been used to investigate Nme functions. However, the evolutionary history of the family remains poorly understood outside the vertebrate lineage. The aim of the study was thus to elucidate the evolutionary history of the Nme gene family in Metazoans. Methodology/Principal Findings Using a total of 21 eukaryote species including 14 metazoans, the evolutionary history of Nme genes was reconstructed in the metazoan lineage. We demonstrated that the complexity of the Nme gene family, initially thought to be restricted to chordates, was also shared by the metazoan ancestor. We also provide evidence suggesting that the complexity of the family is mainly a eukaryotic innovation, with the exception of Nme8 that is likely to be a choanoflagellate/metazoan innovation. Highly conserved gene structure, genomic linkage, and protein domains were identified among metazoans, some features being also conserved in eukaryotes. When considering the entire Nme family, the starlet sea anemone is the studied metazoan species exhibiting the most conserved gene and protein sequence features with humans. In addition, we were able to show that most of the proteins known to interact with human NME proteins were also found in starlet sea anemone. Conclusion/Significance Together, our observations further support the association of Nme genes with key cellular functions that have been conserved throughout metazoan evolution. Future investigations of evolutionarily conserved Nme gene functions using the starlet sea anemone could shed new light on a wide variety of key developmental and cellular processes.
Collapse
Affiliation(s)
- Thomas Desvignes
- UMR 6632/IFR48, Université de Provence Aix Marseille 1/CNRS, F-13000, Marseille, France
- IFREMER, LALR, F-34250, Palavas les flots, France
| | - Pierre Pontarotti
- UMR 6632/IFR48, Université de Provence Aix Marseille 1/CNRS, F-13000, Marseille, France
| | - Julien Bobe
- UMR 6632/IFR48, Université de Provence Aix Marseille 1/CNRS, F-13000, Marseille, France
- * E-mail:
| |
Collapse
|
26
|
Tonoli CCC, Vieira PS, Ward RJ, Arni RK, de Oliveira AHC, Murakami MT. Production, purification, crystallization and preliminary X-ray diffraction studies of the nucleoside diphosphate kinase b from Leishmania major. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1116-9. [PMID: 19923730 DOI: 10.1107/s1744309109037567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 09/16/2009] [Indexed: 02/05/2023]
Abstract
Nucleoside diphosphate kinases (NDKs; EC 2.7.4.6) play an essential role in the synthesis of nucleotides from intermediates in the salvage pathway in all parasitic trypanosomatids and their structural studies will be instrumental in shedding light on the biochemical machinery involved in the parasite life cycle and host-parasite interactions. In this work, NDKb from Leishmania major was overexpressed in Escherichia coli, purified to homogeneity and crystallized using the sitting-drop vapour-diffusion method. The NDK crystal diffracted to 2.2 angstrom resolution and belonged to the trigonal crystal system, with unit-cell parameters a = 114.2, c = 93.9 angstrom. Translation-function calculations yielded an unambiguous solution in the enantiomorphic space group P3(2)21.
Collapse
Affiliation(s)
- Celisa Caldana Costa Tonoli
- Center for Structural Molecular Biology, Brazilian Association for Synchrotron Light Technology, Campinas-SP, Brazil
| | | | | | | | | | | |
Collapse
|
27
|
Bago R, Pavelić J, Maravić Vlahovicek G, Bosnar MH. Nm23-H1 promotes adhesion of CAL 27 cells in vitro. Mol Carcinog 2009; 48:779-89. [PMID: 19263457 DOI: 10.1002/mc.20536] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
nm23-H1 was found to diminish metastatic potential of carcinoma cell lines and therefore was placed in the group of metastatic suppressor genes. Its protein product has a function of a nucleoside diphosphate kinase (NDPK) as well as protein kinase and nuclease. Though it was found that Nm23-H1 is involved in many cellular processes, it is still not known how it promotes metastatic suppressor activity. Since the process of metastasis is dependent on adhesion properties of cells, the goal of our work was to describe the adhesion properties of CAL 27 cells (oral squamous cell carcinoma of the tongue) overexpressing FLAG/nm23-H1. In our experiments, cells overexpressing nm23-H1 show reduced migratory and invasive potential. Additionally, cells overexpressing nm23-H1 adhere stronger on substrates (collagen IV and fibronectin) and show more spread morphology than the control cells. Results obtained by EGF induction of migration revealed that the adhesion strength predetermined cell response to chemoattractant and that Nm23-H1, in this cell type, does not interfere with, EGF induced, Ras signaling pathway. These data contribute to the overall knowledge about nm23-H1 and its role in cell adhesion, migration, and invasion, especially in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Ruzica Bago
- Rudjer Boskovic Institute, Division of Molecular Medicine, Laboratory for Molecular Oncology, 10 002 Zagreb, Croatia
| | | | | | | |
Collapse
|
28
|
