1
|
Silva IVG, Silva KL, Maia RC, Duarte HM, Coutinho R, Neves MHCB, Soares AR, Lopes GPF. Crosstalk between biological and chemical diversity with cytotoxic and cytostatic effects of Aphanothece halophytica in vitro. AN ACAD BRAS CIENC 2022; 94:e20211585. [PMID: 36515327 DOI: 10.1590/0001-3765202220211585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Different solvent extracts from Aphanothece halophytica (A. halophytica) were evaluated for their cytotoxic effects against four human cancer cell lines. The samples demonstrated different percentages of cyanobacteria species populations. The samples containing 100% A. halophytica and 90% A. halophytica showed a significant cytotoxic effect in human breast cancer cells MDA231. The cytostatic effect was demonstrated in MDA231 and human glioblastoma T98G cells regardless of the treatment, resulting in a significant cell cycle arrest in the S phase. The chemical profiles of the extracts were proven to be diverse in qualitative and quantitative compositions. This variability was dependent on the A. halophytica´s abundance in each extract. The 100% A. halophytica extract induced cytotoxic and cytostatic effects in breast cancer cells, and those could be associated with the predominance of fatty acids, hydrocarbons and phthalates, indicating that A. halophytica is an interesting source of novel compound with anticancer effect.
Collapse
Affiliation(s)
- Isabel V G Silva
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil
| | - Karina L Silva
- Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti, 37, Centro, 20321-050 Rio de Janeiro, RJ, Brazil
| | - Raquel C Maia
- Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23, Centro, 20230-130 Rio de Janeiro, RJ, Brazil
| | - Heitor M Duarte
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil.,Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Av. São José do Barreto, 764, São José do Barreto, 27965-045 Macaé, RJ, Brazil
| | - Ricardo Coutinho
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil.,Instituto de Estudos do Mar Almirante Paulo Moreira, Departamento de Biotecnologia Marinha, Rua Kioto, 253, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil
| | - Maria Helena C B Neves
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil.,Instituto de Estudos do Mar Almirante Paulo Moreira, Departamento de Biotecnologia Marinha, Rua Kioto, 253, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil
| | - Angelica R Soares
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil.,Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Av. São José do Barreto, 764, São José do Barreto, 27965-045 Macaé, RJ, Brazil
| | - Giselle P F Lopes
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil.,Instituto de Estudos do Mar Almirante Paulo Moreira, Departamento de Biotecnologia Marinha, Rua Kioto, 253, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil
| |
Collapse
|
2
|
He X, Liu H, Long L, Dong J, Huang S. Acclimation and stress response of Prochlorococcus to low salinity. Front Microbiol 2022; 13:1038136. [PMID: 36312958 PMCID: PMC9606707 DOI: 10.3389/fmicb.2022.1038136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Prochlorococcus is an obligate marine microorganism and the dominant autotroph in tropical and subtropical open ocean. However, the salinity range for growing and response to low salinity exposure of Prochlorococcus are still unknown. In this study, we found that low-light adapted Prochlorococcus stain NATL1A and high-light adapted strain MED4 could be acclimated in the lowest salinity of 25 and 28 psu, respectively. Analysis of the effective quantum yield of PSII photochemistry (Fv/Fm) indicated that both strains were stressed when growing in salinity lower than 34 psu. We then compared the global transcriptome of low salinity (28 psu) acclimated cells and cells growing in normal seawater salinity (34 psu). The transcriptomic responses of NATL1A and MED4 were approximately different, with more differentially expressed genes in NATL1A (525 genes) than in MED4 (277 genes). To cope with low salinity, NATL1A down-regulated the transcript of genes involved in translation, ribosomal structure and biogenesis and ATP-production, and up-regulated photosynthesis-related genes, while MED4 regulated these genes in an opposite way. In addition, both strains up-regulated an iron ABC transporter gene, idiA, suggesting low salinity acclimated cells could be iron limited. This study demonstrated the growing salinity range of Prochlorococcus cells and their global gene expression changes due to low salinity stress.