Yamamura A, Ichimura T, Kamekura M, Mizuki T, Usami R, Makino T, Ohtsuka J, Miyazono KI, Okai M, Nagata K, Tanokura M. Molecular mechanism of distinct salt-dependent enzyme activity of two halophilic nucleoside diphosphate kinases. Biophys J 2009; 96:4692-700. [PMID: 19486691 DOI: 10.1016/j.bpj.2009.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/13/2009] [Accepted: 03/13/2009] [Indexed: 10/20/2022] Open
Abstract
Nucleoside diphosphate kinases from haloarchaea Haloarcula quadrata (NDK-q) and H. sinaiiensis (NDK-s) are identical except for one out of 154 residues, i.e., Arg(31) in NDK-q and Cys(31) in NDK-s. However, the salt-dependent activity profiles of NDK-q and NDK-s are quite different: the optimal NaCl concentrations of NDK-q and NDK-s are 1 M and 2 M, respectively. We analyzed the relationships of the secondary, tertiary, and quaternary structures and NDK activity of these NDKs at various salt concentrations, and revealed that 1), NDK-q is present as a hexamer under a wide range of salt concentrations (0.2-4 M NaCl), whereas NDK-s is present as a hexamer at an NaCl concentration above 2 M and as a dimer at NaCl concentrations below 1 M; 2), dimeric NDK-s has lower activity than hexameric NDK-s; and 3), dimeric NDK-s has higher helicity than hexameric NDK-s. We also determined the crystal structure of hexameric NDK-q, and revealed that Arg(31) plays an important role in stabilizing the hexamer. Thus the substitution of Arg (as in NDK-q) to Cys (as in NDK-s) at position 31 destabilizes the hexameric assembly, and causes dissociation to less active dimers at low salt concentrations.
Collapse
Affiliation(s)
- Akihiro Yamamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lipskaya TY, Voinova VV. Reversibility of nucleoside diphosphate kinase solubilization from the surface of the outer mitochondrial membrane. BIOCHEMISTRY (MOSCOW) 2009; 74:578-87. [PMID: 19538133 DOI: 10.1134/s0006297909050149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It was found that in medium with low ionic strength nucleoside diphosphate kinase (NDPK) solubilization from the outer membrane of liver mitochondria could be partially reversed by the addition of 3.3 mM MgCl2. Complete rebinding of the enzyme after the addition of MgCl2 was observed when the mitochondrial washing and storage medium contained leupeptin, an inhibitor of cathepsins. It was demonstrated that leupeptin and another inhibitor of cysteine proteinases, E-64, do not influence the rate of NDPK solubilization as well as its solubilized and membrane-associated activity. We conclude that NDPK becomes sensitive to proteolysis only after its solubilization; proteolysis does not affect the part of the enzyme molecule that is responsible for catalysis. After solubilization of NDPK in the absence of leupeptin, cathepsins damage sites of its binding on the membranes. The rate of the enzyme solubilization is dependent on the pH of the storage medium (pH 6.0-8.0); it decreases with increase in pH. It was shown that in the medium with high ionic strength, MgCl2 does not reverse pH-dependent NDPK solubilization, but solubilization could be reversed by increase in medium pH in the presence of E-64 and BSA. The physiological importance of these results is discussed.
Collapse
Affiliation(s)
- T Yu Lipskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | |
Collapse
|
30
|
Dissecting the unique nucleotide specificity of mimivirus nucleoside diphosphate kinase. J Virol 2009; 83:7142-50. [PMID: 19439473 DOI: 10.1128/jvi.00511-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The analysis of the Acanthamoeba polyphaga mimivirus genome revealed the first virus-encoded nucleoside diphosphate kinase (NDK), an enzyme that is central to the synthesis of RNA and DNA, ubiquitous in cellular organisms, and well conserved among the three domains of life. In contrast with the broad specificity of cellular NDKs for all types of ribo- and deoxyribonucleotides, the mimivirus enzyme exhibits a strongly preferential affinity for deoxypyrimidines. In order to elucidate the molecular basis of this unique substrate specificity, we determined the three-dimensional (3D) structure of the Acanthamoeba polyphaga mimivirus NDK alone and in complex with various nucleotides. As predicted from a sequence comparison with cellular NDKs, the 3D structure of the mimivirus enzyme exhibits a shorter Kpn loop, previously recognized as a main feature of the NDK active site. The structure of the viral enzyme in complex with various nucleotides also pinpointed two residue changes, both located near the active site and specific to the viral NDK, which could explain its stronger affinity for deoxynucleotides and pyrimidine nucleotides. The role of these residues was explored by building a set of viral NDK variants, assaying their enzymatic activities, and determining their 3D structures in complex with various nucleotides. A total of 26 crystallographic structures were determined at resolutions ranging from 2.8 A to 1.5 A. Our results suggest that the mimivirus enzyme progressively evolved from an ancestral NDK under the constraints of optimizing its efficiency for the replication of an AT-rich (73%) viral genome in a thymidine-limited host environment.
Collapse
|
31
|
Mitochondrial kinases and their molecular interaction with cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2032-47. [PMID: 19409873 DOI: 10.1016/j.bbamem.2009.04.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 04/24/2009] [Indexed: 11/22/2022]
Abstract
Mitochondrial isoforms of creatine kinase (MtCK) and nucleoside diphosphate kinase (NDPK-D) are not phylogenetically related but share functionally important properties. They both use mitochondrially generated ATP with the ultimate goal of maintaining proper nucleotide pools, are located in the intermembrane/cristae space, have symmetrical oligomeric structures, and show high affinity binding to anionic phospholipids, in particular cardiolipin. The structural basis and functional consequences of the cardiolipin interaction have been studied and are discussed in detail in this review. They mainly result in a functional interaction of MtCK and NDPK-D with inner membrane adenylate translocator, probably by forming proteolipid complexes. These interactions allow for privileged exchange of metabolites (channeling) that ultimately regulate mitochondrial respiration. Further functions of the MtCK/membrane interaction include formation of cardiolipin membrane patches, stabilization of mitochondria and a role in apoptotic signaling, as well as in case of both kinases, a role in facilitating lipid transfer between two membranes. Finally, disturbed cardiolipin interactions of MtCK, NDPK-D and other proteins like cytochrome c and truncated Bid are discussed more generally in the context of apoptosis and necrosis.
Collapse
|
32
|
Abstract
Nucleoside diphosphate kinases (NDPK) are encoded by the NME genes, also called NM23. They catalyze the transfer of gamma-phosphate from nucleoside triphosphates to nucleoside diphosphates by a ping-pong mechanism involving the formation of a high energy phospho-histidine intermediate [1, 2]. Besides their known functions in the control of intracellular nucleotide homeostasis, they are involved in multiple physiological and pathological cellular processes such as differentiation, development, metastastic dissemination or cilia functions. Over the past 15 years, ten human genes have been discovered encoding partial, full length, and/or tandemly repeated Nm23/NDPK domains, with or without N-or C-terminal extensions and/or additional domains. These genes encode proteins exhibiting different functions at various tissular and subcellular localizations. Most of these genes appear late in evolution with the emergence of the vertebrate lineage. This review summarizes the present knowledge on these multitalented proteins.
Collapse
|
33
|
Boissan M, Dabernat S, Peuchant E, Schlattner U, Lascu I, Lacombe ML. The mammalian Nm23/NDPK family: from metastasis control to cilia movement. Mol Cell Biochem 2009; 329:51-62. [PMID: 19387795 DOI: 10.1007/s11010-009-0120-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/02/2009] [Indexed: 01/12/2023]
Abstract
Nucleoside diphosphate kinases (NDPK) are encoded by the NME genes, also called NM23. They catalyze the transfer of gamma-phosphate from nucleoside triphosphates to nucleoside diphosphates by a ping-pong mechanism involving the formation of a high energy phospho-histidine intermediate [1, 2]. Besides their known functions in the control of intracellular nucleotide homeostasis, they are involved in multiple physiological and pathological cellular processes such as differentiation, development, metastastic dissemination or cilia functions. Over the past 15 years, ten human genes have been discovered encoding partial, full length, and/or tandemly repeated Nm23/NDPK domains, with or without N-or C-terminal extensions and/or additional domains. These genes encode proteins exhibiting different functions at various tissular and subcellular localizations. Most of these genes appear late in evolution with the emergence of the vertebrate lineage. This review summarizes the present knowledge on these multitalented proteins.
Collapse
Affiliation(s)
- Mathieu Boissan
- INSERM UMRS_938, UMPC Université Paris 06, 75012 Paris, France
| | | | | | | | | | | |
Collapse
|
34
|
Lacombe ML, Tokarska-Schlattner M, Epand RF, Boissan M, Epand RM, Schlattner U. Interaction of NDPK-D with cardiolipin-containing membranes: Structural basis and implications for mitochondrial physiology. Biochimie 2009; 91:779-83. [PMID: 19254751 DOI: 10.1016/j.biochi.2009.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 02/18/2009] [Indexed: 01/20/2023]
Abstract
Nucleoside diphosphate kinases (NDPKs/Nm23), responsible for intracellular di- and tri-phosphonucleoside homeostasis, play multi-faceted roles in cellular energetic, signaling, proliferation, differentiation and tumor invasion. The mitochondrial NDPK-D, the NME4 gene product, is a peripheral protein of the inner membrane. Several new aspects of the interaction of NDPK-D with the inner mitochondrial membrane have been recently characterized. Surface plasmon resonance analysis using recombinant NDPK-D and different phospholipid liposomes showed that NDPK-D interacts electrostatically with anionic phospholipids, with highest affinity observed for cardiolipin, a phospholipid located mostly in the mitochondrial inner membrane. Mutation of the central arginine (R90) in a surface exposed cationic RRK motif unique to NDPK-D strongly reduced phospholipid interaction in vitro and in vivo. Stable expression of NDPK-D proteins in HeLa cells naturally almost devoid of this isoform revealed a tight functional coupling of NDPK-D with oxidative phosphorylation that depends on the membrane-bound state of the enzyme. Owing to its symmetrical hexameric structure exposing membrane binding motifs on two opposite sides, NDPK-D could bridge liposomes containing anionic phospholipids and promote lipid transfer between them. In vivo, NDPK-D could induce intermembrane contacts and facilitate lipid movements between mitochondrial membranes. Most of these properties are reminiscent to those of the mitochondrial creatine kinase. We review here the common properties of both kinases and we discuss their potential roles in mitochondrial functions such as energy production, apoptosis and mitochondrial dynamics.