Collapse
Affiliation(s)
- Xiayu He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Huairou, Beijing, China
| | - Huan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Huairou, Beijing, China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Junde Dong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Sijun Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Sijun Huang,
| |
Collapse
|
3
|
Smith-Moore CM, Grunden AM. Bacteria and archaea as the sources of traits for enhanced plant phenotypes. Biotechnol Adv 2018; 36:1900-1916. [DOI: 10.1016/j.biotechadv.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
|
4
|
Sodium-Dependent Uptake of Glutamate by Novel ApGltS Enhanced Growth under Salt Stress of Halotolerant CyanobacteriumAphanothece halophytica. Biosci Biotechnol Biochem 2014; 76:1702-7. [DOI: 10.1271/bbb.120309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
5
|
Identification and upregulation of biosynthetic genes required for accumulation of Mycosporine-2-glycine under salt stress conditions in the halotolerant cyanobacterium Aphanothece halophytica. Appl Environ Microbiol 2013; 80:1763-9. [PMID: 24375141 DOI: 10.1128/aem.03729-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mycosporine-like amino acids (MAAs) are valuable molecules that are the basis for important photoprotective constituents. Here we report molecular analysis of mycosporine-like amino acid biosynthetic genes from the halotolerant cyanobacterium Aphanothece halophytica, which can survive at high salinity and alkaline pH. This extremophile was found to have a unique MAA core (4-deoxygadusol)-synthesizing gene separated from three other genes. In vivo analysis showed accumulation of the mycosporine-2-glycine but not shinorine or mycosporine-glycine. Mycosporine-2-glycine accumulation was stimulated more under the stress condition of high salinity than UV-B radiation. The Aphanothece MAA biosynthetic genes also manifested a strong transcript level response to salt stress. Furthermore, the transformed Escherichia coli and Synechococcus strains expressing four putative Aphanothece MAA genes under the control of a native promoter were found to be capable of synthesizing mycosporine-2-glycine. The accumulation level of mycosporine-2-glycine was again higher under the high-salinity condition. In the transformed E. coli cells, its level was approximately 85.2 ± 0.7 μmol/g (dry weight). Successful production of a large amount of mycosporine in these cells provides a new opportunity in the search for an alternative natural sunscreen compound source.
Collapse
|
6
|
Abstract
The genus Populus has a wide distribution in different climatic zones. Besides its economic and ecological relevance, Populus also serves as a model for elucidating physiological and molecular mechanisms of stress tolerance in tree species. In this review, adaptation strategies of poplars to excess soil salinity are addressed at different scales, from the cellular to the whole-plant level. Striking differences in salt tolerance exist among different poplar species and ecotypes, with Populus euphratica being outstanding in this respect. Key mechanisms identified in this species to mediate salt tolerance are compartmentalisation of Cl(-) in the vacuoles of the root cortex cells, diminished xylem loading of NaCl, activation of Na(+) extrusion into the soil solution under stress, together with simultaneously avoiding excessive K(+) loss by regulation of depolarisation-activated cation channels. This leads to improved maintenance of the K(+)/Na(+) balance, a crucial precondition for survival under salt stress. Leaf cells of this species are able to compartmentalise Na(+) preferentially in the apoplast, whereas in susceptible poplar species, as well as in crop plants, vacuolar Na(+) deposition precedes apoplastic transport. ABA, Ca(2+)and ROS are involved in stress sensing, with higher or faster activation of defences in tolerant than in susceptible poplar species. P. euphratica develops leaf succulence after prolonged salt exposure as a plastic morphological adaptation that leads to salt dilution. Transgenic approaches to improve salt tolerance by transformation of candidate genes have had limited success, since salt tolerance is a multigenic trait. In future attempts towards increased salt resistance, barriers between different poplar sections must be overcome and application of novel biotechnological tools, such as gene stacking, are recommended.