Collapse
|
35
|
Coutinho-Silva R, Corrêa G, Sater AA, Ojcius DM. The P2X(7) receptor and intracellular pathogens: a continuing struggle. Purinergic Signal 2009; 5:197-204. [PMID: 19214779 DOI: 10.1007/s11302-009-9130-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 09/16/2008] [Indexed: 02/07/2023] Open
Abstract
The purinergic receptor, P2X(7), has recently emerged as an important component of the innate immune response against microbial infections. Ligation of P2X(7) by ATP can stimulate inflammasome activation and secretion of proinflammatory cytokines, but it can also lead directly to killing of intracellular pathogens in infected macrophages and epithelial cells. Thus, while some intracellular pathogens evade host defense responses by modulating with membrane trafficking or cell signaling in the infected cells, the host cells have also developed mechanisms for inhibiting infection. This review will focus on the effects of P2X(7) on control of infection by intracellular pathogens, microbial virulence factors that interfere with P2X(7) activity, and recent evidence linking polymorphisms in human P2X(7) with susceptibility to infection.
Collapse
Affiliation(s)
- Robson Coutinho-Silva
- Immunobiology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902, RJ, Brazil,
| | | | | | | |
Collapse
|
36
|
Georgescauld F, Mocan I, Lacombe ML, Lascu I. Rescue of the neuroblastoma mutant of the human nucleoside diphosphate kinase A/nm23-H1 by the natural osmolyte trimethylamine-N-oxide. FEBS Lett 2009; 583:820-4. [DOI: 10.1016/j.febslet.2009.01.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/06/2009] [Accepted: 01/22/2009] [Indexed: 11/27/2022]
|
37
|
Hikita ST, Kosik KS, Clegg DO, Bamdad C. MUC1* mediates the growth of human pluripotent stem cells. PLoS One 2008; 3:e3312. [PMID: 18833326 PMCID: PMC2553196 DOI: 10.1371/journal.pone.0003312] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 09/06/2008] [Indexed: 11/30/2022] Open
Abstract
The MUC1 protein is aberrantly expressed on an estimated 75% of all human solid tumor cancers. We recently reported that a transmembrane cleavage product, MUC1*, is the predominant form of the protein on cancer cells [1]. Further, our evidence indicated that MUC1* functions as a growth factor receptor on tumor cells, while the full-length protein appeared to have no growth promoting activity. Here, we report that MUC1* acts as a growth factor receptor on undifferentiated human embryonic stem cells (hESCs). Cleavage of the full-length ectodomain to form MUC1*, a membrane receptor, appears to make binding to its ligand, NM23, possible. Unexpectedly, we found that newly differentiated cells no longer express the cleaved form, MUC1*, or its ligand, NM23. Newly differentiated stem cells exclusively present full-length MUC1. Antibody-induced dimerization of the MUC1* receptor on hESCs stimulated cell growth to a far greater degree than currently used methods that require the addition of exogenous basic fibroblast growth factor (bFGF) as well as factors secreted by fibroblast “feeder cells”. Further, MUC1* mediated growth was shown to be independent of growth stimulated by bFGF or the milieu of factors secreted by feeder cells. Stimulating the MUC1* receptor with either the cognate antibody or its ligand NM23 enabled hESC growth in a feeder cell-free system and produced pluripotent colonies that resisted spontaneous differentiation. These findings suggest that this primal growth mechanism could be utilized to propagate large numbers of pluripotent stem cells for therapeutic interventions.
Collapse
Affiliation(s)
- Sherry T. Hikita
- Center for Stem Cell Biology and Engineering, University of California Santa Barbara, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Kenneth S. Kosik
- Center for Stem Cell Biology and Engineering, University of California Santa Barbara, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Dennis O. Clegg
- Center for Stem Cell Biology and Engineering, University of California Santa Barbara, Santa Barbara, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Cynthia Bamdad
- Minerva Biotechnologies, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Tokarska-Schlattner M, Boissan M, Munier A, Borot C, Mailleau C, Speer O, Schlattner U, Lacombe ML. The nucleoside diphosphate kinase D (NM23-H4) binds the inner mitochondrial membrane with high affinity to cardiolipin and couples nucleotide transfer with respiration. J Biol Chem 2008; 283:26198-207. [PMID: 18635542 DOI: 10.1074/jbc.m803132200] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleoside diphosphate kinase (NDPK/Nm23), responsible for intracellular di- and triphosphonucleoside homeostasis, plays multiple roles in cellular energetics, signaling, proliferation, differentiation and tumor invasion. The only human NDPK with a mitochondrial targeting sequence is NDPK-D, the NME4 gene product, which is a peripheral protein of mitochondrial membranes. Subfractionation of rat liver and HEK 293 cell mitochondria revealed that NDPK-D is essentially bound to the inner membrane. Surface plasmon resonance analysis of the interaction using recombinant NDPK-D and model liposomes showed that NDPK-D interacts electrostatically with anionic phospholipids, with highest affinity observed for cardiolipin. Mutation of the central arginine (Arg-90) in a surface-exposed basic RRK motif unique to NDPK-D strongly reduced interaction with anionic phospholipids. Due to its symmetrical hexameric structure, NDPK-D was able to cross-link anionic phospholipid-containing liposomes, suggesting that NDPK-D could promote intermembrane contacts. Latency assays with isolated mitochondria and antibody binding to mitoplasts indicated a dual orientation for NDPK-D. In HeLa cells, stable expression of wild type but not of the R90D mutant led to membrane-bound enzyme in vivo. Respiration was significantly stimulated by the NDPK substrate TDP in mitochondria containing wild-type NDPK-D, but not in those expressing the R90D mutant, which is catalytically equally active. This indicates local ADP regeneration in the mitochondrial intermembrane space and a tight functional coupling of NDPK-D with oxidative phosphorylation that depends on its membrane-bound state.
Collapse
|
39
|
Wang H, Bao R, Jiang C, Yang Z, Zhou CZ, Chen Y. Structure of Ynk1 from the yeast Saccharomyces cerevisiae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:572-6. [PMID: 18607079 PMCID: PMC2443969 DOI: 10.1107/s1744309108015212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 05/20/2008] [Indexed: 11/10/2022]
Abstract
Nucleoside diphosphate kinase (NDPK) catalyzes the transfer of the gamma-phosphate from nucleoside triphosphates to nucleoside diphosphates. In addition to biochemical studies, a number of crystal structures of NDPK from various organisms, including both native proteins and complexes with nucleotides or nucleotide analogues, have been determined. Here, the crystal structure of Ynk1, an NDPK from the yeast Saccharomyces cerevisiae, has been solved at 3.1 A resolution. Structural analysis strongly supports the oligomerization state of this protein being hexameric rather than tetrameric.
Collapse
Affiliation(s)
- Huabing Wang
- Protein Research Institute, Tongji University, Shanghai 200092, People’s Republic of China
| | - Rui Bao
- Protein Research Institute, Tongji University, Shanghai 200092, People’s Republic of China
| | - Chunhui Jiang
- Protein Research Institute, Tongji University, Shanghai 200092, People’s Republic of China
| | - Zhu Yang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Yuxing Chen
- Protein Research Institute, Tongji University, Shanghai 200092, People’s Republic of China
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| |
Collapse
|
40
|
Abstract
The MUC1 protein is aberrantly expressed on many solid tumor cancers. In contrast to its apical clustering on healthy epithelial cells, it is uniformly distributed over cancer cells. However, a mechanistic link between aberrant expression and cancer has remained elusive. Herein, we report that a membrane-bound MUC1 cleavage product, that we call MUC1*, is the predominant form of the protein on cultured cancer cells and on cancerous tissues. Further, we demonstrate that transfection of a minimal fragment of MUC1, MUC1*1110, containing a mere forty-five (45) amino acids of the extracellular domain, is sufficient to confer the oncogenic activities that were previously attributed to the full-length protein. By comparison of molecular weight and function, it appears that MUC1* and MUC1*1110 are approximately equivalent. Evidence is presented that strongly supports a mechanism whereby dimerization of the extracellular domain of MUC1* activates the MAP kinase signaling cascade and stimulates cell growth. These findings suggest methods to manipulate this growth mechanism for therapeutic interventions in cancer treatments.