Collapse
Affiliation(s)
- S Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | | |
Collapse
|
7
|
An Mrp-like cluster in the halotolerant cyanobacterium Aphanothece halophytica functions as a Na+/H+ antiporter. Appl Environ Microbiol 2009; 75:6626-9. [PMID: 19700555 DOI: 10.1128/aem.01387-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mrp homolog gene cluster mrpCD1D2EFGAB (Ap-mrp) was found in a halotolerant cyanobacterium, Aphanothece halophytica, amplified, and expressed in Escherichia coli mutant TO114. Ap-mrp complemented the salt-sensitive phenotype of TO114 and exhibited Na(+)/H(+) and Li(+)/H(+) exchange activities, indicating that Ap-Mrp functions as a Na(+)/H(+) antiporter.
Collapse
|
8
|
A 70-kDa molecular chaperone, DnaK, from the industrial bacterium Bacillus licheniformis: gene cloning, purification and molecular characterization of the recombinant protein. Indian J Microbiol 2009; 49:151-60. [PMID: 23100764 DOI: 10.1007/s12088-009-0029-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/27/2008] [Indexed: 12/24/2022] Open
Abstract
The heat shock protein 70 (Hsp70/DnaK) gene of Bacillus licheniformis is 1,839 bp in length encoding a polypeptide of 612 amino acid residues. The deduced amino acid sequence of the gene shares high sequence identity with other Hsp70/DnaK proteins. The characteristic domains typical for Hsps/DnaKs are also well conserved in B. licheniformis DnaK (BlDnaK). BlDnaK was overexpressed in Escherichia coli using pQE expression system and the recombinant protein was purified to homogeneity by nickel-chelate chromatography. The optimal temperature for ATPase activity of the purified BlDnaK was 40°C in the presence of 100 mM KCl. The purified BlDnaK had a V(max) of 32.5 nmol Pi/min and a K(M) of 439 μM. In vivo, the dnaK gene allowed an E. coli dnaK756-ts mutant to grow at 44°C, suggesting that BlDnaK should be functional for survival of host cells under environmental changes especially higher temperature. We also described the use of circular dichroism to characterize the conformation change induced by ATP binding. Binding of ATP was not accompanied by a net change in secondary structure, but ATP together with Mg(2+) and K(+) ions had a greater enhancement in the stability of BlDnaK at stress temperatures. Simultaneous addition of DnaJ, GrpE, and NR-peptide (NRLLLTG) synergistically stimulates the ATPase activity of BlDnaK by 11.7-fold.
Collapse
|
9
|
Waditee R, Bhuiyan NH, Hirata E, Hibino T, Tanaka Y, Shikata M, Takabe T. Metabolic engineering for betaine accumulation in microbes and plants. J Biol Chem 2007; 282:34185-93. [PMID: 17884813 DOI: 10.1074/jbc.m704939200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plants accumulate a variety of osmoprotectants that improve their ability to combat abiotic stresses. Among them, betaine appears to play an important role in conferring resistance to stresses. Betaine is synthesized via either choline oxidation or glycine methylation. An increased betaine level in transgenic plants is one of the potential strategies to generate stress-tolerant crop plants. Here, we showed that an exogenous supply of serine or glycine to a halotolerant cyanobacterium Aphanothece halophytica, which synthesizes betaine from glycine by a three-step methylation, elevated intracellular accumulation of betaine under salt stress. The gene encoding 3-phosphoglycerate dehydrogenase (PGDH), which catalyzes the first step of the phosphorylated pathway of serine biosynthesis, was isolated from A. halophytica. Expression of the Aphanothece PGDH gene in Escherichia coli caused an increase in levels of betaine as well as glycine and serine. Expression of the Aphanothece PGDH gene in Arabidopsis plants, in which the betaine synthetic pathway was introduced via glycine methylation, further increased betaine levels and improved the stress tolerance. These results demonstrate that PGDH enhances the levels of betaine by providing the precursor serine for both choline oxidation and glycine methylation pathways.
Collapse
Affiliation(s)
- Rungaroon Waditee
- Research Institute of Meijo University, Tenpaku-ku, Nagoya, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Sato M, Nimura-Matsune K, Watanabe S, Chibazakura T, Yoshikawa H. Expression analysis of multiple dnaK genes in the cyanobacterium Synechococcus elongatus PCC 7942. J Bacteriol 2007; 189:3751-8. [PMID: 17351044 PMCID: PMC1913318 DOI: 10.1128/jb.01722-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the stress responses of three dnaK homologues (dnaK1, dnaK2, and dnaK3) in the cyanobacterium Synechococcus elongatus PCC 7942. A reporter assay showed that under stress conditions the expression of only the dnaK2 gene was induced, suggesting a functional assignment of these homologues. RNA blot hybridization indicated a typical stress response of dnaK2 to heat and high-light stress. Primer extension mapping showed that dnaK2 was transcribed from similar sites under various stress conditions. Although no known sequence motif was detected in the upstream region, a 20-bp sequence element was highly conserved in dnaK2; it was essential not only for the stress induction but also for the basal expression of dnaK2. The ubiquitous upstream localization of this element in each heat shock gene suggests its important role in the cyanobacterial stress response.
Collapse
Affiliation(s)
- Masumi Sato
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | | | |
Collapse
|
11
|
Laloknam S, Tanaka K, Buaboocha T, Waditee R, Incharoensakdi A, Hibino T, Tanaka Y, Takabe T. Halotolerant cyanobacterium Aphanothece halophytica contains a betaine transporter active at alkaline pH and high salinity. Appl Environ Microbiol 2006; 72:6018-26. [PMID: 16957224 PMCID: PMC1563673 DOI: 10.1128/aem.00733-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium which can grow in media of up to 3.0 M NaCl and pH 11. This cyanobacterium can synthesize betaine from glycine by three-step methylation using S-adenosylmethionine as a methyl donor. To unveil the mechanism of betaine uptake and efflux in this alkaliphile, we isolated and characterized a betaine transporter. A gene encoding a protein (BetT(A. halophytica)) that belongs to the betaine-choline-carnitine transporter (BCCT) family was isolated. Although the predicted isoelectric pH of a typical BCCT family transporter, OpuD of Bacillus subtilis, is basic, 9.54, that of BetT(A. halophytica) is acidic, 4.58. BetT(A. halophytica) specifically catalyzed the transport of betaine. Choline, gamma-aminobutyric acid, betaine aldehyde, sarcosine, dimethylglycine, and amino acids such as proline did not compete for the uptake of betaine by BetT(A. halophytica). Sodium markedly enhanced betaine uptake rates, whereas potassium and other cations showed no effect, suggesting that BetT(A. halophytica) is a Na(+)-betaine symporter. Betaine uptake activities of BetT(A. halophytica) were high at alkaline pH values, with the optimum pH around 9.0. Freshwater Synechococcus cells overexpressing BetT(A. halophytica) showed NaCl-activated betaine uptake activities with enhanced salt tolerance, allowing growth in seawater supplemented with betaine. Kinetic properties of betaine uptake in Synechococcus cells overexpressing BetT(A. halophytica) were similar to those in A. halophytica cells. These findings indicate that A. halophytica contains a Na(+)-betaine symporter that contributes to the salt stress tolerance at alkaline pH. BetT(A. halophytica) is the first identified transporter for compatible solutes in cyanobacteria.