Collapse
|
41
|
Tokunaga H, Ishibashi M, Arisaka F, Arai S, Kuroki R, Arakawa T, Tokunaga M. Residue 134 determines the dimer-tetramer assembly of nucleoside diphosphate kinase from moderately halophilic bacteria. FEBS Lett 2008; 582:1049-54. [DOI: 10.1016/j.febslet.2008.02.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 02/22/2008] [Accepted: 02/23/2008] [Indexed: 12/01/2022]
|
42
|
|
43
|
Kolli BK, Kostal J, Zaborina O, Chakrabarty AM, Chang KP. Leishmania-released nucleoside diphosphate kinase prevents ATP-mediated cytolysis of macrophages. Mol Biochem Parasitol 2007; 158:163-75. [PMID: 18242727 DOI: 10.1016/j.molbiopara.2007.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 12/10/2007] [Accepted: 12/13/2007] [Indexed: 12/14/2022]
Abstract
Leishmania amazonensis was found to release nucleoside diphosphate kinase (NdK)-a stable enzyme capable of decreasing extracellular ATP. The release of this enzyme from Leishmania results in its progressive accumulation extracellularly as they replicate, peaking at the stationary phase in vitro. The released NdK is immunoprecipitable and constitutes approximately 40% of its total activities and proteins. The retention of a known cytosolic protein by wild type cells and a fluorescent protein by DsRed transfectants at stationary phase, which release NdK, indicates that this is a spontaneous event, independent of inadvertent cytolysis. Recombinant products of Leishmania NdK prepared were enzymatically and immunologically active. Both recombinant and native Leishmania NdK utilized ATP to produce expected nucleoside triphosphates in the presence of nucleoside diphosphates in excess. Both native and recombinant Leishmania NdK were also found to prevent ATP-induced cytolysis of J774 macrophages in vitro, as determined by assays for lactate dehydrogenase release from these cells and for their mitochondrial membrane potential changes. The results obtained thus suggest that Leishmania NdK not only serves its normal house-keeping and other important functions true to all cells, but also prevents ATP-mediated lysis of macrophages, thereby preserving the integrity of the host cells to the benefit of the parasite.
Collapse
Affiliation(s)
- Bala Krishna Kolli
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States.
| | | | | | | | | |
Collapse
|
44
|
Orlov NI, Ishijima Y, Orlov DN, Orlova TG, Bursteĭn EA, Kimura N. Investigation of chimerical and tagged forms of recombinant rat nucleoside diphosphate kinases alpha and beta. Interaction with rhodopsin-transducin complex and thermal stability. BIOCHEMISTRY (MOSCOW) 2007; 72:835-42. [PMID: 17922640 DOI: 10.1134/s0006297907080044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To elucidate the physicochemical basis of differences between the isoforms of mammalian multifunctional nucleoside diphosphate kinase (NDP), we investigated the recombinant rat homohexameric NDP kinases alpha and beta, consisting of highly homologous alpha or beta subunits of 152 residues each and differing only in variable regions V1 and V2, and their chimerical forms (NDP kinase alpha(1-130)beta(131-152) and NDP kinase beta(1-130)alpha(131-152)) and tagged derivatives (NDP kinase HA-alpha(1-130)beta(131-152), NDP kinase HA-beta(1-130)alpha(131-152), and NDP kinase HA-beta). The thermal stability of these proteins and the ability of some of them to interact with the rhodopsin-transducin (R*Gt) complex have been studied. It was found that NDP kinase alpha, NDP kinase alpha(1-130)beta(131-152), and NDP kinase HA-alpha(1-130)beta(131-152) were similar in their thermal stability (T(1/2) = 61-63 degrees C). NDP kinase beta, NDP kinase beta(1-130)alpha(131-152), NDP kinase HA-beta(1-130)alpha(131-152), and NDP kinase HA-beta were inactivated at a lower temperature (T(1/2) = 51-54 degrees C). NDP kinase HA-alpha(1-130)beta(131-152) interacted with the R*Gt complex in the same manner as NDP kinase alpha, whereas the interaction of NDP kinase HA-beta(1-130)alpha(131-152) and NDP kinase beta with the photoreceptor membranes under the same conditions was very weak. It is suggested that the variability of the region V1 is a structural basis for the multifunctionality of NDP kinase hexamers in the cell.
Collapse
Affiliation(s)
- N Ia Orlov
- Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Mocan I, Georgescauld F, Gonin P, Thoraval D, Cervoni L, Giartosio A, Dabernat-Arnaud S, Crouzet M, Lacombe ML, Lascu I. Protein phosphorylation corrects the folding defect of the neuroblastoma (S120G) mutant of human nucleoside diphosphate kinase A/Nm23-H1. Biochem J 2007; 403:149-56. [PMID: 17155928 PMCID: PMC1828887 DOI: 10.1042/bj20061141] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human nucleoside diphosphate (NDP) kinase A is a 'house-keeping' enzyme essential for the synthesis of nonadenine nucleoside (and deoxynucleoside) 5'-triphosphate. It is involved in complex cellular regulatory functions including the control of metastatic tumour dissemination. The mutation S120G has been identified in high-grade neuroblastomas. We have shown previously that this mutant has a folding defect: the urea-denatured protein could not refold in vitro. A molten globule folding intermediate accumulated, whereas the wild-type protein folded and associated into active hexamers. In the present study, we report that autophosphorylation of the protein corrected the folding defect. The phosphorylated S120G mutant NDP kinase, either autophosphorylated with ATP as donor, or chemically prosphorylated by phosphoramidate, refolded and associated quickly with high yield. Nucleotide binding had only a small effect. ADP and the non-hydrolysable ATP analogue 5'-adenyly-limido-diphosphate did not promote refolding. ATP-promoted refolding was strongly inhibited by ADP, indicating protein dephosphorylation. Our findings explain why the mutant enzyme is produced in mammalian cells and in Escherichia coli in a soluble form and is active, despite the folding defect of the S120G mutant observed in vitro. We generated an inactive mutant kinase by replacing the essential active-site histidine residue at position 118 with an asparagine residue, which abrogates the autophosphorylation. The double mutant H118N/S120G was expressed in inclusion bodies in E. coli. Its renaturation stops at a folding intermediate and cannot be reactivated by ATP in vitro. The transfection of cells with this double mutant might be a good model to study the cellular effects of folding intermediates.