Collapse
Affiliation(s)
- Surasak Laloknam
- Research Institute of Meijo University, Tenpaku-ku, Nagoya 468-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Waditee R, Buaboocha T, Kato M, Hibino T, Suzuki S, Nakamura T, Takabe T. Carboxyl-terminal hydrophilic tail of a NhaP type Na+/H+ antiporter from cyanobacteria is involved in the apparent affinity for Na+ and pH sensitivity. Arch Biochem Biophys 2006; 450:113-21. [PMID: 16616885 DOI: 10.1016/j.abb.2006.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 02/16/2006] [Accepted: 02/17/2006] [Indexed: 01/02/2023]
Abstract
Little information is available on the C-terminal hydrophilic tails of prokaryotic Na(+)/H(+) antiporters. To address functional properties of the C-terminal tail, truncation mutants in this domain were constructed. Truncation of C-terminal amino acid residues of NhaP1 type antiporter from Synechocystis PCC6803 (SynNhaP1) did not change the V(max) values, but increased the K(m) values for Na(+) and Li(+) about 3 to 15-fold. Truncation of C-terminal tail of a halotolerant cyanobacterium Aphanothece halophytica (ApNhaP1) significantly decreased the V(max) although it did not alter the K(m) values for Na(+). The C-terminal part of SynNhaP1 was expressed in E. coli and purified as a 16kDa soluble protein. Addition of purified polypeptide to the membrane vesicles expressing the C-terminal truncated SynNhaP1 increased the exchange activities. Change of Glu519 and Glu521 to Lys in C-terminal tail altered the pH dependence of Na(+)/H(+) and Li(+)/H(+) exchange activities. These results indicate that the specific acidic amino acid residues at C-terminal domain play important roles for the K(m) and the pH dependence of the exchange activity.
Collapse
|
13
|
Wutipraditkul N, Waditee R, Incharoensakdi A, Hibino T, Tanaka Y, Nakamura T, Shikata M, Takabe T, Takabe T. Halotolerant cyanobacterium Aphanothece halophytica contains NapA-type Na+/H+ antiporters with novel ion specificity that are involved in salt tolerance at alkaline pH. Appl Environ Microbiol 2005; 71:4176-84. [PMID: 16085800 PMCID: PMC1183346 DOI: 10.1128/aem.71.8.4176-4184.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium which can grow at NaCl concentrations up to 3.0 M and at pH values up to 11. The genome sequence revealed that the cyanobacterium Synechocystis sp. strain PCC 6803 contains five putative Na+/H+ antiporters, two of which are homologous to NhaP of Pseudomonas aeruginosa and three of which are homologous to NapA of Enterococcus hirae. The physiological and functional properties of NapA-type antiporters are largely unknown. One of NapA-type antiporters in Synechocystis sp. strain PCC 6803 has been proposed to be essential for the survival of this organism. In this study, we examined the isolation and characterization of the homologous gene in Aphanothece halophytica. Two genes encoding polypeptides of the same size, designated Ap-napA1-1 and Ap-napA1-2, were isolated. Ap-NapA1-1 exhibited a higher level of homology to the Synechocystis ortholog (Syn-NapA1) than Ap-NapA1-2 exhibited. Ap-NapA1-1, Ap-NapA1-2, and Syn-NapA1 complemented the salt-sensitive phenotypes of an Escherichia coli mutant and exhibited strongly pH-dependent Na+/H+ and Li+/H+ exchange activities (the highest activities were at alkaline pH), although the activities of Ap-NapA1-2 were significantly lower than the activities of the other polypeptides. Only one these polypeptides, Ap-NapA1-2, complemented a K+ uptake-deficient E. coli mutant and exhibited K+ uptake activity. Mutagenesis experiments suggested the importance of Glu129, Asp225, and Asp226 in the putative transmembrane segment and Glu142 in the loop region for the activity. Overexpression of Ap-NapA1-1 in the freshwater cyanobacterium Synechococcus sp. strain PCC 7942 enhanced the salt tolerance of cells, especially at alkaline pH. These findings indicate that A. halophytica has two NapA1-type antiporters which exhibit different ion specificities and play an important role in salt tolerance at alkaline pH.