Collapse
Affiliation(s)
- Iulia Mocan
- *Institut de Biochimie et Génétique Cellulaires (UMR 5095), Université Victor Segalen Bordeaux2 and CNRS, 33077 Bordeaux Cedex, France
| | - Florian Georgescauld
- *Institut de Biochimie et Génétique Cellulaires (UMR 5095), Université Victor Segalen Bordeaux2 and CNRS, 33077 Bordeaux Cedex, France
| | - Philippe Gonin
- *Institut de Biochimie et Génétique Cellulaires (UMR 5095), Université Victor Segalen Bordeaux2 and CNRS, 33077 Bordeaux Cedex, France
| | - Didier Thoraval
- *Institut de Biochimie et Génétique Cellulaires (UMR 5095), Université Victor Segalen Bordeaux2 and CNRS, 33077 Bordeaux Cedex, France
| | - Laura Cervoni
- †Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’ and the Center of Molecular Biology of Consiglio Nazionale delle Ricerche, Università degli Studi ‘La Sapienza’, 00185 Rome, Italy
| | - Anna Giartosio
- †Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’ and the Center of Molecular Biology of Consiglio Nazionale delle Ricerche, Università degli Studi ‘La Sapienza’, 00185 Rome, Italy
| | | | - Marc Crouzet
- *Institut de Biochimie et Génétique Cellulaires (UMR 5095), Université Victor Segalen Bordeaux2 and CNRS, 33077 Bordeaux Cedex, France
| | - Marie-Lise Lacombe
- §Unité 680 INSERM, Faculté de Médecine Pierre et Marie Curie, site Saint-Antoine, 75012 Paris, France
| | - Ioan Lascu
- *Institut de Biochimie et Génétique Cellulaires (UMR 5095), Université Victor Segalen Bordeaux2 and CNRS, 33077 Bordeaux Cedex, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
46
|
Palmieri D, Horak CE, Lee JH, Halverson DO, Steeg PS. Translational approaches using metastasis suppressor genes. J Bioenerg Biomembr 2007; 38:151-61. [PMID: 16944301 DOI: 10.1007/s10863-006-9039-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer metastasis is a significant contributor to breast cancer patient morbidity and mortality. In order to develop new anti-metastatic therapies, we need to understand the biological and biochemical mechanisms of metastasis. Toward these efforts, we and others have studied metastasis suppressor genes, which halt metastasis in vivo without affecting primary tumor growth. The first metastasis suppressor gene identified was nm23, also known as NDP kinase. Nm23 represents the most widely validated metastasis suppressor gene, based on transfection and knock-out mouse strategies. The biochemical mechanism of metastasis suppression via Nm23 is unknown and likely complex. Two potential mechanisms include binding proteins and a histidine kinase activity. Elevation of Nm23 expression in micrometastatic tumor cells may constitute a translational strategy for the limitation of metastatic colonization in high risk cancer patients. To date, medroxyprogesterone acetate (MPA) has been identified as a candidate compound for clinical testing.
Collapse
Affiliation(s)
- Diane Palmieri
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 1122, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
47
|
Jeudy S, Claverie JM, Abergel C. The nucleoside diphosphate kinase from mimivirus: a peculiar affinity for deoxypyrimidine nucleotides. J Bioenerg Biomembr 2007; 38:247-54. [PMID: 16957983 DOI: 10.1007/s10863-006-9045-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The first viral Nucleoside Diphosphate Kinase was recently identified in the giant double-stranded DNA virus Acanthamoeba polyphag a Mimivirus (ApM). Here we report its expression and detailed biochemical characterization. NDK(apm) exhibits unique features such as a shorter Kpn-loop, a structural motif previously reported to be part of the active site and involved in oligomer formation. Enzymatic activity measurements on the recombinant NDK(apm) revealed its preferential affinity for deoxypyrimidine nucleotides. This property might represent an adaptation of NDK(apm) to the production of the limiting TTP deoxynucleotide required for the replication of the large A+T rich (72%) viral genome. The NDK(apm) might also assume a role in dUTP detoxification to compensate for the surprising absence of Mimivirus dUTPase (deoxyuridine triphosphate pyrophosphatase) an important enzyme conserved in most viruses. Although the phylogenetic analysis of NDK sequences sampled through organisms from the three domains of life is only partially informative, it favors an ancestral origin for NDK(apm) over a recent acquisition from a eukaryotic organism by horizontal gene transfer.