Collapse
|
14
|
Blanco-Rivero MC, Takabe T, Viale AM. Functional differences between cyanobacterial DnaK1 chaperones from the halophyte Aphanothece halophytica and the freshwater species Synechococcus elongatus expressed in Escherichia coli. Curr Microbiol 2005; 51:164-70. [PMID: 16059771 DOI: 10.1007/s00284-005-4533-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Accepted: 04/23/2005] [Indexed: 10/25/2022]
Abstract
DnaK chaperones participate in essential cellular processes including the assistance of the folding, structural maintenance, trafficking, and degradation of proteins, the control of stress responses, and so on. In contrast to the situation found in most other bacterial groups, the cyanobacteria contain multiple dnaK homolog genes whose cellular roles remain ambiguous. We compared in this work the in vivo chaperone capabilities of the DnaK1 members from the halophyte Aphanothece halophytica and the freshwater species Synechococcus elongatus. The corresponding dnaK1 genes were expressed in Escherichia coli, and the abilities of the encoded chaperones to provide for both general and specific functions conducted by E. coli DnaK were analyzed. Synechococcus DnaK1 was far more effective than A. halophytica DnaK1 in replacing E. coli DnaK in all activities tested in vivo, including changes in cell morphology and downregulation of the heat shock response, prevention of the aggregation of misfolded proteins, and restoration of thermotolerance to dnaK-deficient mutants. Thus, regardless of an extensive sequence similarity and comparable in vitro chaperone capabilities, the two cyanobacterial DnaK1 chaperones functionally differed under in vivo conditions. The overall results reinforce the notion that A. halophytica DnaK1 and Synechococcus DnaK1 evolved different substrate specificity since they separated from a common ancestor.
Collapse
Affiliation(s)
- María C Blanco-Rivero
- Instituto de Biología Molecular y Celular de Rosario (CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, S2002LRK, Argentina
| | | | | |
Collapse
|
15
|
Nitta K, Kaneko Y, Kojima K, Fukuzawa H, Kosaka H, Nakamoto H. Comparative analysis of the hspA mutant and wild-type Synechocystis sp. strain PCC 6803 under salt stress: evaluation of the role of hspA in salt-stress management. Arch Microbiol 2004; 182:487-97. [PMID: 15483753 DOI: 10.1007/s00203-004-0733-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 08/31/2004] [Accepted: 09/14/2004] [Indexed: 10/26/2022]
Abstract
DNA microarray analysis has previously revealed that hspA, which encodes a small heat-shock protein, is the second most highly expressed gene under salt stress in Synechocystis sp. strain PCC 6803. Consequently, an hspA deletion mutant was studied under various salt stresses in order to identify a potential role of HspA in salt stress management. The mutant had a growth disadvantage under moderate salt stress. It lost the ability to develop tolerance to a lethal salt treatment by a moderate salt pre-treatment when the tolerance was evaluated by cell survival and the level of major soluble proteins, phycocyanins, while the wild-type acquired tolerance. Under various salt stresses, the mutant failed to undergo the ultrastructural changes characteristic of wild-type cells. The mutant, which showed higher survival than the wild-type after a direct shift to lethal salt conditions, accumulated higher levels of groESL1 and groEL2 transcripts and the corresponding proteins, GroES, GroEL1, and GroEL2, suggesting a role for these heat-shock proteins in conferring basal salt tolerance. Under salt stress, heat-shock genes, such as hspA, groEL2, and dnaK2, were transcriptionally induced and greatly stabilized, indicating a transcriptional and post-transcriptional mechanism of acclimation to salt stress involving these heat-shock genes.
Collapse
|
16
|
Waditee R, Hossain GS, Tanaka Y, Nakamura T, Shikata M, Takano J, Takabe T, Takabe T. Isolation and functional characterization of Ca2+/H+ antiporters from cyanobacteria. J Biol Chem 2003; 279:4330-8. [PMID: 14559898 DOI: 10.1074/jbc.m310282200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genome sequences of cyanobacteria, Synechocystis sp. PCC 6803, Anabaena sp. PCC 7120, and Thermosynechococcus elongatus BP-1 revealed the presence of a single Ca2+/H+ antiporter in these organisms. Here, we isolated the putative Ca2+/H+ antiporter gene from Synechocystis sp. PCC 6803 (synCAX) as well as a homologous gene from a halotolerant cyanobacterium Aphanothece halophytica (apCAX). In contrast to plant vacuolar CAXs, the full-length apCAX and synCAX genes complemented the Ca2+-sensitive phenotype of an Escherichia coli mutant. ApCAX and SynCAX proteins catalyzed specifically the Ca2+/H+ exchange reaction at alkaline pH. Immunological analysis suggested their localization in plasma membranes. The Synechocystis sp. PCC 6803 cells disrupted of synCAX exhibited lower Ca2+ efflux activity and a salt-sensitive phenotype. Overexpression of ApCAX and SynCAX enhanced the salt tolerance of Synechococcus sp. PCC 7942 cells. Mutagenesis analyses indicate the importance of two conserved acidic amino acid residues, Glu-74 and Glu-324, in the transmembrane segments for the exchange activity. These results clearly indicate that cyanobacteria contain a Ca2+/H+ antiporter in their plasma membranes, which plays an important role for salt tolerance.
Collapse
|
17
|
Waditee R, Tanaka Y, Aoki K, Hibino T, Jikuya H, Takano J, Takabe T, Takabe T. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J Biol Chem 2003; 278:4932-42. [PMID: 12466265 DOI: 10.1074/jbc.m210970200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycine betaine (N,N,N-trimethylglycine) is an important osmoprotectant and is synthesized in response to abiotic stresses. Although almost all known biosynthetic pathways of betaine are two-step oxidation of choline, here we isolated two N-methyltransferase genes from a halotolerant cyanobacterium Aphanothece halophytica. One of gene products (ORF1) catalyzed the methylation reactions of glycine and sarcosine with S-adenosylmethionine acting as the methyl donor. The other one (ORF2) specifically catalyzed the methylation of dimethylglycine to betaine. Both enzymes are active as monomers. Betaine, a final product, did not show the feed back inhibition for the methyltransferases even in the presence of 2 m. A reaction product, S-adenosyl homocysteine, inhibited the methylation reactions with relatively low affinities. The co-expressing of two enzymes in Escherichia coli increased the betaine level and enhanced the growth rates. Immunoblot analysis revealed that the accumulation levels of both enzymes in A. halophytica cells increased with increasing the salinity. These results indicate that A. halophytica cells synthesize betaine from glycine by a three-step methylation. The changes of amino acids Arg-169 to Lys or Glu in ORF1 and Pro-171 to Gln and/or Met-172 to Arg in ORF2 significantly decreased V(max) and increased K(m) for methyl acceptors (glycine, sarcosine, and dimethylglycine) but modestly affected K(m) for S-adenosylmethionine, indicating the importance of these amino acids for the binding of methyl acceptors. Physiological and functional properties of methyltransferases were discussed.
Collapse
|
18
|
Sugimoto S, Nakayama J, Fukuda D, Sonezaki S, Watanabe M, Tosukhowong A, Sonomoto K. Effect of heterologous expression of molecular chaperone DnaK from Tetragenococcus halophilus on salinity adaptation of Escherichia coli. J Biosci Bioeng 2003; 96:129-33. [PMID: 16233497 DOI: 10.1016/s1389-1723(03)90114-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 04/18/2003] [Indexed: 11/20/2022]
Abstract
Molecular chaperone DnaK of halophilic Tetragenococcus halophilus JCM5888 was characterized under salinity conditions both in vitro and in vivo. The dnaK gene was cloned into an expression vector and transformed into Escherichia coli. The DnaK protein obtained from the recombinant E. coli showed a significantly higher refolding activity of denatured lactate dehydrogenase than that from non-halophilic Lactococcus lactis under NaCl concentrations higher than 1 M. E. coli without the overexpression of DnaK exhibited a growth profile with a prolonged lag phase and suppressed maximum cell density in Luria-Bertani medium containing 5% (0.86 M) NaCl. On the contrary, the overexpression of T. halophilus DnaK greatly shortened this prolonged lag phase with no effect on maximum growth, while that of L. lactis DnaK decreased maximum growth. The amount of protein aggregates was increased by salt stress in the E. coli cells, while this aggregation was greatly suppressed by the overexpression of T, halophilus DnaK. These results suggest that heterologous overexpression of T. halophilus DnaK, via its chaperone activity, promotes salinity adaptation of E. coli.