Collapse
Affiliation(s)
- Sandra Jeudy
- Information Génomique & Structurale, CNRS UPR 2589, IBSM, 163 Avenue de Luminy, 13288, Marseille cedex 9, France
| | | | | |
Collapse
|
48
|
Yonezawa Y, Izutsu KI, Tokunaga H, Maeda H, Arakawa T, Tokunaga M. Dimeric structure of nucleoside diphosphate kinase from moderately halophilic bacterium: contrast to the tetramericPseudomonascounterpart. FEMS Microbiol Lett 2007; 268:52-8. [PMID: 17227453 DOI: 10.1111/j.1574-6968.2007.00626.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Light scattering and chemical cross-linking analyses of nucleoside diphosphate kinase (NDK) from moderate halophile, Halomonas sp. 593 (HaNDK), unambiguously demonstrated that this enzyme formed a dimeric structure, in contrast to the Pseudomonas NDK (PaNDK), a nonhalophilic counterpart, and other NDKs from Gram-negative bacteria, which all formed a tetrameric structure. Comparison of HaNDK and PaNDK showed that the HaNDK was less thermally stable than the PaNDK: the optimum temperature of PaNDK enzyme activity was 20 degrees C higher than that of HaNDK. However, the HaNDK readily refolded and reassembled back to the active dimeric structure, upon heat denaturation at 0.2 M NaCl, as soon as the temperature was lowered. On the contrary, the thermally more stable PaNDK was irreversibly denatured at its melting temperature.
Collapse
Affiliation(s)
- Yasushi Yonezawa
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Moynié L, Giraud MF, Georgescauld F, Lascu I, Dautant A. The structure of the Escherichia coli nucleoside diphosphate kinase reveals a new quaternary architecture for this enzyme family. Proteins 2007; 67:755-65. [PMID: 17330300 DOI: 10.1002/prot.21316] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nucleoside diphosphate kinase (NDPK) catalyzes the transfer of gamma-phosphate from nucleoside triphosphates to nucleoside diphosphates. The subunit folding and the dimeric basic structural unit are remarkably the same for available structures but, depending on species, dimers self-associate to form hexamers or tetramers. The crystal structure of the Escherichia coli NDPK reveals a new tetrameric quaternary structure for this protein family. The two tetramers differ by the relative orientation of interacting dimers, which face either the convex or the concave side of their central sheet as in either Myxococcus xanthus (type I) or E. coli (type II), respectively. In the type II tetramer, the subunits interact by a new interface harboring a zone called the Kpn loop as in hexamers, but by the opposite face of this loop. The evolutionary conservation of the interface residues indicates that this new quaternary structure seems to be the most frequent assembly mode in bacterial tetrameric NDP kinases.
Collapse
Affiliation(s)
- Lucile Moynié
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS-Université Victor Segalen Bordeaux 2, 33077 Bordeaux cedex, France
| | | | | | | | | |
Collapse
|
50
|
Epand RF, Schlattner U, Wallimann T, Lacombe ML, Epand RM. Novel lipid transfer property of two mitochondrial proteins that bridge the inner and outer membranes. Biophys J 2006; 92:126-37. [PMID: 17028143 PMCID: PMC1697860 DOI: 10.1529/biophysj.106.092353] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study provides evidence of a novel function for mitochondrial creatine kinase (MtCK) and nucleoside diphosphate kinase (NDPK-D). Both are basic peripheral membrane proteins with symmetrical homo-oligomeric structure, which in the case of MtCK was already shown to allow crossbridging of lipid bilayers. Here, different lipid dilution assays clearly demonstrate that both kinases also facilitate lipid transfer from one bilayer to another. Lipid transfer occurs between liposomes mimicking the lipid composition of mitochondrial contact sites, containing 30 mol % cardiolipin, but transfer does not occur when cardiolipin is replaced by phosphatidylglycerol. Ubiquitous MtCK, but not NDPK-D, shows some specificity in the nature of the lipids transferred and it is not active with phosphatidylcholine alone. MtCK can undergo reversible oligomerization between dimeric and octameric forms, but only the octamer can bridge membranes and promote lipid transfer. Cytochrome c, another basic mitochondrial protein known to bind to anionic membranes but not crosslinking them, is also incapable of promoting lipid transfer. The lipid transfer process does not involve vesicle fusion or loss of the internal contents of the liposomes.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | |
Collapse
|