Collapse
Affiliation(s)
- Shinya Sugimoto
- Laboratory of Microbial Technology, Division of Microbial Science and Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Fukuda D, Watanabe M, Sonezaki S, Sugimoto S, Sonomoto K, Ishizaki A. Molecular characterization and regulatory analysis of dnaK operon of halophilic lactic acid bacterium Tetragenococcus halophila. J Biosci Bioeng 2002. [DOI: 10.1016/s1389-1723(02)80072-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Takabe T. Halotolerant cyanobacterium Aphanothece halophytica contains an Na(+)/H(+) antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail. J Biol Chem 2001; 276:36931-8. [PMID: 11479290 DOI: 10.1074/jbc.m103650200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, a cyanobacterium Synechocystis sp. PCC 6803 has been shown to contain an Na(+)/H(+) antiporter gene homologous to plants (SOS1 and AtNHX1 from Arabidopsis) and mammalians (NHEs from human) but not to Escherichia coli (nhaA and nhaB). Here, we examined whether a halotolerant cyanobacterium Aphanothece halophytica has homologous genes. It turned out that A. halophytica contains an Na(+)/H(+) antiporter homologous to plants, mammalians, and some bacteria (nhaP from Pseudomonas and synnhaP from Synechocystis) but with novel ion specificity. Its gene product, ApNhaP (Na(+)/H(+) antiporter from Aphanothece halophytica), exhibited the Na(+)/H(+) antiporter activity over a wide pH range between 5 and 9 and complemented the Na(+)-sensitive phenotype of the antiporter-deficient E. coli mutant. The ApNhaP had virtually no activity for the Li(+)/H(+) antiporter but showed high Ca(2+)/H(+) antiporter activity at alkaline pH. The ApNhaP complemented the Ca(2+)-sensitive phenotype of the E. coli mutant but not the Li(+)-sensitive phenotype. The replacement of a long C-terminal tail of ApNhaP with that of Synechocystis altered the ion specificity of the antiporter. These results suggest that the ion specificity of an Na(+)/H(+) antiporter is partly determined by the structural properties of the C-terminal tail, which was well exemplified in the case of A. halophytica.
Collapse
Affiliation(s)
- R Waditee
- Research Institute, Faculty of Science and Technology, Meijo University, Nagoya 468-8502, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Ono K, Hibino T, Kohinata T, Suzuki S, Tanaka Y, Nakamura T, Takabe T, Takabe T. Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances the high-temperatue tolerance of tobacco during germination and early growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2001; 160:455-461. [PMID: 11166432 DOI: 10.1016/s0168-9452(00)00412-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DnaK1 from a halotolerant cyanobacterium Aphanothece halophytica, was overexpressed in the cytosol of tobacco. When the control and transgenic tobacco seeds were incubated at 27 degrees C, more than 95% of the control and transgenic tobacco seeds germinated. However, at a high incubation temperature, 40 degrees C, only 27% of the control seeds germinated whereas 82% of the transgenic seeds germinated. High temperature treatment during the imbibition of seeds delayed germination more in the control plants than in the transformants although the maximum percentage of germination was similar in both plants. The quantum yields of electron transport and plant elongation were higher in the transformant during high temperature treatment in young seedlings, but similar in older leaves. DnaK1 was detected in small amounts in seeds and its levels increased during germination. These data indicate that the expression of DnaK1 from a halotolerant cyanobacterium A. halophytica improved the tolerance to high temperature during germination and early growth.
Collapse
Affiliation(s)
- K Ono
- Research Institute of Meijo University, Tenpaku-ku, Nagoya, 468-8502, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|